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Abstract

A core challenge in policy optimization in com-
petitive Markov decision processes is the design
of efficient optimization methods with desirable
convergence and stability properties. We propose
competitive policy optimization (COPO), a novel
policy gradient approach that exploits the game-
theoretic nature of competitive games to derive pol-
icy updates. Motivated by the competitive gradient
optimization method, we derive a bilinear approxi-
mation of the game objective. In contrast, off-the-
shelf policy gradient methods utilize only linear
approximations, and hence do not capture players’
interactions. We instantiate COPO in two ways: (i)
competitive policy gradient, and (ii) trust-region
competitive policy optimization. We theoretically
study these methods, and empirically investigate
their behavior on a set of comprehensive, yet chal-
lenging, competitive games. We observe that they
provide stable optimization, convergence to sophis-
ticated strategies, and higher scores when played
against baseline policy gradient methods.

1 INTRODUCTION

Reinforcement learning (RL) in competitive Markov deci-
sion processes COMDP [Filar and Vrieze, 2012] is the study
of competitive players, sequentially making decisions in an
environment. In COMDPs, the competing agents (players)
interact with each other within the environment, and through
their interactions, learn how to develop their behavior and
improve their policy. In this paper, we consider the rich and
fundamental class of zero-sum two-player games.

A core challenge in COMDP is to design optimization pro-
cedures with desirable convergence and stability properties.
Policy gradient (PG) is a prominent RL approach that is
widely used in single agent optimization and derives policy

update using the first order (linear) approximation of the
objective function [Robbins and Monro, 1951, Aleksandrov
et al., 1968, Sutton et al., 2000]. A straightforward extension
of conventional single-agent PG approaches to two-player
min-max games results in the gradient descent ascent (GDA)
PG algorithm. This approximation is linear in agents’ pa-
rameters and does not take their interaction into account.
Therefore, GDA directly optimizes the policy of each agent,
assuming the policy of the opponent is fixed which some
times leads to divergence even in simple scenarios and hence
considered undesirable in competitive optimization.

We propose a new paradigm, competitive policy opti-
mization (COPO) for solving two-player COMDPs. COPO
exploits the game-theoretic and competitive nature of
COMDPs, and, inspired by the competitive gradient descent
approach [Schaefer and Anandkumar, 2019], deploys a lo-
cal bilinear approximation of the game objective to derive
policy updates. This local bilinear approximation can be
viewed as the simultaneous two-player generalization of
the local linear approximation used in single-agent policy
gradient approaches (holding the other agent’s policy fixed).
To compute the policy updates, COPO computes the Nash
equilibrium of the local bilinear approximation of the game
objective. In COPO, each agent derives its update with the
consideration of what the other agent’s current move and
moves in the future time steps might be. In addition, each
agent considers how the environment, as the result of the
agents’ current and future moves, evolves in favor of each
agent. Therefore, each agent hypothesizes about what the
other agent’s and the environment’s responses would be,
resulting in the recursive reasoning in game theory [Keynes,
2018] and temporal recursion in COMDPs.

We instantiate COPO in two ways to arrive at practical al-
gorithms. We propose competitive policy gradient (COPG),
a novel PG algorithm that exploits value functions and the
structure of COMDPs to efficiently obtain policy updates.
We further extend our approach to the case where each agent
does not have direct access to the opponent’s policy parame-
ters, and must (approximate) it. We also propose trust region
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 competitive policy optimization (TRCOPO), a novel trust
region based PG method [Schulman et al., 2015]. TRCOPO
updates agents’ parameters simultaneously by deriving the
Nash equilibrium of a bilinear (in contrast to linear approxi-
mation in off-the-shelf trust region methods) approximation
to the surrogate objective within a defined trust region in the
parameter space.

We empirically validate our approach in several settings. We
construct the main empirically study on competitive games,
such as Markov soccer, Linear dynamical systems, and Rac-
ing cars. We show in all these environments that COPO leads
to superior policies. We observe many cases where standard
policy gradient approaches do not exhibit stable learning
behavior and can diverge. In our case studies, we show that
COPO can be applied to self-play setting, where an agent
is playing against itself. We further show that COPO can
be applied to improve performance in other competitive al-
gorithms such as generative adversarial imitation learning
(GAIL) (where one player is the policy and the other is the
discriminator) [Ho and Ermon, 2016]. We further extend
our case study and show that COPO remains effective even
when one needs to learn a model of the opponent’s policy
rather than having direct access.

