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Abstract

Numerous invariant (or equivariant) neural net-
works have succeeded in handling invariant data
such as point clouds and graphs. However, a gen-
eralization theory for the neural networks has not
been well developed, because several essential fac-
tors for the theory, such as network size and margin
distribution, are not deeply connected to the invari-
ance and equivariance. In this study, we develop a
novel generalization error bound for invariant and
equivariant deep neural networks. To describe the
effect of invariance and equivariance on general-
ization, we develop a notion of a quotient feature
space, which measures the effect of group actions
for the properties. Our main result proves that the
volume of quotient feature spaces can describe the
generalization error. Furthermore, the bound shows
that the invariance and equivariance significantly
improve the leading term of the bound. We apply
our result to specific invariant and equivariant net-
works, such as DeepSets [Zaheer et al., 2017], and
show that their generalization bound is consider-
ably improved by

√
n!, where n! is the number

of permutations. We also discuss the expressive
power of invariant DNNs and show that they can
achieve an optimal approximation rate. Our experi-
mental result supports our theoretical claims.

1 INTRODUCTION

Group invariant (or equivariant) deep neural networks have
been extensively utilized in data analysis [Shawe-Taylor,
1989, 1993, Ntampaka et al., 2016, Ravanbakhsh et al.,
2016, Faber et al., 2016, Cohen and Welling, 2016, Zaheer
et al., 2017, Li et al., 2018a, Su et al., 2018, Li et al., 2018b,
Yang et al., 2018, Xu et al., 2018, Lenssen et al., 2018, Co-
hen et al., 2019]. A typical example is permutation invariant

deep neural networks for point cloud data. The data are
given as a set of points, and permuting points in the data
does not change the result of its prediction [Zaheer et al.,
2017, Li et al., 2018a, Su et al., 2018, Li et al., 2018b, Yang
et al., 2018, Xu et al., 2018, Ntampaka et al., 2016, Ravan-
bakhsh et al., 2016, Faber et al., 2016]. Another example is
graph neural networks for graph data, that are represented
by a column-and-row-permutation invariant adjacency ma-
trix [Bruna et al., 2013, Henaff et al., 2015, Monti et al.,
2017, Ying et al., 2018]. The group invariant and equivariant
neural networks can significantly improve the accuracy of
prediction with limited data size and network size [Zaheer
et al., 2017, Li et al., 2018b,a]. Their theoretical properties
have been investigated as well. Universal approximation
properties are proved for several invariant and equivariant
neural networks [Yarotsky, 2018, Maron et al., 2019, Sannai
et al., 2019, Segol and Lipman, 2019, Ravanbakhsh, 2020].

Despite the impact and high empirical accuracy, the general-
ization error of group invariant / equivariant neural networks
has not been well clarified yet. This is because there are sev-
eral theoretical difficulties in connecting invariance with
generalization theory. First, invariance is not strongly con-
nected to common factors that are important to the theory.
The generalization error bounds of ordinary deep neural net-
works are mainly controlled by their depth, width, number
of trainable parameters, and margin distributions [Anthony
and Bartlett, 2009, Neyshabur et al., 2015, Bartlett et al.,
2017]. However, invariance and equivariance are determined
independently of these factors. Second, there are few quanti-
tative features which can assess invariance and equivariance.
Without a quantitative criterion, it is not possible to measure
how invariance and equivariance affect on generalization
errors.

In this study, we establish a unified generalized error bound
by developing a quantitative measure to describe the effects
of invariance and equivariance. For a deep neural network
f , let R( f ) be its expected loss and Rm( f ) be its empirical
loss with m training samples. For a set of neural networks
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 F , we are interested in the following value

G (F ) := sup
f∈F
|R( f )−Rm( f )|, (1)

which is referred as a bound on generalization gap or gen-
eralization error. Our theory can describe significant im-
provements in the generalization error bounds of invariant /
equivariant neural networks. We summarize our results as
follows.

(i) Generalization Bound with Quotient Feature Space: We
develop a notion of a quotient feature space (QFS) and prove
that the generalization error bound of invariant / equivari-
ant neural networks is described by the volume of QFSs.
For a finite group G, we define a quotient feature map
φG :Rn→Rn/G and then define a QFS as ∆G := φG([0,1]n),
which is regarded as a feature space associated with G. Our
results show that the generalization error is proportional
to the square root of the volume of ∆G (invariant case) or
∆St(G) (equivariant case), where St(G) ⊂ G is a subgroup
of elements whose first coordinates are fixed, named a sta-
bilizer subgroup. In short, with a set of G-invariant deep
neural networks F G, we obtain the following intuition:

G (F G) ∝
√

vol(∆G)

Theorem 2 shows a rigorous statement. Figure 2 provides
examples of QFSs with several G.

