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Abstract

Most existing black-box optimization methods as-
sume that all variables in the system being opti-
mized have equal cost and can change freely at
each iteration. However, in many real-world sys-
tems, inputs are passed through a sequence of dif-
ferent operations or modules, making variables in
earlier stages of processing more costly to update.
Such structure induces a dynamic cost from switch-
ing variables in the early parts of a data processing
pipeline. In this work, we propose a new algo-
rithm for switch-cost-aware optimization called
Lazy Modular Bayesian Optimization (LaMBO).
This method efficiently identifies the global op-
timum while minimizing cost through a passive
change of variables in early modules. The method
is theoretically grounded which achieves a van-
ishing regret regularized with switching cost. We
apply LaMBO to multiple synthetic functions and
a three-stage image segmentation pipeline used in a
neuroimaging task, where we obtain promising im-
provements over existing cost-aware Bayesian op-
timization algorithms. Our results demonstrate that
LaMBO is an effective strategy for black-box opti-
mization capable of minimizing switching costs.

1 INTRODUCTION

Bayesian optimization (BO) [Snoek et al., 2012, Srinivas
et al., 2010, Mockus et al., 1978] is a popular technique
that is used to optimize unknown black-box systems. Such
systems arise in a wide range of applications ranging from
robotics [Berkenkamp et al., 2016] and sensor networks
[Garnett et al., 2010], to hyperparameter tuning in machine
learning [Bergstra et al., 2011, Frazier, 2018]. In the black-
box setting, the underlying function that maps variables
to a reward (loss) is unknown and is instead queried. BO

methods find ways to tackle this challenging setting by ap-
proximating the unknown function with a Gaussian process
(GP) [Rasmussen, 2003] and updating this belief on the fly
to decide which sample to generate next.

Unfortunately, when trying to optimize a complex black-
box system, the cost of generating a sample can often be
prohibitive. Here, costs could represent the amount of time,
energy, or resources required to generate a black-box sample
(i.e., test a new hyperparameter parameter configuration of
interest). To account for costs to update different variables,
or overall cost constraints, a wide range of different cost-
aware and multi-resolution sampling strategies ranging from
batch optimization [González et al., 2016, Kathuria et al.,
2016], multi-fidelity model [Kandasamy et al., 2016, 2017],
multi-objective optimization [Abdolshah et al., 2019], to
dynamic programming [Lam and Willcox, 2017, Lam et al.,
2016] have been developed over the past decade.

While the underlying black-box function that we want to
optimize may be unknown, many real-world systems have
costs with specific structure that are known ahead of time.
An important yet simple abstraction of many systems en-
countered in practice is that they process their inputs through
a sequence of modules, where the outputs from one module
to the next are chained together. For instance, in many sci-
entific applications like genomics [Davis-Turak et al., 2017]
and neuroimaging [Abraham et al., 2014, Johnson et al.,
2019], generating an output (sample) often involves running
high-dimensional inputs through multiple stages (modules)
of processing, and each module has unique hyperparame-
ters that must be optimized. When making updates in these
types of sequential systems, it becomes much more costly
to update a variable at an earlier stage of processing because
we must take into account the fact that all operations in sub-
sequent stages must be rerun. Not only does this sequential
structure affect the cost, but it also gives rise to switching
costs, where the cost depends on which variables are modi-
fied between consecutive iterations. However, most of these
methods are agnostic to additional information about the
structure of the underlying costs in the system, and thus are
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 too aggressive in changing variables across modules.

In light of these motivations, we introduce a new algorithm
for black-box optimization called Lazy Modular Bayesian
Optimization (LaMBO). This method leverages modular
and sequential structure in a system to reduce overall cu-
mulative costs during optimization. To quantify the cost of
switching in these cases, we model the cost of each query
as the aggregation of cost needed to rerun modules from
the first step where a variable must be updated. By encour-
aging the optimization method to be lazy, analytically we
show that LaMBO achieves a sublinear rate in a notion of
switching-cost regularized regret. We also empirically eval-
uate the performance of the proposed method by applying
LaMBO to a number of synthetic datasets and neuroimaging
problem where the aim is to tune a modular pipeline for 3D
reconstruction of neuroanatomical structures from slices of
2D images [Lee et al., 2019, Johnson et al., 2019]. Our em-
pirical results show that hyperparameters in this three-stage
system can be optimized to 95% optimality jointly over
multiple modules within 1.4 hours compared with 5.6 hours
obtained from the best of the alternatives. These results
point to the fact that leveraging system structure, and dy-
namic switching costs, can be advantageous for optimizing
multi-stage black-box systems.

