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Abstract

Parametric path problems arise independently in
diverse domains, ranging from transportation to
finance, where they are studied under various as-
sumptions. We formulate a general path problem
with relaxed assumptions, and describe how this
formulation is applicable in these domains.
We study the complexity of the general problem,
and a variant of it where preprocessing is allowed.
We show that when the parametric weights are
linear functions, algorithms remain tractable even
under our relaxed assumptions. Furthermore, we
show that if the weights are allowed to be non-
linear, the problem becomes NP-hard. We also
study the multi-dimensional version of the problem
where the weight functions are parameterized by
multiple parameters. We show that even with 2
parameters, this problem is NP-hard.

1 INTRODUCTION

Parametric shortest path problems arise in graphs where
the cost of an edge depends on a parameter. Many real-
world problems lend themselves to such a formulation,
e.g., routing in transportation networks parameterized by
time/cost (Carstensen [1983], Mulmuley and Shah [2001],
Dean [2004]), and financial investment and arbitrage net-
works (Hajela and Pandey [2014], Hau [2014], Moosa
[2003]). Path problems have been studied independently in
these domains, under specific assumptions that are relevant
to the domain. For example, the time-dependent shortest
path problem used to model transportation problems as-
sumes a certain FIFO condition (Equation 2.1). Arbitrage
problems only model the rate of conversion and are defined
with respect to a single currency parameter. These assump-
tions reduce the applicability of such algorithms to other
domains.

We propose a generalized model for parametric path prob-
lems with relaxed assumptions, giving rise to an expressive
formulation with wider applicability. We also present spe-
cific instances of real-world problems where such general-
ized models are required (see Section 2).
Definition 1.1. The input to a Generalized Path Problem
(GPP) is a 4-tuple (G,W,L,x0), where G = (V ∪{s, t} ,E)
is a directed acyclic graph with two special vertices s and t,
W =

{
we : Rk→ Rk : e ∈ E

}
is a set of weight functions

on the edges of G, L ∈ Rk is a vector used for computing
the cost of a path from the k parameters, and x0 ∈ Rk is the
initial parameter. ♦

The aim in a GPP is to find an s-t path P in the graph G that
maximizes the dot product of L with the composition of the
weight functions on P, evaluated at the initial parameter x0.

Problem 1.2 (Generalized Path Problem (GPP)).
Input: An instance (G,W,L,x0) of GPP.
Output: An s-t path P = (e1, . . . ,er) which maximizes

L ·wer(wer−1(· · ·we2(we1(x0)) · · ·)).

When k = 1, we call the GPP a scalar GPP. Sometimes we
ignore the x0 and just write (G,W,L).

Scalar GPP (see Figure 1) models shortest paths by choosing
weights we(x)= ae ·x+be and fixing L=−1, to convert it to
a minimization problem. Scalar GPP also models currency
arbitrage problems (Hajela and Pandey [2014], Cormen et al.
[2009]), where the cost of a path is the product of its edge
weights, by choosing weight functions to be lines passing
through the origin with slopes equal to the conversion rate.

Further, GPP can model more general path problems which
involve multiple parameters to be optimized. For example,
in transport networks, one needs to find a path that opti-
mizes parameters like time traveled, cost of transportation,
convenience, polluting emissions, etc. (Kamishetty et al.
[2020]). In finance problems, an entity can have investments
in different asset classes like cash, gold, stocks, bonds, etc.,
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Figure 1: (Left) Graph of a scalar GPP instance whose edge weights are linear functions of a parameter x. (Right) A plot of x versus the
costs of all possible s-t paths P1, . . . ,P6. All cost functions are linear, as the composition of linear functions is linear. For example, the cost
of P6 is a6(a5(c2(c1x+d1)+d2)+b5)+b6. Table 1 denotes the table for GPP with preprocessing (PGPP) with L =−1.

and a transaction, modeled by an edge, can affect these in
complex ways (see more examples in Section 2). The edge
parameters could contribute additively or multiplicatively
to the cost of the path. We study weight functions that are
affine linear transformations, which allows for both of these.

Note that the optimal path can vary based on the value of
the initial parameter x0. For this, we also consider a version
of GPP with preprocessing (called PGPP), where we can
preprocess the inputs (G,W,L) and store them in a table
which maps the initial values x0 to their optimal paths. Such
a mapping is very useful in situations where the underlying
network does not change too often and a large amount of
computing power is available for preprocessing (e.g., the
road map of a city typically does not change on a day-to-day
basis). If the size of the table is managable, then it can be
saved in memory and a query for an optimal path for a given
x0 can be answered quickly using a simple table lookup.

Problem 1.3 (GPP with Preprocessing (PGPP)).
Input: An instance (G,W,L) of GPP.
Output: A table which maps x0 to optimal paths.