(ii) Roles of Invariance for Generalization: We identify how
invariance improves generalization through the result with
QFSs. We consider the symmetric group G= Sn for example.
In this case, we derive the following bound:

Theorem 1 (Informal Corollary 1). Let F Sn be a set of
Sn-invariant deep neural networks. For any ε > 0,

G (F Sn)≤ O

(√
1

n! m2/n

)
+

√
2log(1/2ε)

m
,

holds with at least probability 1−2ε .

This bound reveals two properties of invariant networks.
First, the scale of the bound is improved by

√
n!. This result

follows the fact that the generalization gap is proportional
to the size of QFSs. This improvement is significant, since
n takes a large value in recent point cloud data, for example
n > 1,000. Second, it slows down the convergence rate in
a number of samples m. This deterioration is a price of
gaining the factorial improvement in n. However, as shown
in Figure 1, the factorial improvement greatly outweighs the
rate deterioration.

We have mainly two technical contributions. First, we define
the notion of a QFS and show its geometric properties, then
derive its volume with a wide class of G. Second, we show
a connection between a set of invariant / equivariant neural

Figure 1: Order of the bound for the generalization gap
against m. Ordinary (dashed line) denotes (1/

√
m) without

invariance, and Derived (colored lines) denote the bound
(1/
√

n!m2/n) with n ∈ {8,10,15}. Regardless of the effect
of m, the derived bound gets tight sharply as n increases.

networks and the volume of QFSs, then describe their gener-
alization bounds by the volume. Furthermore, we investigate
the expressive power of Sn-invariant deep neural networks
and show their expressive power attains an optimal rate.

1.1 RELATED WORK

There are several works studying the generalized perfor-
mance and sample complexity of neural networks with in-
variance / equivariance. Shawetaylor [1995] shows that the
sample complexity increases by a number of equivalent
classes. The closest work with our study is Sokolic et al.
[2017], which considers a general algorithm for the classifi-
cation problem. Their generalization bound is proportional
to
√

1/T , where T is the number of transformations gen-
erated by the invariance property. While their research is
excellent, we improve their work in two ways. (I) Our re-
sult has a more concrete structure: our generalization bound
describes an explicit role of invariance and equivariance
through the notion of QFSs. Owing to QFSs, our result can
be applied to various cases such as graphs. (II) We relax
their strong assumptions on stability and provide accurate
analysis. We provide its detail in Section 7.2. In fact, our
theoretical results are not limited to deep neural networks.
However, most of the models that can control invariant
data with large n, such as point clouds and large graphs,
are mainly handled by deep neural networks [Zaheer et al.,
2017, Maron et al., 2018, 2019, 2020]. Hence, we regard
neural networks as the main application of our theory.



 

Figure 2: Example of quotient feature spaces with n = 3. (i) trivial group case (G = {e}): ∆{e} = [0,1]3. (ii) symmetric
group case (G = S2): ∆S2 = {x ∈ [0,1]3 | x1 ≥ x2}. (iii) cyclic group case (G =C3): ∆C3 = {x ∈ [0,1]3 | x1 ≥ x2 ≥ x3}∪{x ∈
[0,1]3 | x1 ≤ x2 ≤ x3}. (iv) symmetric group case (G = S3): ∆S3 = {x ∈ [0,1]3 | x1 ≥ x2 ≥ x3}.

Deep Network Group vol(∆G) vol(∆St(G))

Deep Sets [Zaheer et al., 2017] Sn O(1/(n!)) O(1/((n−1)!))
G-CNN [Cohen and Welling, 2016] C4 O(1/4) O(1)
Graph Network [Maron et al., 2018] Sn ⊂ Sn2 O(1/(#of nodes)!) O(1/((#of nodes)−1)!)
Tensor Network [Maron et al., 2019] G⊂ Sn O(1/|G|) O(1/|St(G)|)

DSS [Maron et al., 2020] Sn×G′ (G′ ⊂ SN) O(1/(n!|G′|)) O(1/((n−1)!|St(G′)|)

Table 1: Examples of invariant / equivariant DNNs utilized in practice. Sn denotes a symmetric group of order n!, and Cn
denotes a cyclic group of order n. G denotes a subgroup of the permutation group Sn of axes of the input space Rn. G′

denotes a subgroup of the permutation group SN of axes of the input space Rn×N . We set vol(∆G) = Nε,∞(∆G), where
Nε,∞(∆G) is a covering number of ∆G in terms of ‖ · ‖∞. DSS was referred to as “Deep Sets for Symmetric elements layers”
[Maron et al., 2020].