Summary of Contributions. The contributions of this
work are as follows: (i) In Section 3, we formulate a novel
Bayesian optimization problem with switching-cost con-
straints, and propose the algorithm LaMBO to solve the
problem in systems with modular structure. To the best of
our knowledge, this is the first attempt to leverage modular
system structure in the design of a cost-efficient algorithm
for black-box optimization. (ii) In Section 4, we establish
theoretical guarantees of LaMBO by proving a regular-
ized regret bound taking switching-cost consumption into
consideration using techniques from both the multi-armed
bandit and Bayesian optimization literature. (iii) In Section
5, we apply our method to synthetic functions and to a 3D
brain-image-segmentation task. We empirically demonstrate
that the method can efficiently solve switch-cost-aware opti-
mization across modular compositions of functions.

2 BACKGROUND AND RELATED
WORK

2.1 BAYESIAN OPTIMIZATION

Black-box optimization methods aim to find the global
minimum of an unknown function f(x) with only a few
queries. Let f∗ and x∗ be the optimal function value and
optimizer, respectively. Standard algorithms seek to pro-
duce a sequence of inputs x1, . . . ,xT that result in (poten-
tially) noisy observations y1, . . . ,yT such that f(xt) will
approach the optimal value f∗ quickly. A common choice
to measure performance of a candidate algorithm is the

cumulative regret:

R(T ) =

T∑
t=1

f(xt)− f∗. (1)

Among the many different approaches for black-box opti-
mization, BO is a celebrated probabilistic method whose sta-
tistical inferences are tractable and theoretically grounded. It
uses a Gaussian process (GP) prior on the distribution of the
unknown function f , which is characterized by a mean func-
tion µ(x) and a kernel function k0(x,x′). Let kt(x) :=
[k0(x,x1), . . . , k0(x,xt)]T , Kt := [k0(xi,xj)]1≤i,j≤t,
and σ2 represent the noise variance. In this case, we can
update the posterior with simple closed-form formulas:

µt+1(x) = kTt (x)(Kt + σI)−1yt,

σ2
t+1(x) = k0(x,x)− kTt (x)(Kt + σI)−1kt(x). (2)

Common classes of selection algorithms that use a BO
framework include the: Upper Confidence Bound (UCB)
[Srinivas et al., 2010], Expected-Improvement (EI) [Mockus,
1982], and entropy search [Wang and Jegelka, 2017] algo-
rithms. At the heart of all of these methods is the design of an
acquisition function that is used to select the next evaluation
point, i.e., xt ∈ arg minx α

t(x). The acquisition function
allows flexibility in trading-off between exploration and ex-
ploitation and are constructed using the posterior statistics.
In this paper, we will adopt the UCB acquisition function
due to its simplicity and success in both theory and practice.
The GP-UCB acquisition function is given by

αtUCB(x) = µt−1(x)− βtσt−1(x), (3)

where βt is a design parameter that controls the amount of
exploration in the algorithm.

2.2 SLOWLY MOVING BANDIT ALGORITHM

To incorporate switching costs into a BO sampling strategy,
we adopt [Koren et al., 2017b] on solving a multi-armed
bandit problem with switching costs. In this setting, opti-
mization is formulated into a arm-selection problem where
optimal variables i (arms) are selected from a set K to mini-
mize an unknown loss function ` : K 7→ R. At each iteration
t, we can query an oracle to measure the loss (inverse re-
ward) `(it) by pulling arm it. In the switch-cost-aware case,
there is a cost metric c which incurs cost c(it, it−1) when
switching between arms from t − 1 to t. The objective is
to minimize a linear combination of the loss and switching
cost. In [Koren et al., 2017b], the authors propose the slowly
moving bandit algorithm (SMB) to tackle the problem with
a general cost metric. Here, we extend the idea to the setting
of black-box optimization.