Table 1: PGPP Table for Figure 1
Interval Path
(x0,x1) P1
(x1,x2) P2
(x2,x3) P3
(x3,x4) P5

We present an efficient algorithm for scalar GPP with linear
weight functions. On the other hand, we show that if the GPP
instance is non-scalar or the weight functions are non-linear,
algorithms with worst-case guarantees cannot be obtained,
assuming P 6= NP.

Our algorithm is based on the Bellman-Ford-Moore algo-
rithm (Bellman [1958], Ford Jr [1956], Moore [1959]),
whereas our NP-hardness reductions are from two well-

known NP-hard problems, SET PARTITION and PRODUCT
PARTITION.

The results for GPP with preprocessing (PGPP) are much
more technical since they involve proving upper and lower
bounds on the number of discontinuities of the cost of the
optimal path as a function of the initial parameter x0. They
generalize previously known results in Time-Dependent
Shortest Paths by Foschini et al. [2014]. Their work crucially
uses the FIFO property Equation 2.1, whereas our analysis
does not make this assumption, giving a more general result.

Our Contributions. Here is a summary of our results.
In Section 2, we give specific instances from transportation
and finance where these results can be applied.

1. There is an efficient algorithm for scalar GPP with
linear weight functions (see Section 3).

2. Scalar PGPP with linear weight functions has a quasi-
polynomial sized table, and thus table retrieval can be
performed in poly-logarithmic time (see Section 4).

3. Scalar GPP with piecewise linear or quadratic weight
functions is NP-hard to approximate (see Section 5).

4. For scalar PGPP with piecewise linear or quadratic
weight functions, the size of the table could be expo-
nential (see Section 6).

5. Non-scalar GPP (GPP with k > 1) is NP-hard (see
Section 7).

2 APPLICATIONS & RELATED WORKS

Applications to Transportation. We relate scalar GPP
to an extensively well-studied problem, known as Time-
Dependent Shortest Paths (TDSPs) in graphs, which comes
up in routing/planning problems in transportation networks
(Dean [2004], Dehne et al. [2012], Foschini et al. [2014]).
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Figure 2: An illustration of how Braess’ paradox can lead to
a non-FIFO edge weight function. The plot denotes we(x) for a
single edge e = (A,B) of a graph. Roads A-p-v and u-q-B are quite
lengthy, and thus the road linking u to v is preferable for a journey
from A to B. Before 5 pm, the u-v link is available, which leads to
traffic congestion on the route A-u-v-B. Once the u-v link closes at
5 pm, the traffic splits equally on the routes A-p-v-B and A-u-q-B.
As the plot indicates, there is a drop in the travel time just around
5 pm. During that brief interval, those departing from A after 5 pm
can reach B earlier than those departing from A before 5 pm, by
Braess’ paradox. Hence, e is not FIFO, as per Equation 2.1.

In the TDSP setting, the parameter x denotes time, and the
weight we(x) of an edge e = (A,B) denotes the arrival time
at B if the departure time from A is x. If there is another
edge e′ = (B,C) connected to B, then the arrival time at C
along the path (A,B,C) is we′(we(x)), and so on. Thus, the
cost of an s-t path is the arrival time at t as a function of the
departure time from s. We say that an edge e is FIFO if its
weight is a monotonically increasing function, i.e.,

x1 ≤ x2⇐⇒ we(x1)≤ we(x2) ∀x1,x2. (2.1)

The study of TDSPs can be traced back to the work of Cooke
and Halsey [1966]. Dreyfus [1969] gave a polynomial time
algorithm when the edges were FIFO and the queries were
made in discrete time steps. These results were extended to
non-FIFO networks by Orda and Rom [1990], and general-
ized further by Ziliaskopoulos and Mahmassani [1993].

Dean [2004] summarised all known research on FIFO net-
works with linear edge weights. Dehne et al. [2012] pre-
sented an algorithm for TDSPs in this setting whose running

time was at most the table size of the PGPP instance. Soon
thereafter, Foschini et al. [2014] showed that the table size
is at most nO(logn), and that this is optimal, conclusively
solving the problem for FIFO networks. We show that their
bounds also hold for non-FIFO networks.

Some other closely related lines of work which might be of
interest to the reader are Marcucci et al. [2021], Ben-Nun
et al. [2020], Brunelli et al. [2021], Ruß et al. [2021], Wang
et al. [2019] and Delling [2018].

Example: Braess’ Paradox. The FIFO assumption makes
sense because it seems that leaving from a source at a later
time might not help one reach their destination quicker.
However, somewhat counter-intuitively, Braess [1968] ob-
served that this need not always the case (Figure 2 shows
an example of Braess’ paradox). Steinberg and Zangwill
[1983] showed that Braess’ paradox can occur with a high
probability. Rapoport et al. [2009] backed their claim with
empirical evidence. In fact, there are real-world instances
where shutting down a road led to a decrease in the overall
traffic congestion. Two examples are Stuttgart (Murchland
[1970]) and Seoul ([Easley and Kleinberg, 2010, Page 71]).