2 PRELIMINARIES

A two player COMDP is a tuple of 〈S,A1,A2,R, T ,P, γ〉,
where S is the state space, s ∈ S is a state, for player
i ∈ {1, 2}, Ai is the player i’s action space with ai ∈
Ai. R is the reward kernel with probability distribution
R(·|s, a1, a2) and mean function r(s, a1, a2) on R. For
a probability measure P , p denotes the probability dis-
tribution of initial state, and for the transition kernel T ,
T (s′|s, a1, a2) is the distribution of successive state s′ after
taking actions a1, a2 simultaneously at state s, with discount
factor γ ∈ [0, 1]. We consider episodic environments with
reachable absorbing state sT almost surely in finite time. An
episode starts at s0 ∼ p, and at each time step k ≥ 0 at state
sk, each player i draws its action aik according to policy
π(aik|sk; θi) parameterized by θi ∈ Θi, where Θi ⊂ Rl is
a compact metric space. Players 1, 2 receive (rk,−rk) with
rk ∼ R(sk, a

1
k, a

2
k), and the environment evolves to a new

state sk+1. A realization of this stochastic process is a trajec-
tory τ =

(
(sk, a

1
k, a

2
k, rk)

|τ |−1
k=0 , s|τ |

)
, an ordered sequence

with random length |τ |, where |τ | is determined by episode
termination time and state s|τ | = sT . Let f(τ ; θ1, θ2) de-
note the probability distribution of the trajectory τ following
players’ policies π(θi),

f(τ ; θ1, θ2) = p(s0)

|τ |−1∏
k=0

π(a1
k|sk; θ1)π(a2

k|sk; θ2)

R(rk|sk, a1
k, a

2
k)T (sk+1|sk, a1

k, a
2
k). (1)

For R(τ) =
∑|τ |
k=0 γ

kr(sk, a
1
k, a

2
k), the Q-function, V -

functions, and game objective are defined,

Q(sk,a
1
k,a

2
k;θ1,θ2)=Eτ∼f(·;θ1,θ2)

[|τ |−1∑
j=k

γj−kr(sj ,a
1
j ,a

2
j )|sk,a1

k,a
2
k

]
,

V (sk; θ1, θ2)=Eτ∼f(·;θ1,θ2)

[ |τ |−1∑
j=k

γj−kr(sj , a
1
j , a

2
j )|sk

]
,

η(θ1, θ2) =

∫
τ

f(τ ; θ1, θ2)R(τ)dτ (2)

We assume V , Q, and η are differentiable and
bounded in (Θ1,Θ2) and for f on (Θ1,Θ2), Dθif =
∂
∂θ′i

f(θ′
1
,θ′

2
)
∣∣
(θ′1,θ′2)=(θ1,θ2)

, and Dθiθjf =
∂
∂θ′i

(
∂
∂θ′j

f(θ′
1
,θ′

2
)
)∣∣

(θ′1,θ′2)=(θ1,θ2)
, for i, j ∈ {1, 2}.

3 COMPETITIVE POLICY OPTIMIZATION

Player 1 aims to maximize the game objective η Eq. (2), and
player 2 aims to minimize it, i.e., simultaneously solving
for maxθ1 η(θ1, θ2) and minθ2 η(θ1, θ2) respectively with,

θ1∗ ∈ argmax
θ1∈Θ1

η(θ1, θ2), and θ2∗ ∈ argmin
θ2∈Θ2

η(θ1, θ2). (3)

As discussed in the introduction, a straightforward general-
ization of PG methods to COMDP, results in GDA (Alg.1).
Given players’ parameters (θ1, θ2), GDA prescribes to op-
timize a linear approximation of the game objective in the
presence of a regularization for the policy updates,

θ1←θ1+ argmax
∆θ1:∆θ1+θ1∈Θ1

∆θ1>Dθ1η −
1

2α
||∆θ1||2, and

θ2 ← θ2+ argmin
∆θ2:∆θ2+θ2∈Θ2

∆θ2>Dθ2η +
1

2α
||∆θ2||2, (4)

where α represent the step size. The parameter updates in
Eq. 4 result in greedy updates along the directions of max-
imum change, assuming the other player stays constant.
These updates are myopic, and ignore the agents’ interac-
tions. In other words, player 1 does not take player’s 2 po-
tential move into consideration and vice versa. While GDA
might be an approach of interest in decentralized COMDP,
it mainly falls short in the problem of competitive and cen-
tralized optimization in a priori unknown COMDPs, i.e., the
focus of this work. In fact, this behaviour is far from optimal
and is shown to diverge in many simple cases e.g. plain bilin-
ear or linear quadratic games [Schaefer and Anandkumar,
2019, Mazumdar et al., 2019]. While single agent policy
gradient methods generalize gradient descent [Robbins and
Monro, 1951] to single player RL settings, in this paper,
we generalize competitive gradient descent [Schaefer and
Anandkumar, 2019] to zero-sum RL settings.

We propose competitive policy optimization COPO, a policy
gradient approach for optimization in unknown COMDPs.