SMB is based on a multiplicative update strategy [Auer et al.,
2002] that encodes the cost of switching between arms in a



 tree; each arm is a leaf and the cost to switch from one arm
to another is encoded in the distance from their correspond-
ing leafs in the tree. At each iteration t, SMB chooses an
arm according to a probability distribution pt conditioned
on the level of the tree (the root is level 0) selected at the last
iteration. We will make the sampling distribution precise mo-
mentarily. The distribution is then updated with a standard
multiplicative update rule pt ← pt exp(−η˜̀t), where η is
the learning rate and ˜̀

t is the estimated loss. Compared with
basic bandit algorithms, there are two key modifications
in SMB. First, it uses conditional sampling to encourage
slow switching. This constrains the arm selection to be the
close to the previous choice, where distance is embedded
in the tree’s structure. Formally, an arm is drawn according
to the following conditional distribution p(·|Aht−1

(it−1)),
where ht−1 is a random level chosen at previous iteration,
and Ah(i) denotes the leaves (arms) that belong to the sub-
tree rooted at level h which has i as one of its leaves. This
ensures that it remains in some small subtree as in the pre-
vious iteration. Second, to utilize the classic multiplicative
method, SMB makes sure that in average the conditional
sampling is equivalent to direct sampling by modifying the
loss estimators ˜̀

t as,

˜̀
t = ¯̀

t,0 +

H−1∑
h=0

σt,h ¯̀
t,h, (4)

¯̀
t,h(i) = log

 ∑
j∈Ah(i)

pt(j)e
−η(1+σt,h−1)¯̀

t,h−1(j)

pt(Ah(i))

− 1
η

,

(5)

where ¯̀
t,0 is an unmodified loss estimator for algorithms

without switching cost, and {σt,k}k are i.i.d. uniform ran-
dom variables in {−1, 1}. For the purpose of self-contained,
we include the pseudo-code of SMB in Supp. D.

2.3 RELATED WORK

The closest framework to ours in Bayesian optimization
is the cost-aware Bayesian optimization, where instead of
trying to minimize a function using the fewest samples, the
methods strive to find the optimizer with least cumulative
cost. The most standard method [Snoek et al., 2012, Lee
et al., 2020] measures the acquisition function in the unit
of the cost αt(x)/c(x)γ , where c denotes the cost function
and γ is some trade-off parameter. Another approach is to
impose explicit cumulative budget constraints [Lam et al.,
2016, Lam and Willcox, 2017], where the authors have used
dynamic programming-based approaches. While many of
these algorithms have proposed cost-efficient optimization
strategies under static costs, the scenario with the switching
cost where deviating from a previous action induces larger
costs, has not been well-understood in the literature.

Multi-fidelity strategies [Kandasamy et al., 2017, Poloczek

Figure 1: Example of a modular system that consists of a sequence
of operations that are applied, each with their own distinct set of
variables. When variables in early stages are changed, all the
remaining modules need to run and this incurs high costs.

et al., 2017, Wu et al., 2020, McLeod et al., 2017] are also
popular choices in which the decision maker is allowed to
choose an additional fidelity parameter that controls the ac-
curacy and the cost for function evaluations. In the sense
that across subsequent resolutions there are correlations or
structure in the costs of different parameters. On the surface,
it seems our problem can be easily cast under the frame-
work. However, as the dependencies on the accuracy of
function approximation to variables in different modules
are non-separable, one can not map a module to a fidelity.
Another cost efficient BO approach similar to our work is
process constrained BO [Vellanki et al., 2017], where some
variables are not allowed to change due to constraints from
physical system. CA-MOBO [Abdolshah et al., 2019] is also
a cost-aware strategy which uses the framework of multi-
objective optimization. It generalizes the UCB method to
multi-dimensional outputs seeking a sweet spot in the trade-
off between cost consumption and optimization accuracy.
Our work differs from theirs as we are allowed to probe vari-
ables anytime but may incur different cost when changing
sets of variables in different modules, and we consider costs
arising from switching variables.

The switching cost optimization has been studied in multi-
armed bandit literature [Kalai and Vempala, 2005, Koren
et al., 2017a,b, Dekel et al., 2014, Feldman et al., 2016].
However, the arms are assumed to be uncorrelated, while in
our work we assume strong dependency and leverage it by
using Gaussian surrogate to explore multi-arms simultane-
ously.

3 LAZY MODULAR BAYESIAN
OPTIMIZATION (LAMBO)

A key assumption underlying this work is that the black-
box system of interest has a modular structure, where the
overarching system can be decomposed into a sequence
of different sets of operations, each with a distinct set of
variables that need to be optimized (Figure 1).