1.2 NOTATION

For a vector b ∈RD, its d-th element is denoted by bd . For a
function f : Ω→R with a set Ω, ‖ f‖Lq := (

∫
Ω
| f (x)|qdx)1/q

denotes the Lq-norm for q ∈ [0,∞]. For a subset Λ ⊂ Ω,
f�Λ

denotes a restriction of f to Λ. C(Ω) denotes a set of
continuous functions on Ω. For an integer z, z! = ∏

n
j=1 j

denotes a factorial of z. For a set Ω, idΩ or id denotes the
identity map on Ω, namely idΩ(x) = x for any x ∈ Ω. For
a subset ∆ ⊂ Rn, int(∆) denotes a set of inner points of a
set ∆. For metric spaces ∆ and ∆′, ∆∼= ∆′ denotes they are
isomorphic as metric spaces. The supplementary material
maintains all full proofs.

2 DEFINITION AND PROBLEM
SETTING

2.1 INVARIANCE / EQUIVARIANCE AND DEEP
NEURAL NETWORK

We provide a general concept of the invariance and equiv-
ariance of functions. Throughout this paper, we consider a
finite group G≤ Sn, where Sn denotes the symmetric group.

Definition 1 (Invariant / Equivariant Function). For a group
G acting on Rn and RM , a function f : Rn→ RM is

• G-invariant if f (g · x) = f (x) holds for any g ∈ G and
any x ∈ Rn,

• G-equivariant if f (g ·x) = g · f (x) holds for any g ∈G
and any x ∈ Rn.

For a set Ω, CG(Ω) denotes a set of G-invariant an continu-
ous functions on Ω.

We formulate deep neural networks (DNNs) with invari-
ance and equivariance. In this study, we consider fully con-
nected DNNs with the ReLU activation function ReLU(x)=
max(0,x). Let us consider a layer-wise map Zi :Rdi→Rdi+1

defined by Zi(x) = ReLU(Wix+ bi), where Wi ∈ Rdi+1×di

and bi ∈ Rdi+1 for i = 1, ...,H. Here, H is a depth, and di is
a width of the i-th layer. Then, a function by DNNs has the
following formulation

f (x) := ZH ◦ZH−1 . . .Z2 ◦Z1(x). (2)

Further, let F be a set of functions with the form (2).

We define a function by invariant and equivariant DNNs.

Definition 2 (Invariant / Equivariant Deep Neural Network).
A function f ∈F is a G-invariant / equivariant DNN, if f
is a G-invariant / equivariant function.

This definition is a general notion and represents several
explicit invariant DNNs. We provide several representative
examples as follows.

Example 1 (Deep Sets). A permutation-invariant (Sn-
invariant) DNN was developed by Zaheer et al. [2017].



 Its architecture has J middle permutation-equivariant (Sn-
equivariant) layers Z1, ...,ZJ , a permutation-invariant lin-
ear layer ZL, and a fully-connected layer ZF . Each equiv-
ariant layer maintains a parameter matrix Wi = λ III +
γ(111111>), λ ,γ ∈ R,111 = [1, ...,1]>, which makes Z j be
equivariant. Then, a DNN f = ZF ◦ ZL ◦ ZJ ◦ · · ·Z1 is a
permutation-invariant DNN.

Example 2 (Tensor Network). For a finite group G ⊂ Sn,
a G-invariant / equivariant DNN was developed by Maron
et al. [2019] using a notion of higher-order tensors. The
study considered a tensor W ∈ Rnk×a and an action g ∈ G
on the tensor as (g ·W )i1,..,ik, j =Wg−1(i1),..,g−1(ik), j, for ik′ =
1, ...,n,k′ = 1, ...,k, and j = 1, ...,a. With the action, the
study developed a G-invariant / equivariant DNN. Since G
is a finite group, the model is a specific case of our setting.

2.2 FORMULATION OF LEARNING PROBLEM

We formulate our learning problem with DNNs. Let I =
[0,1]n be an input space with n ∈ N and RM be an out-
put space with M ∈ N. Let L : RM × RM → R be a
loss function which satisfies supy,y′∈Y |L(y,y′)| ≤ 1 and 1-
Lipschitz continuous. Let P∗(x,y) be a distribution on I×
RM which generate data, and R( f ) =E(X ,Y )∼P∗ [L( f (X),Y )]
for f : I → RM be the expected loss of f . Suppose we
have a training dataset {(X1,Y1), ...,(Xm,Ym)} of size m
which is independently generated from P∗. Let Rm( f ) :=
m−1

∑
m
i=1 L( f (Xi),Yi) be an empirical loss with f . Our inter-

est is to bound G (F ) as (1) which illustrates how minimiz-
ing Rm( f ) on F affects R( f ).