 In contrast to standard PG methods, such as GDA, COPO
considers a bilinear approximation of the game objective,
and takes the interaction between players into account. Fol-
lowing the competitive gradient updates, COPO incorporates
the game theoretic nature of the COMDP optimization and
derives parameter updates through finding the Nash equilib-
rium of the bilinear approximation of the game objective,

θ1←θ1+ argmax
∆θ1:∆θ1+θ1∈Θ1

∆θ1>Dθ1η+∆θ1
>
Dθ1θ2η∆θ2− 1

2α
||∆θ1||2,

θ2←θ2+argmin
∆θ2:∆θ2+θ2∈Θ2

∆θ2>Dθ2η+∆θ2>Dθ2θ1η∆θ1+
1

2α
||∆θ2||2, (5)

which has an extra term, the interaction term, in contrast to
Eq. 4, and has the following closed-form solution,

θ1←θ1+α
(
I+α2Dθ1θ2ηDθ2θ1η

)−1(
Dθ1η−αDθ1θ2ηDθ2η

)
,

θ2←θ2−α
(
I+α2Dθ2θ1ηDθ1θ2η

)−1(
Dθ2η+αDθ2θ1ηDθ1η

)
,(6)
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Figure 1: Bilinear games: (a) COPO updates towards Nash
equilibrium. (b) GDA updates point outward, leading to
cycling/divergence.

where I is an identity matrix of appropriate size. Note
that, the bilinear approximation in Eq. 5 is still linear in
each player’s action/parameters. Including any other terms,
e.g., block diagonal Hessian terms from the Taylor expan-
sion of the game objective, results in nonlinear terms in
at least one player’s parameters. As such, COPO can be
viewed as a natural linear generalization of PG. It is known
that GDA-style co-learning approaches can often diverge
or cycle indefinitely and never converge [Mertikopoulos
et al., 2018a]. Fig. 1 shows that for a bilinear game, the
gradient flow of GDA cycles or has gradient flow outward,
while the COPG flow, considering players’ future moves,
has gradient flow toward the Nash equilibrium and con-
verges. In Apx.9, we deploy the Neumann series expan-
sion of the inverses in Eq.5, and show that COPO recov-
ers the infinite recursion reasoning between players and
the environment, while GDA correspond to the first term,
and LOLA corresponds to the first two terms in the series.
Next, we compute terms in Eq. 6 using the score function
g(τ, θi) := Dθi(log

∏|τ |−1
k=0 π(ak|sk; θi)),

Proposition 1. Given a COMDP, players i, j ∈{1, 2}, i 6=

j and the policy parameters θi, θj ,

Dθiη =

∫
τ

f(τ ; θ1, θ2)g(τ, θi)R(τ)dτ,

Dθiθjη=

∫
τ

f(τ ; θ1, θ2)g(τ, θi)g(τ, θj)>R(τ)dτ.

Proof in Apx. 10.1. In practice, we use conjugate gradient
and Hessian vector product to efficiently compute the up-
dates in Eq.6, as explained in later sections. A closer look at
COPO shows that this paradigm does not require the knowl-
edge of the environment if sampled trajectories are available.
It neither requires full observability of the states, nor any
structural assumption on COMDP, but the Monte Carlo es-
timation suffer from high variance. In the following, we
explicitly take the COMDP structure into account to develop
efficient algorithms.

3.1 COMPETITIVE POLICY GRADIENT

We propose competitive policy gradient (COPG), an efficient
algorithm that exploits the structure of COMDPs to compute
the parameter updates. The following is the COMDP gener-
alizing of the single agent PG theorem [Sutton et al., 2000].
For τl:l′ = (sk, a

1
k, a

2
k, rk)l

′

k=l, the events from time step l
to l′, we have:

Theorem 1. Given a COMDP, players i, j ∈{1, 2}, i 6= j,
and the policy parameters θi, θj ,

Dθiη =

∫
τ

∑|τ |−1

k=0
γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ, (7)

Dθiθjη= T1 + T2 + T3. (8)

Proof in Apx. 10.2. T1, T2 and T3 are described in Ta-
ble 1. This theorem indicates that the terms in Eq. 6 can be
computed using Q function. In Eq. 8, T1 is the immediate
interaction between players, T2 is the interaction of player
i’s behavior up to time step k with player j’s reaction at
time step k, and the environment. T3 is the interaction of
player j’s behavior upto time step k with player i’s reaction
at time step k, and the environment.

COPG operates in epochs. At each epoch, COPG deploys
π(θ1), π(θ2) to collect trajectories, exploits them to estimate
theQ,Dθiη, andDθiθjη. Then COPG follows the parameter
updates in Eq. 6 and updates (θ1, θ2), and this process goes
on to the next epoch (Alg.2). Many variants of PG approach
uses baselines, and replace Q with, the advantage function
A(s, a1, a2; θ1, θ2) = Q(s, a1, a2; θ1, θ2) − V (s; θ1, θ2),
Monte Carlo estimate of Q-V [Baird, 1993], empirical TD
error or generalized advantage function (GAE) [Schulman
et al., 2016]. Our algorithm can be extended to this set up
and in Apx. 11 we show how COPG can be accompanied
with all the mentioned variants.