3.1 PROBLEM SETUP

Let xm ∈ Xm denote the variables in the mth module,
and let x ∈ X = X1 × X2 × · · · × XN denote the set of
variables across all modules. Our main goal is to propose a



 cost-efficient algorithm that finds the optimizer for a black-
box function,

x∗ ∈ arg min
x∈X

f(x).

The function f is unknown to us, but when a set of variables
x are input into the system, this generates a noisy output
y = f(x) + ε, where ε is σ-sub-Gaussian. To ensure that
our model of the cost reflects the modular structure of the
system, we make the following assumptions: (i) running the
mth module incurs cm cost ,∀m = 1, . . . , N , (ii) a module
needs to be run only if variables in some modules earlier
than it in the pipeline has been changed from previous iter-
ation. We will also assume that cN , as any update requires
updating variables in the last module, is negligible and equal
to 0. Under the above modeling assumptions, the total cost
incurred at iteration t is equal to,

Γt :=
N−1∑
m=1

cm1{xt1:m 6=xt−1
1:m}

, (6)

where 1{xt1:m 6=xt−1
1:m}

is an indicator that equals to 1 when
any variable in modules before the mth module have been
changed from the previous iteration. We refer to the quantity
Γt as the movement cost. In our image analysis pipeline
experiment (Section 5.2), costs can be thought of as the
amount of time or the amount of compute required to re-run
a specific module and all of the subsequent modules that
follow. In this case, our goal is to perform an end-to-end
optimization on the system to maximize the accuracy on
a validation set, which can be measured with an f1-score
or some other measure of the accuracy of the segmented
output.

To trade-off between cost efficiency and functional optimal-
ity, we define the movement regret as,

R+(T, λ) =

T∑
t=1

f(xt)− f∗ + λΓt. (7)

Γt serves as a regularizer which is added to the standard
definition of the cumulative regret. In general, the function
value and the cost are measured in different units, so λ
should depend on the scales of data.

3.2 ALGORITHM

This section we provide the descriptions of the 3 steps in
the proposed algorithm 1 named Lazy Modular Bayesian
Optimization (LaMBO).

Step 1) Modular Structure Embedding Phase. To vi-
sualize our algorithmic approach, we point the reader to
Figure 2. In the first stage of our optimization procedure,
we need to encode the switching costs associated with the
system of interest. To do this, we take inspiration from
the SMB algorithm described in Section 2.2 to encode the

cost to switch variables using a tree-based approach (Fig-
ure 2B). We start by linking each arm with a region (sub-
set) of variable space. The regions are flexible and can be
partitioned in different ways, but should reflect the mod-
ular structure in the system. Thus, we choose to partition
the variable space of each module separately. Specifically,
Pm = {Cm1 , Cm2 , . . . Cml} defines a partition for the mth

module, where Xm = ∪nCmn . We require these sets to be
disjoint Cmn1

∩ Cmn2
= ∅ for n1 6= n2. Thus, when select-

ing an arm, we select a joint region of the first N − 1 mod-
ules1, i.e., i ≡ (Z1, . . . ,ZN−1) ∈ K := P1 × · · · × PN−1.

Next, we represent the arms in a tree T to encode the cost
of switching between any two variable subsets. Intuitively,
we want to build a tree that encodes the cost of switching
between any two sets of hyperparameters (arms) in terms
of the shortest path between these two leaves in the tree.
Specifically, in Line 2 of Algorithm 1, we call a subroutine
ConstructMSET which returns a tree T (modular structure
embedding tree, MSET), given a partitioning of the vari-
ables across all modules and depth parameters dm, where
dm is the depth of the mth module. The partition and modu-
lar specification define the leaves of the tree and the depth
parameters control the probability of switching, with higher
depth in a module corresponding to lower switching proba-
bility (more laziness). In our example ( Figure 2B) , the tree
consists of two parts (colored with blue and red) divided by
the first forks, the upper portion corresponds to the partition
of the first module, while the lower portion corresponds to
the partition of the second module. In this case, the depth in
the second module is set to 3 to reflect higher relative costs
between the two modules and encourage lazy switching
behavior.