3 QUOTIENT FEATURE SPACES

We provide a notion of a quotient feature space (QFS),
which is a key factor in connecting invariance / equivariance
and generalization. With a quotient space Rn/G with G, we
consider a map

φG : Rn→ Rn/G such as φG(x) = {g · x | ∀g ∈ G},

named a quotient map. By the definition of g, such φG al-
ways exists. With this notion, we define a QFS.

Definition 3 (Quotient Feature Space). For a finite group
G, a quotient feature space is defined as

∆G := φG(I).

We can regard a QFS as a feature space with G. We prove
that a QFS can equip a distance if g∈G preserves a distance
in I, which is a fundamental property of feature spaces.

Proposition 1 (Distance on QFS). For a finite group G, we
define a function dG : Rn/G×Rn/G→ R≥0 as

dG(y,y′) = inf{‖x− x′‖2 | φG(x) = y,φG(x′) = y′}.

Then, dG is a distance on Rn/G.

Intuitively, the distance dG for Rn/G is an infimum of a
sum of pairwise distances of points {x | φG(x) = y} and
{x′ | φG(x′) = y′}. g ∈ G maintains the distance when G is
a finite group. We also remark that this proposition does not
hold for some infinite groups.

3.1 VOLUME MEASUREMENT OF QFS

We measure volume of ∆G, which is a critical factor for a
generalization bound of invariant / equivariant DNNs. We
consider two cases: (i) the symmetric group G = Sn, and
(ii) a finite group G. We measure the volume of a set Ω

using a covering number Nε,∞(Ω) := inf{N | ∃{x j}N
j=1 ⊂

Ω, s.t. ∪N
j=1 {x | ‖x− x j‖∞ ≤ ε} ⊃Ω}.

3.1.1 Symmetric Group Case

We begin with the symmetric group G = Sn. It is convenient
to study Sn as a first step, because we can derive an explicit
formulation of φSn and ∆Sn . With the case, an action σ ∈ Sn
is a permutation of indexes of x = (x1, ...,xn) ∈ I. For i =
1, ...,n, we define a map maxi({x1, ...,xn}) which returns
the i-th largest element of {x1, ...,xn}.

Proposition 2 (QFS of Sn). Define a set ∆ ⊂ I as
∆ := {x ∈ I | x1 ≥ x2 ≥ ·· · ≥ xn} , and a map φ : Rn→ Rn

as φ(x) := (max1({x1, ..,xn}), ...,maxn({x1, ..,xn})). Then,
we obtain φ(∆)∼= ∆Sn .

Figure 2 illustrates ∆Sn for some n. Intuitively, any element
of I corresponds to some element of ∆Sn with an existing
action σ ∈ Sn, namely, I =∪σ∈Sn {σ · x | x ∈ ∆} holds. With
the help of the explicit formulation of ∆Sn , we can measure
its size. Since ∆Sn ⊂ I holds, we can measure its volume by
the Euclidean distance as follows:

Lemma 1 (Volume of ∆Sn ). There is a constant C such that
for small enough ε > 0, we obtain

Nε,∞(∆Sn)≤C/(n! ε
n).

Lemma 1 provides an important claim: the volume of ∆Sn

is proportional to 1/(n!), i.e., the volume significantly de-
creases with the increases in n. The term ε−n is usual for
covering numbers, i.e., Nε,∞(I) ≤ C/εn holds, hence the
factorial improvement by 1/(n!) comes from Sn-invariance.

3.1.2 General Finite Group Case

We consider a general finite group G and its corresponding
QFS, by studying ∆G and measuring its covering volume.
We first prepare several notions. For a group G, |G| denotes
its number of elements, named an order of G. For a subgroup
H ⊂ G, a set {g1, ..,gK |gk ∈ G} is defined as a complete



 system of representatives of H\G if K = |G|/|H| and G =
∪K

k=1H ·gk hold. For any G and H, we can always find the
complete system. Also, we define ∆k := gk ·∆Sn . Then, we
achieve the following result:

Proposition 3. Let {g1, ..,gK |gk ∈ Sn,k = 1, ...,K} be a
complete system of representatives of G\Sn. Then, ∆k ∼= ∆Sn

holds as metric spaces for all k = 1, ...,K. Furthermore, its
induced set ∆̃G :=

⋃|Sn|/|G|
k=1 ∆k satisfies φG(∆̃G) = ∆G.