 Table 1: Notations for the bilinear term in the competitive policy theorem

Symbol Formulation

T1 :
∫
τ

∑|τ |−1
k=0 γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log π(ajk|sk; θj))>Q(sk, a

1
k, a

2
k; θ1, θ2)dτ

T2 :
∫
τ

∑|τ |−1
k=1 γkf(τ0:k; θ1, θ2)Dθi(log

∏k−1
l=0 π(ail|sl; θi))Dθj (log π(ajk|sk; θj))>Q(sk, a

1
k, a

2
k; θ1, θ2)dτ

T3 :
∫
τ

∑|τ |−1
k=1 γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log

∏k−1
l=0 π(ajl |sl; θj))>Q(sk, a

1
k, a

2
k; θ1, θ2)dτ

3.2 OPPONENT PARAMETER ESTIMATION

In some settings, each learner does not have access to the
opponent’s policy. To apply COPG in such settings, one
natural approach is to estimate online the opponent’s policy
by the opponent’s state-action pairs, as proposed in [Foerster
et al., 2017b]. We thus propose a variant of COPG that also
infers the opponent’s policy parameters (COPG-OP), where
each agent i also estimates the parameters θ̂j of its opponent
j’s policy, e.g., using maximum-likelihood estimator,

θ̂j = argmaxθj Eτ∼f(·,θ1,θ2)

|τ |−1∑
k=0

log π(ajk|sk, θ
j) (9)

Then, the agent utilizes θ̂j to derive its policy updates in
Eq. 7, 8, in place of θj . In our empirical study, we observe
that COPG-OP training is as stable as COPG and the policies
learned using COPG-OP are as competent as COPG (refer
to Apx. 16). We conclude that opponent parameter learn-
ing can be considered effective in online settings, which
confirms the observation in [Foerster et al., 2017b].

3.3 TRUST REGION COMPETITIVE POLICY
OPTIMIZATION

Trust region based policy optimization methods exploit the
local Riemannian geometry of the parameter space to de-
rive more efficient policy updates [Kakade and Langford,
2002, Kakade, 2002, Schulman et al., 2015]. In this section,
we propose trust region competitive policy optimization
(TRCOPO), the COPO generalization of TRPO [Schulman
et al., 2015], that exploits the local geometry of the compet-
itive objective to derive more efficient parameter updates.

Lemma 1. Given the advantage function of policies
π(θ1), π(θ2), ∀(θ′1, θ′2) ∈ Θ1 ×Θ2 we have,

η(θ′1,θ′2)=η(θ1,θ2)+Eτ∼f(·;θ′1,θ′2)

|τ |−1∑
k=0

γkA(s, a1, a2;θ1, θ2).(10)

Proof in Apx. 13.1. Eq.10 indicates that, considering our
current policies (π(θ1), π(θ2)), having access to their ad-
vantage function, and also samples from f(·; θ′1, θ′2) of
any (θ′

1
, θ′

2
) (without rewards), we can directly compute

η(θ′1, θ′2) and optimize for (θ′1, θ′2). However, in practice,
we might not have access to f(·; θ′1, θ′2) for all (θ′

1
, θ′

2
)

to accomplish the optimization task, therefore, direct use
of Eq.10 is not favorable. Instead, we define a surrogate
objective function, Lθ1,θ2(θ′1, θ′2),

Lθ1,θ2(θ′1, θ′2)=η(θ1, θ2)+ Eτ∼f(·;θ1,θ2)

[∑|τ |−1

k=0
γk

Eπ(a′1k |sk;θ′1),π(a′2k |sk;θ′2)A(sk, a
′1
k , a
′2
k ; θ1, θ2)

]
, (11)

which can be computed using trajectories of our current
polices π(θ1), π(θ2). Lθ1,θ2(θ′

1
, θ′

2
) is an object of

interest in PG [Kakade and Langford, 2002, Schulman
et al., 2015] since mainly its gradient is equal to that
of η(θ1, θ2) at (θ1, θ2), and as stated in the following
theorem, it can carefully be used as a surrogate of the game
value. For KL divergence DKL((θ1, θ2), (θ′1, θ′2)) :=∫
τ
f(τ, θ1, θ2) log

(
f(τ, θ1, θ2)/f(τ, θ′1, θ′2)

)
dτ , we

have,

Theorem 2. Lθ1,θ2(θ′
1
, θ′

2
) approximate η(θ′

1
, θ′

2
) up to

the following error upper bound, with constant ε∣∣η(θ′1,θ′2)−Lθ1θ2(θ′1,θ′2)
∣∣≤ε/√2

√
DKL((θ′1,θ′2),(θ1,θ2)),(12)

ε :=maxτ
|τ |∑
k

γkEπ(a′1k |sk;θ′1),π(a′2k |sk;θ′2)A(sk, a
′1
k , a
′2
k ; θ1, θ2).