Step 2) Optimization Phase. Now the remaining task is
to devise a strategy for arm selection and estimate the lo-
cal optimum within its corresponding variable subset. We
propose to use SMB for region (arm) selection, and then
use a BO strategy to search within the selected region (Line
5− 6). The parameters of SMB and BO are updated at each
iteration (Line 7 − 11). Unfortunately, direct application
of BO changes all variables across each iteration, which
typically incurs maximum cost. Hence, we propose an al-
ternative lazy strategy: when the same variable subset is
selected in an early module, we will use the results from the
previous iteration rather than updating the outputs from this
lazy module. This means that we do not need to rerun the
module and thus can minimize the overall cost. Specifically,
let it be the arm we’ve selected and (Z1, . . . ,ZN−1) be
its associated variable region. We propose to search for a
block-wise update xt = [xt−1

1:m−1,u] that minimizes the loss

1We exclude the last module from partitioning procedure since
the cost of changing parameters in the last module is the minimum
cost per iteration, and can be changed freely at each iteration.
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Figure 2: Overview of our approach. Illustration of the optimization in a modular system. In (A), we show a partition of variable
spaces into regions and its corresponding MSET (B), constructed based on the partition and modular costs. An illustration of how
changing regions incurs different costs (C-D), where in each case we trace the path between different arms. Changing the depth parameter
d2 ← d2 + ∆ produces a longer distance between any two arms and gives less incentive for arm changes (E). In (F), the landscapes of the
BO update within regions at three consecutive iterations, corresponding to the arm changes in (C) and (D), respectively

as follows:

¯̀
t,0(it) := min

u∈U
αt([x

t−1
1:m−1,u]), U = (

N−1∏
l=m

Zl)×XN ,

(8)

where m is the first module that has a variable region that
differs from the previous iteration m := min{n : Zn 6=
Zt−1
n }, and αt(·) is a BO acquisition function.

3.3 EMPIRICAL CONSTRUCTION OF MSET

A crucial part of algorithm is the design of the subroutine
ConstructMSET, which involves partitioning the vari-
ables in each module, and setting the depth parameters
(di’s). From our experiments, we observe that simple bi-
section aligned with coordinates yields good partition on
many synthetic data and on our neural data. For a MSET
with |K| leaves with the partition, LaMBO requires solving
|K| local BO optimization problems per iteration. Hence
initially, we partition each variable space of module to two
subsets only, and abandon subsets when their arm selection
probability pt is below some threshold after 10 consecutive
iterations. In our experiments, we always set the threshold
to be 0.1/|K|, where |K| denotes the number of leaves of
MSET. After that, we further divide the remaining subsets
again to increase the resolution. This procedure could be
iterated upon further although we typically do not go be-
yond two stages of refinement. To avoid trapping in the local

optimum, we also refresh the arm-selection probability and
update the kernel hyperparameters simultaneously every 25
iterations.

In our implementation, we set the depth parameter to be
di = 1 or di ∝ log λci when ci could be estimated in prior.
Empirically, we found that the performance is quite robust
when di ≤ 5 for the different cost ratios in both synthetic
and real experiments we tested. To avoid accumulating cost
too fast in early stages of LaMBO, we record the number
of times that variable changes in the first module and dy-
namically increase the first depth parameters d1 by 1 every
20 iterations when the the number has increased beyond 5
(1/4 of the cycle) during the period. In all experiments, we
have found this simple add-on perform on par or better than
fixing depth parameters through an entire run.

4 ALGORITHMIC ANALYSIS

In this section, we analyze the performance of Algorithm
1 from two perspectives: 1. Optimization accuracy and 2.
Cost efficiency. Our main result, which is stated in Theorem
1, shows that LaMBO achieves sublinear movement regret
when the parameters of the input tree are set properly using
the cost structure of the system.

Our results are presented in terms of maximum information
gain defined below.

Definition 1. Maximum Information Gain. Let f ∼ GP

ConstructMSET


 Algorithm 1 Lazy Modular Bayesian Optimization

1: Input: η, GP(µ0, k0), Partitions {Pm}N−1
m=1, depth pa-

rameters {dm}N−1
m=1.

2: T = ConstructMSET({Pm}N−1
m=1,{dm}N−1

m=1).
3: H = depth(T ), K = set of leaves, p1 = Unif(K),
h0 = H and i0 ∼ p1.

4: for t = 1 to T do
5: Select arm it ∼ pt(·|Aht−1(it−1)).
6: Choose xt by solving Eq. (8).
7: Let σt,h, h = 1, . . . ,H − 1, be i.i.d. Unif({−1, 1}).
8: let ht = min{0 ≤ h ≤ H : σt,h = −1} where

σt,H = −1.
9: Obtain loss estimators via ˜̀

t = Eq. (4), Eq. (8) and
10:

pt+1 =
pt(i)e

−η ˜̀
t(i)∑|K|

j=1 pt(j)e
−η ˜̀

t(j)
, ∀i ∈ K.