Proposition 3 shows that we can describe ∆G by ∆̃G which
is a combination of complete systems of representatives of
G\Sn. Intuitively, we can define ∆̃G by a union of several
transformed ∆Sn .

We describe an example with n = 3 and G = S2. A complete
system of representatives of S2\S3 can be {g1,g2,g3} ⊂ S3
such that g1 is an identity, g2 is a transposition of the 2nd
and 3rd elements, and g3 is a cyclic permutation. In other
words, we have g3 ·1= 2,g3 ·2= 3, and g3 ·3= 1. Moreover,
we have ∆̃S2 = ∆S2 . Then, we can represent ∆S2 by ∆gk with
k = 1,2,3 as ∆S2 = g1 ·∆S3 ∪ g2 ·∆S3 ∪ g3 ·∆S3 . According
to Figure 3, ∆S2 is a union of ∆S3(= g1 · ∆S3), reflected
∆S3 (= g2 ·∆S3), and rotated ∆S3 (= g3 ·∆S3).

We can evaluate the volume of ∆G by |G| as follows:

Lemma 2. There exists a constant C > 0, such that for
small enough ε > 0, we obtain

Nε,∞(∆G)≤C/(|G| εn).

Similar to Lemma 1, the result of Lemma 2 states that the
covering volume of ∆G is improved by |G|. Since |Sn|= n!
holds, Lemma 2 is a generalization of Lemma 1. Table 1
contains examples of G.

3.2 COVERING NUMBERS OF QFS

We show several technical inequalities to present a relation-
ship between G-invariant DNNs and ∆G. Namely, we show
that a covering number of a set F G(I) = { f : I → RM |
f is a G-invariant DNN.} is evaluated by comparison with
the volume of ∆G. We also define F (∆G) := { f : ∆G →
RM | f is a DNN.}. We note that f ∈F (∆G) is an ordinary
DNN rather than a G-invariant DNN.

First, we derive a corresponding map between the two func-
tional sets.

Proposition 4. φG induces a bijection φ̂G : C(∆G)→CG(I).
Further, f ∈C(∆G) is K-Lipschitz continuous if and only if
φ̂G( f ) is K-Lipschitz continuous.

Using the corresponding map, we evaluate the volume of
F G(I) by F (∆G). The following result presents the claim.

Proposition 5. For any ε > 0, we obtain

Nε,∞(F
G(I))≤Nε,∞(F (∆G)).

This inequality shows that the set of G-invariant DNNs on I
is bounded by the volume of the set of DNNs on ∆G without
invariance.

Finally, we evaluate the volume of F (∆G) in terms of the
volume of ∆G. We provide an inequality which bounds the
covering number of F (∆G) by a polynomial of the volume
of ∆G, whereas the commonly used inequality only includes
the logarithm of the volume of ∆G, such as the result in
Section 10.2 in Anthony and Bartlett [2009].

Proposition 6. Suppose that any function in F (∆G) is C∆-
Lipschitz continuous and uniformly bounded by B with con-
stants C∆,B > 0. Then, with an existing constant c > 0 and
C in Lemma 1, for any δ > 0, we obtain

logN2C∆δ ,∞(F (∆G))≤Nδ ,∞(∆Sn) log(8c2B/δ ).

Combining this result with Proposition 5, we can utilize
Nε,∞(∆Sn) as the quantitative measure to evaluate the vol-
ume of the set of G-invariant DNNs.

Remark 1 (Linear bound in Nδ ,∞(∆Sn)). In Proposition 6,
it is important to note that logarithm of N2C∆δ ,∞(F (∆G))
is linearly bounded by Nδ ,∞(∆Sn). In general, log of
N2C∆δ ,∞(F (∆G),) is bounded by a number of parameters
of DNNs [Anthony and Bartlett, 2009] or parameter norms
[Bartlett et al., 2017]. However, these values have little to
do with invariance and therefore cannot give tight bounds.
We instead consider the volume of ∆Sn as a value related to
invariance and achieve the linear bound in Nδ ,∞(∆Sn).

4 GENERALIZATION BOUND FOR
INVARIANT DNNS

We derive a generalization bound with QFSs and show that
invariance can effectively improve the generalization perfor-
mance of DNNs. Utilizing the results above, we have the
following main result:

Theorem 2 (Generalization of Invariant DNN). Suppose
any f ∈F G = F G(I) is uniformly bounded by 1. Then, for
any ε > 0, there exist a constant C > 0 that are indepen-
dent of n,m and ε , and the following inequality holds with
probability at least 1−2ε:

G (F G)≤

√
C

|G| m2/n︸ ︷︷ ︸
=:I1

+

√
2log(1/2ε)

m︸ ︷︷ ︸
=:I2

.