Applications to Finance. Financial domain problems
have been modelled as graph problems before (Dopfer and
Potts [2014], Koenig and Battiston [2009], Eboli [2013],
Bates et al. [2014], Attia [2019]). We model the currency
arbitrage problem (Ross [1977], Shleifer and Vishny [1997],
Delbaen and Schachermayer [2006]) as a GPP. In the cur-
rency arbitrage problem, we need to find an optimal conver-
sion strategy from one currency to another via other curren-
cies, assuming that all the conversion rates are known.

Example: Multi-currency Arbitrage. GPP can model gen-
eralized multi-currency arbitrage problems. In currency ar-
bitrage, an entity can have money available in different
currencies and engage in transactions (modelled by edges)
which can change the entity’s wealth composition in com-
plex ways (Moosa [2003]). The transaction fees could have
fixed as well as variable components, depending on the
amount used. This can be modelled by affine linear transfor-
mations. Eventually the entity might liquidate all the money
to a single currency, which can be modelled by the vector L
in the GPP instance. The goal is to pick a sequence of trans-
actions which maximizes the cash after liquidation. Hence,
this problem naturally lends itself to a GPP formulation.

Example: Investment Planning. GPP can model investment
planning by considering the nodes of the graph to be the
state of the individual (which could be qualifications, con-
tacts, experience, influence, etc). At each given state, the
individual has a set of investment opportunities which are
represented by directed edges. Every edge represents an
investment opportunity, and the weight of the edge models
the return as a function of the capital invested. Suppose
an individual initially has y amount of money and makes



 two investments in succession with returns r1(x),r2(x), then
the individual will end up with r2(r1(y)) amount of money.
Though a generic investment plan could allow multiple par-
tial investments, there are cases where this is not possible.
For example, the full fees needs to be paid up front for
attending a professional course or buying a house, which
motivates restricting to investment plans given by paths. The
vertices s, t denote the start and end of an investment period,
and the optimal investment strategy is an s-t path which
maximizes the composition of functions along the path.

3 ALGORITHM FOR SCALAR GPP
WITH LINEAR WEIGHTS

In this section, we present our algorithm for scalar GPP with
linear weight functions. Formally, we show the following.

Theorem 3.1. There exists an algorithm that takes as input
a scalar GPP instance (G,W,L,x0) (where G has n vertices
and we(x) = ae · x+be for every edge e of G), and outputs
an optimal s-t path in G in O(n3) running time.

We use Algorithm 1 for solving GPP. Our algorithm is simi-
lar to the Bellman-Ford-Moore shortest path algorithm (Bell-
man [1958], Ford Jr [1956], Moore [1959]), where they keep
track of minimum cost paths. The only subtlety in our case is
that we need to keep track of both minimum and maximum
cost paths with at most k edges from the start vertex s to ev-
ery vertex v, as k varies from 1 to n. The variables pmax, pmin
act as parent pointers for the maximum cost path and the
minimum cost path tree rooted at s. rmax,rmin stores the cost
of the maximum and minimum cost path. The running time
of Algorithm 1 is clearly O(n3), the same as the running
time of the Bellman-Ford-Moore algorithm. Its correctness
follows from the following observation.

Observation 3.2. Let e = (u,v) be an edge of G, and ae be
the coefficient of x in we. That is, we(x) = aex+be.

• If e is the last edge on a shortest s-v path, then its s-u
subpath is a shortest s-u path if ae is positive, and a
longest s-u path if ae is negative.

• If e is the last edge on a longest s-v path, then its s-u
subpath is a shortest s-u path if ae is negative, and a
longest s-u path if ae is positive.

Then, the argument is similar to the proof of the Bellman-
Ford-Moore algorithm, using the optimal substructure prop-
erty. Our algorithm can also handle time constraints on the
edges which can come up in transport and finance problems.
For example, each investment (modelled by an edge) could
have a scalar value, which denotes the time taken for it to re-
alize. The goal is to find an optimal sequence of investments
(edges) from s to t, such that the sum of times along the path
is at most some constant T . We can reduce such a problem
to a GPP problem with a time constraint as follows.

Replace each edge e by a path of length te, where te is the
time value associated with e. The weight function for the
first edge is simply we(x) and for the other te−1 edges, it is
the identity function. Then, Algorithm 1 can be modified so
that the first for-loop stops at T instead of at n−1.