11: Posterior Updates by Eq. (2).
12: end for

be defined in the domain X . The observation of f at any
x is given by the model y = f(x) + ε, ε ∼ N (0, σ). For
any set A ∈ X , let fA and yA denote the set of function
values and observations at points in A, and I denote the
Shannon Mutual Information. The Maximum Information
Gain is defined by γT := maxA⊂X :|A|=T I(yA, fA)

Analytical bounds on γT of common kernels are provided
in Supp. A.2. To proceed with our analysis, we make the
following assumption on the objective function.

Assumption 1. The function f is L-Lipschitz, non-negative,
and has a bounded norm ‖f‖Hk0 ≤ 1 in the reproducing
kernel Hilbert spaceHk0 .

Note that our assumption is not too stringent since for any
function in a Hilbert space defined above,L can be estimated
by |f(x) − f(y)| ≤ ‖f‖H‖Φ(x) − Φ(y)‖H; for instance,
L = 1/w for exponential kernel k0(x,x′) = exp(−‖x −
x′‖2/w2) since ‖Φ(x)− Φ(y)‖H ≤ ‖x− y‖/w.

4.1 OPTIMIZATION ACCURACY

Our first lemma concerns the optimization capability of
LaMBO under a common definition of regret, R(T ) :=∑
f(xt) − f∗. Note that we choose to represent it in ex-

pectation instead of a probability bound for notational com-
pactness. Conversion to one another is straightforward by
common technique like Markov inequality.

Lemma 1. Ordinary Regret Bound. Suppose the learning
rate of the LaMBO is set to be η =

√
2−HT−1 log |K|,

where H is the depth of the MSET, then the expected cumu-

lative regret of LaMBO is:

E[R(T )] = O
(√

2HT log |K|
)
.

Remark 1. By treating modules as arms, a natural com-
parison is the result of SMB in [Koren et al., 2017b] where
E[RT ] = O

(√
kT log |K|

)
. As the arms |K| are repre-

sented as leaves of a binary tree with depthH , we must have
2H ≤ k, which shows that the regret bound we have is up-
per bounded by the result of SMB. The equality holds when
the tree is complete. On the other hand, the gap between us
could be potentially large. The key to this improvement is by
leveraging arm correlation; by using Gaussian surrogate,
each sample gives the information of not only the pulled
arm itself, but also that of infinitely many others.

4.2 ANALYSIS OF COST EFFICIENCY

Next, we analyze the cost incurred by adopting LaMBO.
The following lemma shows that LaMBO is capable of
accumulating sublinear cost. The result also gives an explicit
recipe of choosing parameters {di} of MSET from theory.
Below we provide a sketch of the achievable rate and defer
the detailed forms of parameters to Supp. A.1.

Lemma 2. Cumulative Switching Cost. For sufficiently
large T , there exists depth parameters {di} of the MSET
such that LaMBO accumulates movement cost

E[

T∑
t=1

Γt] = O
(N−1∑
m=1

cmT
2/3 log |K| log

T 1/3

log |K|

)
.

Remark 2. A striking implication of Lemma 2 is that even
with nonconstant cost cm = Ω(1), the cumulative cost could
still be sublinear as long as cm � o(T 1/3).

Finally combining the above two lemmas leads to our con-
cluding theorem, which shows that a simple partition strat-
egy, along with proper selection of the depth parameters
di, gives sublinear movement regret defined in (7). Without
additional information about how to partition each module,
the simplest way to partition the space is uniformly. Hence
in the analysis we adopt an uniform partition strategy char-
acterized by ri, where ri denotes the Euclidean diameter of
the partitioned subset Xi.

Now we present a sketch of our main theoretical result where
a proof and detailed constants could be found in Supp. A.1.

Theorem 1. Movement Regret Bound. For 1 ≤ m ≤
N − 1, let Dm denote the dimension of Xm. Suppose for
all t > 0, 1 ≤ m ≤ N − 1, we set βt = Θ(

√
γt−1 + lnT ),

η = Θ(T−2/3
∑N−1
m=1 Dm log(LT 1/3/Dm log T )). The

MSET has uniform partition of each Xm with diameters
rm = Dm

L T−
1
3 log T , where the depth parameters dm are

ConstructMSET


 chosen according to Lemma 2, and UCB acquisition func-
tion is used. Then LaMBO achieves the expected movement
regret

E[R+] = O((λ

N−1∑
j=1

cj

N−1∑
m=1

DmT
2
3 (log T )2) + γT

√
T ).