Proof in Apx. 13.2. This theorem states that we can use
Lθ1θ2(θ′1, θ′2) to optimize for η(θ′1, θ′2) as long as we
keep the (θ′1, θ′2) in the vicinity of θ1, θ2. Similar to sin-
gle agent TRPO [Schulman et al., 2015], we optimize
for Lθ1θ2(θ′1, θ′2), while constraining the KL divergence,
DKL((θ1, θ2), (θ′1, θ′2)) ≤ δ′, i.e.,

max
θ′1∈Θ1

min
θ′2∈Θ2

Lθ1θ2(θ
′1, θ′2),withDKL((θ1, θ2),(θ′1, θ′2))≤δ′. (13)

The GDA generalizing of TRPO uses a linear approxima-
tion of Lθ1θ2(θ′1, θ′2) to approach this optimization, which
again ignores the players’ interactions. In contrast, TRCOPO
considers the game theoretic nature of this optimization, and
uses a bilinear approximation. TRCOPO operates in epochs.
At each epoch, TRCOPO deploys (π(θ1), π(θ2)) to collect
trajectories, exploits them to estimate A (or GAE), then
updates parameters accordingly, Alg.4. (For more details,
please refer to Apx. 13.3.)



 4 EXPERIMENTS

We empirically study the performance of COPG and TR-
COPO and their counterparts GDA and TRGDA, on six
games, ranging from single-state repeated games to general
sequential games, and tabular games to infinite/continuous
high dimensional states/action games. They are 1) linear-
quadratic(LQ) game, 2) bilinear game, 3) matching pennies
(MP), 4) rock paper scissors (RPS), 5) Markov soccer, and
6) car racing. These games are representative enough that
their study provides insightful conclusions, and challenging
enough to highlight the core difficulties and interactions in
competitive games.

We show that COPG and TRCOPO converge to stable points,
and learn opponent aware strategies, whereas GDA’s and
TRGDA’s greedy approach shows poor performance and
even diverge in bi-linear, MP, and RPS games. For the LQ
game, when GDA does not diverge, it almost requires 1.5
times the amount of samples, and is 1.5 times slower than
COPG. In highly strategic games, where players’ policies
are tightly coupled, we show that COPG and TRCOPO learn
much better interactive strategies. In the soccer game, COPG
and TRCOPO players learn to defend, dodge and score goals,
whereas GDA and TRGDA players learn how to score when
they are initialized with the ball, and give way to the other
player otherwise. In the car racing, while GDA and TRGDA
show poor performance, COPG and TRCOPO produce com-
peting players, which learn to block and fake each other.
Overall, we observe COPG and TRCOPO considerably out-
perform their counterparts in terms of convergence, learned
strategies, and gradient dynamics.

We implemented all algorithms in Pytorch [Paszke et al.,
2019], and made the code and the videos public1. In our
implementation, we deploy Pytorch’s autograd package and
Hessian vector product to efficiently obtain gradients and
Hessian vector products to compute the bilinear terms in the
optimizer. Moreover, we use the conjugate gradient trick to
efficiently computed the inverses-matrix vector product in
Eq.6 which incurs a minimal computational overhead (see
[Shewchuk, 1994] for more details). To improve computa-
tion times, we compute inverse-matrix vector product only
for one player strategy, and use optimal counter strategy
for other player ∆θ2 which is computed without an inverse
matrix vector product. Also, the last optimal strategy can
be used to warm start the conjugate gradient method which
improves convergence times. We provide efficient imple-
mentation for both COPO- and GDA-based methods, where
COPO incurs 1.5 times extra computation per batch.

Zero-sum LQ game is a continuous state-action linear dy-
namical game between two players, where GDA, with con-
siderably small learning rate, has favorable convergence
guarantees [Zhang et al., 2019]. This makes the LQ game

1Link to Videos: https://sites.google.com/view/rl-copo

an ideal platform to study the range of allowable step sizes
and convergence rate of COPG and GDA. We show that,
with increasing learning rate, GDA generates erratic trajec-
tories and policy updates, which cause instability (see “�”
in Table 4), whereas COPG is robust towards this behav-
ior. Fig. 2a shows that COPG dynamics are not just faster
at the same learning rate but more importantly, COPG can
potentially take even larger steps.
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Figure 2: During training COPG (C) vs GDA (G) on a) LQ
game, difference in game objective due to policy update
for α = 1e − 1, 1e − 2 b) Bilinear game, µ1 vs µ2 c)
MP, probability of selecting Head(H) and Tail(T) d) RPS,
probability of selecting rock(R), paper(P) and scissors(S).

Bilinear game is a state-less strongly non-cooperative
game, where GDA is known to diverge [Balduzzi et al.,
2018]. In this game, reward r(a1, a2) = 〈a1, a2〉 where
a1 ∼ N (µ1, σ1) and a2 ∼ N (µ2, σ2), and (µ1, σ1),
(µ2, σ2) are policy parameters. We show that GDA diverges
for all learning rates, whereas COPG converges to the unique
Nash equilibrium Fig. 2b.

Matching pennies and Rock paper scissors, are challeng-
ing matrix games with mixed strategies as Nash equilibria,
demand opponent aware optimization.2 We show that COPG
and TRCOPO both converge to the unique Nash equilibrium
of MP Fig. 2c and RPS Fig. 2d, whereas GDA and TRGDA
diverges (to a sequence of polices that are exploitable by de-
terministic strategy). Detailed empirical study, formulation
and explanation of these 4 games can be found in Apx. 15.