Algorithm 1: GPP with linear weight functions

For v ∈V \{s}, rmax(v) =−∞,rmin(v) = ∞;
rmax(s) = rmin(s) = x;
for k ∈ [1,n−1] do

for e = (u,v) ∈ E do
if ae ≥ 0 then

if rmax(v)< we(rmax(u)) then
rmax(v)← we(rmax(u)), pmax(v)← u;

end
if rmin(v)> we(rmin(u)) then

rmin(v)← we(rmin(u)), pmin(v)← u;
end

else
if rmax(v)< we(rmin(u)) then

rmax(v)← we(rmin(u)), pmax(v)← u;
end
if rmin(v)> we(rmax(u)) then

rmin(v)← we(rmax(u)), pmin(v)← u;
end

end
end

end
Output: The sequence (t, pmax(t), pmax(pmax(t)), . . . ,s) in

reverse order is the optimal path at x with value rmax(t).

4 UPPER BOUND FOR SCALAR PGPP
WITH LINEAR WEIGHTS

In this section, we study scalar PGPP (linear edge weights
with L =−1), and show that the total number of different
shortest s-t paths (for different values of x0 ∈ (−∞,∞)) is at
most quasi-polynomial in n. In PGPP (Problem 1.3), we are
allowed to preprocess the graph. We compute all possible
shortest s-t paths in the graph and store them in a table
of quasi-polynomial size. More precisely, if (G,W,L) is a
scalar GPP instance (where G has n vertices and we(x) =
ae · x+ be for every edge e of G), then we show that the
number of shortest s-t paths in G is at most nO(logn). (For
the example in Figure 1, this number is 4.) Since the entries
of this table can be sorted by their corresponding x0 values, a
table lookup can be performed using a simple binary search
in log(nO(logn)) =O((logn)2) time. Thus, a shortest s-t path
for a queried x0 can be retrieved in poly-logarithmic time.

In our proof, we will crucially use the fact that the edge
weights of G are of the form we(x) = aex+be. Although our
result holds in more generality, it is helpful and convenient
to think of the edge weights from a TDSP perspective. That
is, when travelling along an edge e = (u,v) of G, if the start
time at vertex u is x, then the arrival time at vertex v is we(x).



 As the edge weights are linear and the composition of linear
functions is linear, the arrival time at t after starting from s
at time x and travelling along a path P is a linear function of
x, called the cost of the path and denoted by cost(P)(x). We
show that the piecewise linear lower envelope (denoted by
costG(x), indicated in pink in Figure 1) of the cost functions
of the s-t paths of G has nlogn+O(1) pieces. Let p( f ) denote
the number of pieces in a piecewise linear function f .

Theorem 4.1. Let P be the set of s-t paths in G. Then, the
cost function of the shortest s-t path, given by costG(x) =
min

P:P∈P
cost(P)(x), is a piecewise linear function such that

p(costG(x))≤ nlogn+O(1).

Before we can prove Theorem 4.1, we need some elementary
facts about piecewise linear functions. Given a set of linear
functions F , let F↓ and F↑ be defined as follows.

F↓(x) = min
f : f∈F

f (x) F↑(x) = max
f : f∈F

f (x)

In other words, F↓ and F↑ are the piecewise linear lower and
upper envelopes of F , respectively.

Fact 4.2 (Some properties of piecewise linear functions).

(i) If F is a set of linear functions, then F↓ is a piecewise
linear concave function and F↑ is a piecewise linear
convex function.

(ii) If f (x) and g(x) are piecewise linear concave functions,
then h(x) = min{ f (x),g(x)} is a piecewise linear con-
cave function such that p(h)≤ p( f )+ p(g).

(iii) If f (x) and g(x) are piecewise linear functions and
g(x) is monotone, then h(x) = f (g(x)) is a piecewise
linear function such that p(h)≤ p( f )+ p(g).

Proof. These facts and their proofs are inspired by (and
similar to) some of the observations made by [Foschini
et al., 2014, Lemma 2.1, Lemma 2.2].

(i) Linear functions are concave (convex), and the point-
wise minimum (maximum) of concave (convex) func-
tions is concave (convex).

(ii) Each piece of h corresponds to a unique piece of f or g.
Since h is concave, different pieces of h have different
slopes, corresponding to different pieces of f or g.

(iii) A break point is a point where two adjoining pieces of
a piecewise linear function meet. Note that each break
point of h can be mapped back to a break point of f or
a break point of g. As g is monotone, different break
points of h map to different break points of g.

We now prove the following key lemma.