Remark 3. Comparisons to moving bandit algorithm:
A black-box optimization strategy blind to switch cost usu-
ally has E[R(T )] = o(1), E[

∑T
t=1 Γt] = Ω(T ) and thus

obtain a linear movement regret E[R+] = E[R(T )] +

E[
∑T
t=1 Γt] = Ω(T ). For switch-cost-aware alternatives,

the closest result on moving regret is Theorem 2 in [Koren
et al., 2017b]. However, their result relies on the Lispchitz
property of the movement metric, which does not hold in
our setting as the cost from changing variables in modules
is not even continuous. By leveraging arms correlation with
BO and adapting a lazy arm selection strategy, we extend
their result by achieving a sublinear rate.

5 EXPERIMENTS

In this section, we start by testing LaMBO on benchmark
synthetic functions used in other studies [Vellanki et al.,
2017, Kirschner et al., 2019]. Following this, we apply
LaMBO to tune a multi-stage neuroimaging pipeline that
reconstructs 3D images from segmented 2D images.

Experimental setup. For simplicity, we used the squared
exponential kernel and initialized it using 15 random sam-
ples before starting the inference procedure. In our experi-
ments, the functions are normalized by their maximized
absolute value for clear comparisons, the regularization
parameter is fixed to λ = 0.1, the UCB parameter is set
each iteration as βt = 0.2D log 2t, and the learning rate
is set to η = 1. The sampling noise ε is assumed to be
independent Gaussian with standard deviation 0.01. For
construction of MSET, we test on the simplest case where
di = 1 and partition the variable space in each module into
2 sets aligned with a random coordinate. Some practical
and detailed discussions on the hyperparameter choices and
partition strategies are deferred to Supp. B. The curves on
synthetic data and real data were computed by averaging
across 100 and 20 simulations, respectively. We compare
LaMBO with common baselines GP-UCB [Srinivas et al.,
2010], GP-EI [Močkus, 1975], Max-value entropy search
[Wang and Jegelka, 2017], random sampling, and three cost-
aware strategies: EIpu [Snoek et al., 2012], CA-MOBO
[Abdolshah et al., 2019], and CArBO [Lee et al., 2020]. To
adapt the cost-aware strategies to our setting, we update the
cost function at each iteration to be to the switching cost Γt

defined in Eqn. (6) in Section 3.

5.1 EXPERIMENTS ON SYNTHETIC
FUNCTIONS

For synthetic benchmarks, we selected a number of common
functions used to test algorithms in the literature. However,
unlike our real data examples that have clear modular struc-
ture due to the different sets of operations performed at
different stages, the variables in synthetic test functions do
not readily admit a modular structure. Thus to simulate a
2-module or 3-module scenario, we divide the variables
in each function into different groups to create effective
modules.

In Figure 3 (A-D), we compare the methods on synthetic
functions in a two-module setting with a cost ratio of 10 to
1. In (A-B), we show the results for two different synthetic
functions Hartmann and Rastrigin, respectively (more ex-
periments on synthetic functions could be found in Supp.
E). In (C), we study the impact of splitting variables into
sets of different dimensions with function Ackley 8D, a syn-
thetic function with a sharp global optimum surrounded with
multiple local ones. The result suggests LaMBO is stable
among different variable configurations in modules. Under
the same setting as in (A), we verify our regret analysis by
plotting the cumulative movement regret curve in (D), and
study the performance of the different approaches when the
cost is [1, 1]. The former shows that LaMBO minimizes the
averaged movement regret of (7) better than cost-aware and
unaware baselines. The later shows that LaMBO performs
better when the cost ratio between modules is large while
on par with alternative when the ratio is ' 1. (F) explores
the 3-module setting of Ackley 8D ([2, 2, 4]), with the cost
[40, 10, 1]. In this case, we found that it performs even bet-
ter than its 2-module counterpart in Figure reffig:synsupp,
suggesting LaMBO’s applicability in pipeline with many
modules.