Markov soccer game, Fig. 4, consists of players A and B
that are randomly initialised in the field, that are supposed
to pick up the ball and put it in the opponent’s goal [Littman,

2Traditionally, fictitious and counterfactual regret minimiza-
tion approaches have been deployed [Neller and Lanctot, 2013].

https://sites.google.com/view/rl-copo
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Figure 3: a-c), e-g) Interaction plots, representing probability of seizing ball in the game between A vs B. X-axis convention,
for player A. A1: A scored goal, A2: A scored goal after seizing ball from B, A3: A scored goal by seizing ball from B
which took the ball from A and so forth. Vice versa for player B. N: No one scored goal both kept on seizing ball. d),h)
Probability of games won.

A

B

Goal Ball

Figure 4: Markov Soccer

1994, He et al., 2016]. The winner is awarded with +1 and
the loser with -1 (see Apx. 15.5 for more details).

Since all methods converge in this game, it is a suitable
game to compare learned strategies. In this game, we ex-
pect a reasonable player to learn sophisticated strategies of
defending, dodging and scoring. For each method playing
against their counterparts, e.g., COPG against COPG and
GDA, Fig. 3 shows the number of times the ball is seized
between the players before one player finally scores a goal,
or time-out. In (3a), COPG vs COPG, we see agents seize
ball, twice the times as compared to (3b),GDA vs GDA (see
A2 and B2 in (3a) and (3b)). In the matches COPG vs GDA
(3c), COPG trained agent could seize the ball from GDA
agent (A2) nearly 12 times more due to better seizing and
defending strategy, but GDA can hardly take the ball back
from COPG (B2) due to a better dodging strategy of the
COPG agent. Playing COPG agent against GDA one, we ob-
serve that COPG wins more than 74% of the games Fig. 3d.
We observe a similar trend for trust region based methods
TRCOPO and TRGDA, playing against each other (a slightly
stronger results of 85% wins, A2 column in Figs 3g, 3c).

We also compared COPG with MADDPG [Lowe et al., 2017]
and LOLA [Foerster et al., 2017b]. We observe that the
MADDPG learned policy behaves similar to GDA, and loses
80% of the games to COPG’s (Fig. 15b). LOLA learned
policy, with its second level reasoning, performs better than
GDA, but lose to COPG 72% of the matches. For complete-
ness, we also compared GDA-PG, COPG, TRGDA, and
TRCOPO playing against each other. TRCOPO performs
best,COPG was runner up, then TRGDA, and lastly GDA
(see Apx. 15.5).

Car Racing is another interesting game, with continuous
state-action space, where two race cars competing against
each other to finish the race first [Liniger and Lygeros,
2020]. The game is accompanied by two important chal-
lenges, 1) learning a policy that can maneuver the car at
the limit of handling, 2) strategic interactions with oppo-
nents. The track is challenging, consisting of 13 turns with
different curvature (Fig. 6). The game is formulated as a
zero-sum, with reward r(sk, a1

k, a
2
k) = ∆ρcar1 − ∆ρcar2 ,

where ∆ρ = ρk+1 − ρk and ρk is the car’s progress along
the track at the kth time step. If a car crosses track bound-
aries (e.g., hit the wall), it is penalized, and the opponent
receives rewards, this encourages cars to play rough and
push each other into the track boundaries. When a collision
happens, the rear car is penalized, and the car in the front re-
ceives a reward; it promotes blocking by the car in front and
overtaking by the car in the rear. We study agents trained
with all GDA, TRGDA, MADDPG, LOLA, COPG and TR-
COPO in this game, and show that even though all players
were able to learn to "drive" only COPG and TRCOPO were
able to learn how to "race". Using GDA, only one player
was able to learn, which manifested in either one player
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Figure 5: Normalised progress of agents in one lap of car racing game during training
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Figure 6: Overtaking maneuvers of COPO agents in the Car
Racing Game. The thin line shows the trajectory of the
player in the game and the thick line shows trajectory when
the trailing agent overtook.

completely failing and the other finishing the track (Fig. 5a),
or by an oscillation behavior where one player learns to
go ahead, the other agent stays at lower progress(Fig. 5c,
Fig. 5e). Even if one of the players learns to finish one lap
at some point, this player does not learn to interact with
its opponent(https://youtu.be/rxkGW02GwvE). In contrast,
players trained with COPG and TRGDA, both progress, learn
to finish the lap, and race (interact with each other) (See
Fig. 5b and Fig. 5d). To test the policies, we performed races
between COPG and GDA, TRCOPO and TRGDA, and COPG
and TRCOPO. As shown in Table 2, COPG and TRCOPO
win almost all races against their counterparts. Overall, we
see that both COPG and TRCOPO are able to learn policies
that are faster, more precise, and interactive with the other

player (e.g., learns to overtake).