The main term I1 of the bound is interpreted to maintain
the relation I1 ∝

√
Nε,∞(∆G), hence the volume of QFSs



 

Figure 3: Illustration of ∆S2 = ∆̃S2 = g1 ·∆S3 ∪g2 ·∆S3 ∪g3 ·∆S3 . The blue cube is I, and the green polyhedrons are ∆S2 and
gk ·∆S3 ,k = 1,2,3.

describes the effect of invariance on the generalization error.
Obviously, I1 is improved as

√
|G| increases. Although the

convergence rate of the main term in m gets slow as n in-
creases, an increase in

√
|G| reduces the error, as shown in

the following specific example. Here, we note that we can
regard I2 as a relatively negligible term.

With the case G = Sn, the result in Theorem 2 yields a more
explicit bound:

Corollary 1 (Generalization of Sn-invariant DNN). Con-
sider the same setting as Theorem 2. Then, for any ε > 0,
there exists a constant C > 0 and the following inequality
holds with probability at least 1−2ε:

G (F Sn)≤
√

C
n! m2/n +

√
2log(1/2ε)

m
.

Corollary 1 follows the order |Sn|= n!. Since n is large in
practice, e.g., a number of points in point cloud data or a
number of nodes for graph data, the term n! significantly
improves the bound.

Remark 2 (Convergence rate in m). In the result, the con-
vergence rate to the sample size m slows down as n in-
creases, but the improvement of the bound with increas-
ing n more than cancels this out. Since a decay by the
factorial term n! is sufficiently faster than any polyno-
mial convergence in n. For a practical example with an
experiment (m = 9843,n = 100) by Zaheer et al. [2017]
with the ModelNet40 dataset [Wu et al., 2015], our bound
O(1/

√
n!m2/n)≈ O(10−156) is significantly tighter than an

ordinary bound O(1/
√

m)≈ O(10−1.99).

Proof sketch for Theorem 2: We prove Theorem 2 by the
following three steps.

First, we apply the well-known Rademacher complexity
bound (e.g., Lemma A.5 in Bartlett et al. [2017]) and obtain
the following inequality with probability at least 1−2ε

G (F G)≤
√

2log(1/2ε)

m
(3)

+ inf
α≥0

{
4α +

12√
m

∫ √m

α

√
2log2Nδ ,∞(F G(I))dδ

}
.

Second, we bound the term logNδ ,∞(F
G(I)) in (3) by

logNδ ,∞(F (∆G)) by using the result in Proposition 4. This
enables us to evaluate the error with G-invariance using ∆G.

Third, we bound logNδ ,∞(F (∆G)) by the term with
Nδ ,∞(∆G). To achieve this bound for bounding the volume
of functional sets by that of its domain, we provide Propo-
sition 6 in the supplementary material. Then, we combine
Lemma 2 and get the statement of Theorem 2.

5 GENERALIZATION BOUND FOR
EQUIVARIANT DNNS

We derive a generalization bound for equivariant DNNs. To
this aim, we require a covering number of the following set
F̃ G(I) = { f̃ : I→ Rn | f̃ is a G-equivariant DNN.}.

As preparation, we define a stabilizer subgroup associated
with G. In this section, for brevity, we consider that the
action G is transitive, i.e. for any i ∈ {1,2, ...,n}, there ex-
ists g ∈ G that satisfies g · 1 = i. We define the stabilizer
subgroup St(G) ⊂ G as St(G) = {g ∈ G | g ·1 = 1}. Here,
St(G) is a subgroup of G which fixes the first coordinate. We
utilize this subgroup for decomposing equivariant functions
and obtain the following bound:

Theorem 3 (Generalization of Equivariant DNN). Suppose
G is transitive, and any f̃ G ∈ F̃ G = F̃ G(I) is uniformly
bounded by 1. Then, for any ε > 0, there exists constant
C̃ > 0 that are independent of n,m and ε , the following
inequality holds with probability at least 1−2ε:

G (F̃ G)≤

√
C̃

|St(G)| m2/n︸ ︷︷ ︸
=:I′1

+

√
2log(2/ε)

m︸ ︷︷ ︸
=:I′2

.