Overall, we find that LaMBO outperforms other approaches
and really shines when the cost of earlier modules is much
larger (as seen in (A) vs. (E)). When we track the opti-
mization trajectory, we observe that LaMBO performs simi-
larly to other methods early on, but with further iterations,
LaMBO starts to outperform the alternatives. This could
be explained by inaccurate estimation of the function at
early stages, and the fact that aggressive input changes
could outperform the more conservative or lazy strategy
used in LaMBO. However, as more samples are gathered,
LaMBO demonstrates more power in terms of its cost effi-
ciency by being lazy in variable switching.

5.2 APPLICATION TO A MULTI-STAGE
NEUROIMAGING PIPELINE

Segmentation and identification of neural structures of inter-
est (e.g., cell bodies, axons, or vasculature) is an important
problem in connectomics and other applications of brain
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Figure 3: Results on synthetic datasets and a brain mapping example. In (A-D), we compare LaMBO with other BO algorithms on
synthetic functions in a two module setting with a cost ratio of 10 to 1. In (A-B), we show the results for two different synthetic functions
(Hartmann 6D, Rastrigin 6D). We split the variables of them into two modules with the first 3 dimensions in one module and the remaining
three in the second. In (C), we study the impact of splitting variables into sets of different dimensions, by splitting the Ackley 8D into
three different configurations [2, 6], [4, 4], and [6, 2]. In (D), we study the cumulative movement regret with Hartman 6D. This verifies our
theory that LaMBO can effectively reduce the movement regret. In (E), we show the performance of the different approaches when the
cost ratio between modules equals one, using Hartman 6D. (F) explores the three module setting of Ackley 8D splitting the variables
into dimensions [2, 2, 4], and define the costs by = [40, 10, 1]. In this case, when the costs accumulate early on, LaMBO really shines.
Finally, we depict a brain mapping pipeline consisting of two (G) and (H) three modules, where the costs are modeled with estimated
amount of time to execute each module ([326,325,55] sec).

mapping [Helmstaedter et al., 2013, Oh et al., 2014, Dyer
et al., 2017]. However, when dealing with large datasets,
transfer can be challenging, and thus workflows must be
re-optimized for each new dataset [Johnson et al., 2020].
Here, we consider the optimization of a relatively common
three-stage pipeline, consisting of a pre-processing (image
enhancement via denoising and contrast normalization), se-
mantic segmentation for pixel-level prediction (via an U-net
architecture), and a post-processing operation (to reconstruct
a 3D volume). For comparison, we also consider a simpli-
fied pipeline without the pre-processing. To optimize this
pipeline, we use a publicly available X-ray microCT dataset
[Prasad et al., 2020] to set up the experiments in both a two-
module (no pre-processing) and full three-module version
of the pipeline.

In the first module, a pre-processing operation is performed
where we tune a contrast parameter and denoising parame-
ter. In the second module we train an U-Net, where in this
case we tune the learning rate and batch size. The third
module is in charge of post-processing and generates 3D
reconstructions from the U-Net output; the hyperparameters
in this module include a label purity score, cell opening size,
and a shape parameter to determine whether uncertain com-
ponents are either cells or blood vessels. Details of search
space for each module are described in Supp. 5.2). The cost

of the experiment is the aggregate recorded clock time for
generating an output after changing a variable in a specific
module. To test LaMBO on the problem, we gathered an
offline data set consisting of 606, 000 different hyperparam-
eters obtained by exhaustive search.

In the two-module case (Figure 3G), we observe a transition
effect; when enough cost has been spent, LaMBO starts to
increase its gap in performance over other methods. In the
three-module case (Figure 3H) the advantage is even more
pronounced, where the transition happens earlier. Quanti-
tatively it shows that to get close to the optimum (within
5%), LaMBO can achieve this result in only 25% of the time
required by the best alternative approach (1.4 vs. 5.6 hours).

6 DISCUSSION

This paper addresses a real-world problem of system opti-
mization that is encountered in a variety of scientific dis-
ciplines. Increasingly, as we expand the size of datasets in
different domains, we need automated solutions to quickly
apply advanced machine learning systems to new datasets
and re-optimize systems in an end-to-end manner. To tackle
this problem, we introduced a new algorithm for Bayesian
optimization that leverages known modular structure in an
otherwise black-box system to minimize the overall cost re-



 quired for global optimization. We showed how to leverage
structure in such systems by incorporating a lazy switching
strategy with Bayesian optimization. In the future, we would
like to generalize our method to the case where both the
function and switching costs are unknown, and extend to
more complex cost hierarchies.
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