Table 2: Trained agents competing against each others in car
racing. Ratio of Wins(W), Overtakes(O) and Collisions(C).

COPG v GDA TRCOPO v TRGDA COPG v TRCOPO

W 1 0 1 0 0.24 0.76
O 1.28 0.78 1.28 0.78 1.80 2.07
C 0.17 16.11 0.25 1.87 0.30 0.31

4.1 CASE STUDIES

Generative Adversarial Imitation Learning: One can
also apply our approach in asymmetric games, such as learn-
ing the agent policy and the discriminator in generative ad-
versarial imitation learning (GAIL) [Ho and Ermon, 2016].
In GAIL, to imitate the expert, the agent (θ player) plays a
game with a discriminator D (φ player), i.e.,

min
θ

max
φ

Eτθ[logDφ(s,a)]+Eτe[log(1− Dφ(s,a))]−λH(θ),

where τθ is a trajectory and H(θ) is the casual entropy.

We conduct this study on the car racing game with a single
car, where the aim is to learn to drive a full lap. Given a long
track (Fig. 6), exploration and reward formulation can be
challenging. We train the agent using COPO to learn to drive
by imitating an expert. The expert trajectories are collected
using a pure pursuit (PP) controller [Coulter, 1992] with
different sets of parameters Apx. 17. We evaluate agent’s
policy using lap time (tlap), and:

ζ = Eτθ [
∑|τ |−1

k
‖ak − aek‖2/|τ |], (14)

where ak, aek are the agent and the expert actions evaluated
at the same state sk, collected from an agent rollout. We
compare the results of COPO-GAIL with GDA-GAIL, Be-
haviour cloning (BC) [Ho and Ermon, 2016] and controllers
such as PID and PP. The agent trained with COPO learns to
follow the reference path of the expert and even drives better
than the average expert policy, achieving a performance sim-
ilar to the best expert (https://youtu.be/DtGWZubjcf4). The
COPO-based agent achieves the lowest ζ value and learns a
better imitation policy compared to GDA and BC Table 3.

Opponent learning: We next explore the case where one
does not directly have access to the opponent’s parameters

https://youtu.be/rxkGW02GwvE
https://youtu.be/DtGWZubjcf4


 Table 3: Comparing lap time and ζ (Eq. 14) of the policies
learnt using imitation learning and the baseline controllers.

score PPavg COPO-GAIL GDA-GAIL PID BC

ζ x 10−2 0 0.82 1.14 2.35 2.02
tlap(s) 13.07 11.82 12.18 14.67 DNF

and they have to be inferred through interaction with the
other agent and the environment. We propose to use COPG-
OP (Sec. 3.2), the opponent learning variant of COPG.

Fig. 7 shows interaction plots of COPG-OP conducted on
the Markov Soccer game (setting explained in Apx. 15.5).
The opponent’s parameters are estimated by observing state-
action pairs of the opponent using Eq. 9. The interaction
plot of the COPG-OP agent with the estimated opponent
(Fig. 7a) shows that the COPG-OP player learns to seize the
ball and interact with the opponent(A3, A4). Fig. 18b shows
the interaction plot of COPG-OP with COPG, where we
observe that COPG-OP also learns a policy similar to COPG,
which is able to defend, escape and score goals (A3). When
directly competing with COPG, we observe that COPG-OP
can win 46.5% of the games against COPG.
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Figure 7: Interaction plots evaluated by playing 5000 games.
Matches played between a) COPG-OP player A and player
B estimated by A b) COPG-OP and COPG

The experiment details and numerical results on other se-
tups can be found in Apx. 16. They show that COPG-OP
achieves the performance of COPG in terms of stability and
convergence to sophisticated strategies.

Training by Self-play: In self-play, one player plays
against itself using the same policy model for both play-
ers. Each player then samples actions from this policy for
their respective state and updates the policy using COPG-SP
(Alg. 5) which is a special case of COPG. We observe that
COPG-SP can successfully learn competing strategies sim-
ilarly to COPG. We provide the COPG-SP algorithm and a
detailed empirical study in Apx. 12.

5 RELATED WORK

In tabular COMDP, Q-learning and actor-critic have been
deployed [Littman, 1994, 2001b,a, Bowling and Veloso,
2002, Greenwald and Hall, 2003, Hu and Wellman, 2003,