Lemma 4.3. Let F and G be two sets of linear functions,
and let H = { f ◦g

∣∣ f ∈ F,g ∈ G}. Then

H↓(x) = min{F↓(G↓(x)),F↓(G↑(x))}; (4.4)
H↑(x) = max{F↑(G↓(x)),F↑(G↑(x))}; (4.5)
p(H↓)≤ 4p(F↓)+2p(G↓)+2p(G↑); (4.6)
p(H↑)≤ 4p(F↑)+2p(G↓)+2p(G↑). (4.7)

Proof. We will first show Equation 4.4. Since F is the set
of outer functions, it is easy to see that

H↓(x) = min
g:g∈G

F↓(g(x)). (4.8)

To get Equation 4.4 from Equation 4.8, we need to show that
the inner function g that minimizes H↓ is always either G↓
or G↑. Fix an x0 ∈ R. We will see which g ∈ G minimizes
F↓(g(x0)). Note that for every g ∈ G, we have G↓(x0) ≤
g(x0) ≤ G↑(x0). Thus, the input to F↓ is restricted to the
interval [G↓(x0),G↑(x0)]. Since F↓ is a concave function
(Fact 4.2 (i)), it achieves its minimum at either G↓(x0) or at
G↑(x0) within this interval. This shows Equation 4.4.

We will now show Equation 4.6 using Equation 4.4. Since
G↓ is a concave function, it has two parts: a first part where
it monotonically increases and a second part where it mono-
tonically decreases. In each part, the number of pieces in
F↓(G↓(x)) is at most p(F↓)+ p(G↓) (Fact 4.2 (iii)), which
gives a total of 2(p(F↓)+ p(G↓)). Similarly, since G↑ is a
convex function, it has two parts: a first part where it mono-
tonically decreases and a second part where it monotonically
increases. In each part, the number of pieces in F↓(G↑(x))
is at most p(F↓)+ p(G↑) (Fact 4.2 (iii)), which gives a total
of 2(p(F↓)+ p(G↑)). Combining these using Equation 4.4
and Fact 4.2 (ii), we obtain

p(H↓)≤ 2(p(F↓)+ p(G↓))+2(p(F↓)+ p(G↑))

= 4p(F↓)+2p(G↓)+2p(G↑).

We skip the proof of Equation 4.5 and its usage to prove
Equation 4.7 because it is along similar lines.

Using this lemma, we complete the proof of Theorem 4.1.

Proof of Theorem 4.1. It suffices to prove the theorem for
all positive integers n that are powers of 2. Let a,b,v be three
vertices of G and let k be a power of 2. Let Pv(a,b,k) be the
set of a-b paths P that pass through v such that the a-v sub-
path and the v-b subpath of P have at most k/2 edges each
(k is even number since it is a power of 2). Let P(a,b,k)
be the set of a-b paths that have at most k edges. Note that
P(a,b,k) =

⋃
v∈V Pv(a,b,k). Let fv(a,b,k) be the num-

ber of pieces in the piecewise linear lower envelope or the
piecewise linear upper envelope of Pv(a,b,k), whichever
is larger. Similarly, f (a,b,k) is the number of pieces in the
piecewise linear lower envelope or the piecewise linear up-
per envelope of P(a,b,k), whichever is larger. Note that



 every path that features in the lower envelope of P(a,b,k)
also features in the lower envelope of Pv(a,b,k), for some
v. Thus,

f (a,b,k)≤ ∑
v∈V

fv(a,b,k). (4.9)

Since G has n vertices, P(a,b,n) is simply the set of
all a-b paths. And since p(costG(x)) is the number of
pieces in the piecewise linear lower envelope of these
paths, p(costG(x)) ≤ f (a,b,n). Thus it suffices to show
that f (a,b,n)≤ nlogn+O(1). We will show, by induction on
k, that f (a,b,k)≤ (8n)logk. The base case, f (a,b,1)≤ 1, is
trivial. Now, let k > 1 be a power of 2. We will now show
the following recurrence.

fv(a,b,k)≤ 4( f (a,v,k/2)+ f (v,b,k/2)) (4.10)

Fix a vertex v ∈V . By induction, f (a,v,k/2)≤ (8n)log(k/2)

and f (v,b,k/2)≤ (8n)log(k/2). Note that for every path P ∈
Pv(a,b,k), we have cost(P)(x) = cost(P2)(cost(P1)(x)),
where P1 ∈P(a,v,k/2) and P2 ∈P(v,b,k/2). Thus we can
invoke Lemma 4.3 with F , G and H as the set of linear (path
cost) functions corresponding to the paths P(v,b,k/2),
P(a,v,k/2) and Pv(a,b,k), respectively. Applying Equa-
tion 4.6 and Equation 4.7, we get

fv(a,b,k)≤ 4 f (v,b,k/2)+2 f (a,v,k/2)+2 f (a,v,k/2),

which simplifies to Equation 4.10. Substituting Equa-
tion 4.10 in Equation 4.9, and using the fact that |V | = n,
we get the following.

f (a,b,k)≤ 4 ∑
v∈V

( f (a,v,k/2)+ f (v,b,k/2))

≤ 4n
(
(8n)log(k/2)+(8n)log(k/2)

)
= (4n) ·2 · (8n)log(k/2) = (8n)logk.