The result shows that equivariant DNNs also achieves the
improved generalization bound by the volume of its QFS
of St(G), i.e., the main term satisfies I′1 ∝

√
Nε,∞(∆St(G)).

The remainder term I′2 has a smaller order than I′1. Thus, it
is considered to be negligible in our analysis.

By Theorem 3, we obtain the following specific generaliza-
tion bound with G = Sn.



 Corollary 2 (Generalization of Sn-equivariant DNN). Con-
sider the same setting as Theorem 2. Then, for any ε > 0
and sufficiently large n, the following inequality holds with
probability at least 1−2ε:

G (F̃ Sn)≤

√
C̃

(n−1)! m2/n +

√
2log(1/2ε)

m
.

This corollary describes that Sn-equivariant DNNs can be
improved bound by

√
(n−1)!. In Section B in the supple-

mentary material, we relax the transitive setting for G and
provide more general results with non-transitive G.

Even with this result, the slow decay rate in m is resolved by
the improvement of the bound by n due to invariance. The
detailed discussion is similar to that of Remark 2.

Proof sketch for Theorem 3: As a preparation, we define
a set of G-equivariant functions with multivariate outputs
and their covering numbers. To this end, we reform the
G-equivariant function f̃ G : I → Rn to a combination of
St(G)-invariant functions. Proposition 3.1 in Sannai et al.
[2019] shows the following formulation:

f̃ G = ( f St(G) ◦ τ1,1, · · · , f St(G) ◦ τ1,n)
>, (4)

where f St(G) : I→R is an existing St(G)-invariant function,
and τ1, j ∈G is a linear map for j = 1, ..,n such that it makes
the first coordinate of an input move to the j-th coordinate.
The detailed results are provided in Proposition 10 in Sec-
tion B. By the representation, we can evaluate a covering
number of F̃ G(I) by that of St(G)-invariant functions. For
a multi-output function f : I → Rn as f = ( f1, ..., fn), we
define a norm ||| f |||L∞(I) := max j=1,...,n ‖ f j‖L∞(I). Also, let

Ñε,∞(Ω) be a covering number of Ω in terms of |||·|||L∞(I).

The remaining steps of this proof are similar to those of
Theorem 2.

6 EXPERIMENTAL RESULT

We experimentally validate Theorem 2 by measuring a gen-
eralization gap with synthetic data. We consider a regression
task to find a sum of n scalars, which is a problem solvable
by invariant functions.

We generate synthetic data by the following process. For
inputs, we generate N = nd random variables x1, ...,xN that
are independently and identically generated from a stan-
dard normal distribution. We generate an output variable
y = ∑

N
i=1 xi. We regard this as an Sn-invariant function in

the following way. We regard x1, ...,xN as n d-dimensional
vectors v1, ...,vn and then we can give the permutation ac-
tion of Sn on (v1, ...,vn). This induces the action of Sn on
(x1, ...,xN). A function (x1, ...,xN) 7→ y=∑

N
i=1 xi is invariant

to the permutation actions of Sn.
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Figure 4: Generalization Gap. Theory bound v.s. experimen-
tal result. Theory (orange line) denotes (1/(

√
n!m2/n)) , and

Deepsets (blue line) denote the generalization gaps in the
experiments with n ∈ {2,4,6,8}.

We solve the regression problem by DeepSets [Zaheer et al.,
2017], which is an Sn-invariant DNN with given n. DeepSets
consists of Sn-equivariant layers (the first three layers), an
Sn-invariant layer, and a fully connected layer (the last layer).
A number of units of each layer is as follows: N→ 128→
64→ 32→ 32→ 1.

We vary n = 2,4,6,8 and set N = 48, then we consider
configurations (n,d) ∈ {(2,24),(4,12),(6,8),(8,6)} such
as satisfying N = nd. We generate m = 60 samples for train-
ing and 10000 samples for testing. We train DeepSets with
500 epochs, batch size 4, learning rate 0.001, and the Adam
optimizer.

Figure 4 illustrates the result, which shows the mean over
five trials with different random seeds.1 The horizontal axis
shows n and the vertical axis shows a logarithm of the gen-
eralization gaps. From the result, we can confirm two things.
First, the theoretical bound is a certain upper bound of the
experimental value by DeepSets. Second, the slope of the
experimental value is same to the theoretical slope. This
supports our claim that the degree of invariance n reduces
the generalization gap.

7 DISCUSSION AND COMPARISON

7.1 EFFECT OF INVARIANCE / EQUIVARIANCE

We identify the effect of invariance / equivariance on the
generalization bounds of DNNs. With invariant / equivariant
DNNs, the volume of the corresponding QFS decreases,

1A reviewer suggested that the experimental result should be
expressed in a table. However, since the table is not suitable to
express the slope of the gaps with respect to n, we continue to use
the figure.