Frénay and Saerens, 2009, Pérolat et al., 2018, Srinivasan
et al., 2018], and recently, deep RL methods have been
extending to COMDPs, with focus on modeling agents be-
haviour [Tampuu et al., 2017, Leibo et al., 2017, Raghu et al.,
2017]. To mitigate the stabilization issues, centralized meth-
ods [Matignon et al., 2012, Lowe et al., 2017, Foerster et al.,
2017a], along with opponent’s behavior modeling [Raileanu
et al., 2018, He et al., 2016] have been explored. Optimiza-
tion in multi-agent learning can be interpreted as a game in
the parameter space, and the main body of the mentioned lit-
erature does not take this aspect directly into account since
they attempt to separately improve players’ performance.
Hence, they often fail to achieve desirable performance
and oftentimes suffer from unstable training, especially in
strategic games [Hernandez-Leal et al., 2019, Buşoniu et al.,
2010]. In imperfect information games with known rules,
e.g., poker [Moravcík et al., 2017], a series of works study
algorithmically computing Nash equilibra [Shalev-shwartz
and Singer, 2007, Koller et al., 1995, Gilpin et al., 2007,
Zinkevich et al., 2008, Bowling et al., 2017]. Also, studies
in stateless episodic games shown convergence to coarse
correlated equilibrium [Hartline et al., 2015, Blum et al.,
2008]. In contrast COPO converges to the Nash equilibrium
in such games. In two-player competitive games, self-play
is an approach of interest where a player plays against it-
self to improve its behavior [Tesauro, 1995, Silver et al.,
2016]. But, many of these approaches are limited to specific
domains [Heinrich et al., 2015, Heinrich and Silver, 2016].

The closest approach to COPO in the literature is LOLA [Fo-
erster et al., 2017b] an opponent aware approach. LOLA
updates parameters using a second-order correction term,
resulting in gradient updates corresponding to the following
shortened recursion: if a player thinks that the other player
thinks its strategy stays constant [Schaefer and Anandku-
mar, 2019], whereas COPO recovers the full recursion series
until the Nash equilibrium is delivered. In contrast to [Fo-
erster et al., 2017b] we also provide COPO extension to
value-based, and trust region-based methods, along with
their efficient implementation.

Our work is also related to GANs [Goodfellow et al., 2014],
which involves solving a zero sum two-player competitive
game (COMDP with single state). Recent development in
nonconvex-nonconcave problems and GANs training show
GDA has undesirable convergence properties [Mazumdar
et al., 2019] and exhibit strong rotation around fixed points
[Balduzzi et al., 2018]. To overcome this rotation behaviour
of GDA, various modifications have been proposed, includ-
ing averaging [Yazıcı et al., 2019], negative momentum
[Gidel et al., 2018] along many others [Mertikopoulos
et al., 2018b, Daskalakis et al., 2017, Mescheder et al., 2017,
Balduzzi et al., 2018, Gemp and Mahadevan, 2018]. Consid-
ering the game-theoretic nature of this problem, competitive
gradient descent has been proposed as a natural generaliza-
tion of gradient descent in two-players instead of GDA for



 GANs [Schaefer and Anandkumar, 2019]. This method, as
the predecessor to COPO, enjoys stability in training, ro-
bustness in choice of hyper-parameters, and has desirable
performance and convergence properties.

6 DISCUSSION ON APPLICABILITY

COPO is the paradigm of competitive policy optimization
where the goal is to jointly find policies for agents. In COPO,
the optimization is centralized, and the execution of actions
is decentralized. Applications of such setting are; (i) self-
play: we train an agent to play against itself; (ii) adversarial
robustness, inverse RL, and imitation learning: we aim to
find a robust model; (iii) robust control [Zhou et al., 1996]:
we train agents to be robust against attackers; (iv) athletic
games analysis, e.g., soccer and basketball: we train models
of teams in simulation, and let them play against each other
to discover tactics and strategies; (v) Robocup World (robots
soccer): we train our team in our lab before deploying it
in the real match; (vi) AI economist [Zheng et al., 2020]:
we run a game between workers along with rule-makers to
discover new tax laws, and many more real-world problems.

Our empirical study shows that COPG and TRCOPO can
excel in this setting and have clear advantages compared
to existing algorithms. While the centralized optimization
setting in COPO has a vast range of real-world applications,
there are problems that require decentralized optimization.
We showed that COPG-OP, a decentralized extension of
COPG, where each agent also learns its opponent’s param-
eters/model to compute its policy update, comes with the
same benefits as COPG in the centralized setting.

7 CONCLUSION

We presented competitive policy optimization COPO, a
novel PG-based RL method for two player strictly com-
petitive game. In COPO, each player optimizes strategy by
considering the interaction with the environment and the op-
ponent through game theoretic bilinear approximation to the
game objective. This method is instantiated to competitive
policy gradient (COPG) and trust region competitive policy
optimisation (TRCOPO) using value based and trust region
approaches. We theoretically studied these methods and pro-
vided PG theorems to show the properties of these model-
free RL approaches. We provided efficient implementation
of these methods and empirically showed that they provide
stable and faster optimization, and also converge to more
sophisticated and competitive strategies. We performed case
studies for COPO based approach on self-play, asymmetric
mini-max game GAIL, with opponent modelling and further
discussed the general applicability of the COPO paradigm
in various real life settings. We dedicated this paper to two
player zero-sum games, however, the principles provided in
this paper can be used for multi-player general games. In the

future, we plan to extend this study to multi-player general-
sum games along with efficient implementation of methods.
Moreover, we plan to use the techniques proposed in par-
tially observable domains, and study imperfect information
games [Azizzadenesheli et al., 2020].
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