Thus, f (a,b,n)≤ (8n)logn = nlogn+3.

5 HARDNESS OF SCALAR GPP WITH
NON-LINEAR WEIGHTS

In this section, we show that it is NP-hard to approximate
scalar GPP, even if one of the edge weights is made piece-
wise linear while keeping all other edge weights linear.

Theorem 5.1. Let (G,W,L,x0) be a GPP instance with a
special edge e∗, where G has n vertices and we(x)= aex+be
for every edge e ∈ E(G) \ {e∗}, and we∗(x) is piecewise
linear with 2 pieces. Then it is NP-hard to find an s-t path
whose cost approximates the cost of the optimal s-t path in
G to within a constant, both additively and multiplicatively.

Note that Theorem 5.1 implies that Problem 1.3 with piece-
wise linear edge weights is NP-hard.

Proof of Theorem 5.1. We reduce from SET PARTITION, a
well-known NP-hard problem [Garey and Johnson, 1979,
Page 226]1. The SET PARTITION problem asks if a given
set of n integers A = {a0, . . . ,an−1} can be partitioned into
two subsets A0 and A1 such that they have the same sum.

We now explain our reduction. Let ε be the multiplicative
approximation factor and δ be the additive approximation
term. Given a SET PARTITION instance A = {a1, . . . ,an},
we multiply all its elements by the integer dδ +1e. Note
that this new instance can be partitioned into two subsets
having the same sum if and only if the original instance
can. Furthermore, after this modification, no subset of A has
sum in the range [−δ ,δ ], unless that sum is zero. Next, we
define a graph instantiated by the SET PARTITION instance.
Definition 5.2. Gn is a directed, acyclic graph on n + 1
vertices. The vertex set of Gn is {v0,v1, . . . ,vn}. For every
i ∈ {0,1, . . . ,n−1}, there are two edges from vi to vi+1
labelled by f0 and f1. The start vertex s is v0 and the last
vertex t is vn (see figure below). ♦

v0

f0

f1

v1

f0

f1

v2

f0

f1

v3

f0

f1

v4

Figure 3: The graph Gn for n = 4.

Definition 5.3. Each path of Gn can be denoted by a string
in {0,1}n, from left to right. For instance, if σ = (0101),
then the cost function fσ (x) of the path Pσ is given by

fσ (x) = f(0101)(x) = f1( f0( f1( f0(x)))).

Note that the innermost function corresponds to the first
edge of the path Pσ , and the outermost to the last (Figure 3).

♦

Consider the graph Gn+1. For each i ∈ {0,1, . . . ,n−1} and
each edge (vi,vi+1), the edge labelled by f0 has weight x+ai
and the edge labelled by f1 has weight x−ai. Both edges
from vn to vn+1 have weight |x| (and can be replaced by a
single edge e∗). Let A be an algorithm which solves Prob-
lem 1.3. We will provide Gn+1 and x0 = 0 as inputs to A ,
and show that A can be partitioned into two subsets having
the same sum if and only if A returns a path of cost 0.

Let σ = (σ0σ1 · · ·σn−1) ∈ {0,1}n. Let A1 be the subset of
A with characteristic vector σ , and let A0 = A\A1. The cost
of the path Pσ (Definition 5.3) from v0 to vn is

cost(Pσ )(x) = x+
n−1

∑
i=0

(−1)σiai = x+ ∑
ai∈A0

ai− ∑
ai∈A1

ai.

1A similar reduction can be found in [Nikolova et al., 2006,
Theorem 3].



 Now if we set the start time from vertex v0 as x = x0 = 0,
then we obtain the following.

cost(Pσ )(0) = 0 =⇒ ∑
ai∈A0

ai = ∑
ai∈A1

ai.

Let OPT be a shortest path in Gn+1 and Q be the path
returned by A at start time x = x0 = 0. The last edge from
vn to vn+1 (whose weight is |x|) ensures that OPT≥ 0. So,
if OPT= 0, then cost(Q)(0)≤ ε ·0+δ = δ .

Since every path of non-zero cost in Gn+1 has cost more
than δ , cost(Q)(0) = 0 if OPT = 0. Further, if OPT > 0,
then OPT≥ dδ +1e, and so A returns a path of cost more
than δ . Thus, A can be partitioned into two subsets having
the same sum if and only if A returns a path of cost 0.

Remark. Our reduction also works if we change the weight
of the last edge from |x| to x2, implying that scalar GPP with
polynomial functions is NP-hard, even if one of the edge
weights is quadratic and all other edge weights are linear.