 

Figure 5: Logarithmic order of the bound for the general-
ization gap against log(m). Ordinary (dashed line) denotes
log(1/

√
m) without invariance, and Derived (colored lines)

denotes the bound log(1/
√

n!m2/n) with n ∈ {8,10,15,20}.
The bound decreases sharply by n with m increasing to
200,000≈ log(12).
hence the generalization bounds also decrease. In order for
the bounds to reflect the volume of the QFS, its convergence
rate in m must be slow. However, because the volume of the
QFS decays sufficiently fast in n, the generalization bound
decays rapidly as n increases. Figure 5 shows a logarithmic
version of the bound against m in Figure 1.

7.2 RELATION WITH SOKOLIC ET AL. [2017]

The closest study to our work is the generalization error
analysis of invariant classifiers by Sokolic et al. [2017]. The
study shows that a number of transformations by invariance
describes their generalization bound. While the result is
similar to our study, our result improves their analysis in the
following two ways.

(I). Our results are valid without the division assumptions in
Sokolic et al. [2017]. The study assumes that the input space
X can be written as X0×T using a set of transformations
T and a base space X0. This assumption is hard to confirm
for two reasons. First, the set of transformations is not the
group itself in general. For example, consider the trivial
action of a symmetric group, then despite the fact that the
group is a symmetric group, the set of transformations is
a single point set consisting of identities. Thus, we need
to calculate the set of transformations on a case-by-case
analysis. Second, it is difficult to find the base space. In the
graph neural network case [Maron et al., 2018], the action is
the permutation of nodes on adjacency matrices. In this case,
it is hard to find the base space of this action. In contrast,
our result is valid in this case.

(II). Our results relax the stability assumption and achieve an
accurate result. Sokolic et al. [2017] places an algorithmic
stability assumption that allows them to ignore the com-

plexity of hypothesis spaces and build a theory solely on
the complexity of the input space. However, this stability
assumption is not satisfied by deep learning in particular
[Hoffer et al., 2017, Nagarajan and Kolter, 2019]. In this
study, we construct a theory that is independent of stability
assumptions by connecting the functional hypothesis space
and the theory of QFSs.

7.3 ANALYSIS FOR EXPRESSIVE POWER OF
INVARIANT DNNS

We discuss an expressive power of invariant neural networks,
which determines how small the empirical loss Rm( f G)
would be. A volume of Rm( f G) is not the main concern
of this study, but it is an important factor for the actual
performance.

We investigate the expressive power of invariant deep neural
networks. To the aim, we define the Hölder space, which is
a class of smooth functions.

Definition 4 (Hölder space). Let α > 0 be a degree of
smoothness. For f : I→ R, the Hölder norm is

‖ f‖H α := max
β :|β |<bαc

‖∂ β f (x)‖L∞(I)

+ max
β=bαc

sup
x,x′∈I,x 6=x′

|∂ β f (x)−∂ β f (x′)|
‖x− x′‖α−bαc

∞

,

A B-radius closed ball in the Hölder space on I is defined
as H α

B = { f ∈H α | ‖ f‖H α ≤ B}.

H α is a set of bounded functions that are α-times differ-
entiable. The notion is often utilized in characterizing the
expressive power of DNNs (e.g., refer to Schmidt-Hieber
[2017]). Then, we achieve the following result of an expres-
sive power of invariant DNNs:

Theorem 4 (Approximation rate of invariant DNNs). For
any ε > 0, suppose F Sn has at most O(log(1/ε)) layers
and O(ε−D/α log(1/ε)) non-zero parameters. Then, for any
Sn-invariant f ∗ ∈H α

B , there exists f Sn ∈F Sn such that

‖ f Sn − f ∗‖L∞(I) ≤ ε.

Theorem 4 clarifies the expressive power of DNNs by show-
ing the sufficient number of parameters to make the error
arbitrarily small. This result shows that the error decreases
as the number of parameters increase with the rate −D/α

up to logarithm factors. Importantly, this rate is the optimal
rate without invariance [Yarotsky, 2017]. Hence, we prove
that invariant DNNs can achieve the optimal approximation
rate even with invariance.

8 CONCLUSION

We proposed the generalization theory, which describes the
errors and the effect of invariance / equivariance in a quanti-



 tative way. We proved that the order of invariance improves
the generalization bound. Moreover, we prove Sn-invariant
DNNs maintain the high expressive power regardless of the
invariance property.
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