6 LOWER BOUND FOR SCALAR PGPP
WITH NON-LINEAR WEIGHTS

In this section, we show that for the graph Gn defined in
the previous section (Definition 5.2) with a suitable choice
of the weight functions f0 and f1, the table size for PGPP
(Problem 1.3) can be exponential in n. Note that Gn has
exactly 2n paths from s to t. We will show that each of these
paths is a shortest s-t path, for some value of x. Thus, there
is a scalar GPP instance (G,W,L) for which the table size is
2Ω(n), needing log(2Ω(n)) = Ω(n) time for a table lookup.

Our proof is by induction on n. We define the functions f0
and f1 in such a way that their behaviour within the interval
[0,1] has some very special properties, stated in Lemma 6.1.
This enables us to show that the number of times the com-
positions of these functions achieve their minimum within
the interval [0,1] doubles every time n increases by one.

We need some notation before we can proceed. For a func-
tion f : R→ R, and a subset A ⊆ R, if B ⊇ f (A), then we
denote by f |A : A→B, the function defined by f |A(x)= f (x)
for every x ∈ A, also known as the restriction of f to A.

Lemma 6.1. Suppose f0, f1 : R→ R are functions such
that f0|[0,1/3] : [0,1/3] → [0,1] and f1|[2/3,1] : [2/3,1] →
[0,1] are bijective. Further, suppose | f0(x)| ≥ 1 for ev-
ery x ∈ (−∞,0]∪ [2/3,∞); and | f1(x)| ≥ 1 for every x ∈
(−∞,1/3]∪ [1,∞). Then, for every n≥ 1, there is a function
αn : {0,1}n→ (0,1) such that

(i) αn(σ) ∈ [0,1/3] if σ1 = 0;
(ii) αn(σ) ∈ [2/3,1] if σ1 = 1;

(iii) For every σ ,τ ∈ {0,1}n, αn(σ) = αn(τ)⇐⇒ σ = τ;
(iv) For every σ ,τ ∈ {0,1}n, fσ (αn(τ)) = 0⇐⇒ σ = τ .

Proof. As stated earlier, we prove this lemma by induction
on n. For the base case (n = 1), we define

α1(0) = ( f0|[0,1/3])
−1(0) & α1(1) = ( f1|[2/3,1])

−1(0).

First we check if α1 is well-defined and its range lies in
(0,1). To see that α1(0) and α1(1) are well-defined, note
that the inverses of the functions f0|[0,1/3] and f0|[0,1/3] are
well-defined because they are bijective. To see that the range
of α1 lies in (0,1), note that for x∈{0,1}, we have | f0(x)| ≥
1 and | f1(x)| ≥ 1, implying that they are both non-zero.
Thus, 0 < α1(x)< 1.

We now show that αn satisfies (i), (ii), (iii), (iv). Since
f0|[0,1/3] and f1|[2/3,1] are bijective, α1(0) ∈ [0,1/3] and
α1(1) ∈ [2/3,1]. Thus, α1 satisfies (i), (ii). Since these
intervals are disjoint, α1 satisfies (iii). Finally, note that
f0(α1(0)) = 0 = f1(α1(1)). Also, since | f0(x)| ≥ 1 for ev-
ery x ∈ [2/3,1] and | f1(x)| ≥ 1 for every x ∈ [0,1/3], both
f0(α1(1)) and f1(α1(0)) are non-zero. Thus, α1 satisfies
(iv). This proves the base case.

Induction step (n > 1): Assume that αn−1 : {0,1}n−1→
(0,1) has been defined, and that it satisfies (i), (ii), (iii), (iv).
We now define αn : {0,1}n → (0,1). Let σ ∈ {0,1}n be
such that σ = σ1σ ′, where σ1 ∈ {0,1} and σ ′ = σ2 · · ·σn ∈
{0,1}n−1. We define αn(σ) as follows.

αn(σ) =

{
( f0|[0,1/3])

−1(αn−1(σ
′)) if σ1 = 0

( f1|[2/3,1])
−1(αn−1(σ

′)) if σ1 = 1

More concisely,

αn(σ) = ( fσ1 |A)
−1(αn−1(σ

′)), (6.2)

where A = [0,1/3] when σ1 = 0 and A = [2/3,1] when
σ1 = 1, Note that αn is well-defined and its range lies in
(0,1) for the same reasons as explained in the base case. We
will now show that αn satisfies (i), (ii), (iii), (iv).

(i), (ii): By definition, ( f0|[0,1/3])
−1 : [0,1]→ [0,1/3] and

( f1|[2/3,1])
−1 : [0,1]→ [2/3,1]. Thus, αn satisfies (i), (ii).

(iii): Suppose σ = σ1σ ′ ∈ {0,1}n and τ = τ1τ ′ ∈ {0,1}n.
Clearly if σ = τ , then αn(σ) = αn(τ). This shows the⇐
direction. For the ⇒ direction, suppose αn(σ) = αn(τ).
Then the only option is σ1 = τ1, since otherwise one of
αn(σ),αn(τ) would lie in the interval [0,1/3] and the other
would lie in the interval [2/3,1]. Thus,

( fσ1 |A)
−1(αn−1(σ

′)) = ( fσ1 |A)
−1(αn−1(τ

′)),

where A= [0,1/3] when σ1 = 0 and A= [2/3,1] when σ1 =
1, Since ( fσ1 |A) is bijective, this means that αn−1(σ

′) =
αn−1(τ

′). Using part (iii) of the induction hypothesis, this
implies that σ ′ = τ ′. Thus, αn satisfies (iii).

(iv): Suppose σ = σ1σ ′ ∈ {0,1}n and τ = τ1τ ′ ∈ {0,1}n.



 Let us show the⇐ direction first. If σ = τ , then

fσ (αn(τ)) = fσ (αn(σ))

= fσ ′( fσ1(αn(σ))) (since σ = σ1σ
′)

= fσ ′( fσ1(( fσ1 |A)
−1(αn−1(σ

′)))) (Equation 6.2)

= fσ ′(( fσ1 ◦ ( fσ1 |A)
−1)(αn−1(σ

′)))

(function composition is associative)
= fσ ′(αn−1(σ

′)).

Using part (iv) of the induction hypothesis, we get
fσ ′(αn−1(σ

′)) = 0, which implies that fσ (αn(τ)) = 0. This
shows the⇐ direction.

For the⇒ direction, suppose fσ (αn(τ)) = 0. We have two
cases: σ1 = τ1 and σ1 6= τ1. We will show that σ = τ in the
first case, and that the second case is impossible. If σ1 = τ1,

0 = fσ (αn(τ)) = fσ ′( fσ1(( fτ1 |A)
−1(αn−1(τ

′))))

= fσ ′( fσ1(( fσ1 |A)
−1(αn−1(τ

′)))) = fσ ′(αn−1(τ
′)),

Using part (iv) of the induction hypothesis, fσ ′(αn−1(τ
′)) =

0⇒ σ ′ = τ ′, and thus σ = τ . This handles the case σ1 = τ1.
We will now show by contradiction that the case σ1 6= τ1 is
impossible.

Suppose σ1 6= τ1. Let σ1 = 0 and τ1 = 1 (the proof
for σ1 = 1 and τ1 = 0 is similar). Using the induc-
tion hypothesis, ( fτ1 |[2/3,1])

−1(αn−1(τ
′)) ∈ [2/3,1]. Since

| f0(x)| ≥ 1 for every x ∈ (−∞,0]∪ [2/3,∞), this means
that

∣∣ fσ1(( fτ1 |[2/3,1])
−1(αn−1(τ

′)))
∣∣ ≥ 1. Also note that if

|x| ≥ 1, then both | f0(x)| ≥ 1 and | f1(x)| ≥ 1. By repeatedly
applying this fact, it is easy to see that

| fσ (αn(τ))|
=
∣∣ fσn(· · ·( fσ1(( fτ1 |[2/3,1])

−1(αn−1(τ
′))) · · ·)

∣∣≥ 1.

We started with fσ (αn(τ)) = 0 and obtained | fσ (αn(τ))| ≥
1, which is clearly a contradiction. This completes the proof
of the⇒ direction, and thus αn satisfies (iv).

Figure 4: The functions f0 and f1.

Theorem 6.3. Consider the graph Gn. Define piecewise
linear functions f0, f1 : R→R as follows (see figure above).

f0(x)=

{
1−3x, if x≤ 1/3
3x−1, if x≥ 1/3

f1(x)=

{
2−3x, if x≤ 2/3
3x−2, if x≥ 2/3

For every n≥ 1 and σ ∈ {0,1}n, the cost function fσ of the
path Pσ is a unique piece in the lower envelope formed by
the cost functions { fσ}σ∈{0,1}n . Thus, the piecewise linear
shortest path cost function has 2n pieces.

Proof of Theorem 6.3. It is easy to check that f0 and f1
possess the conditions needed to invoke Lemma 6.1. Thus
for every n ≥ 1, there exists a function αn which satisfies
properties (i), (ii) and (iii) of Lemma 6.1.

Let n be a positive integer. Consider the graph Gn (Defi-
nition 5.2). Each path of Gn is indexed by a binary string
σ ∈ {0,1}n and has cost function fσ (Definition 5.3). Note
that f0(x)≥ 0, f1(x)≥ 0 for all x ∈ R. Thus fσ (x)≥ 0 for
all σ ∈ {0,1}n, x ∈ R.

Let σ ∈ {0,1}n. Using property (iii), fσ (α(σ)) = 0, and
fτ(α(σ)) > 0 for every σ 6= τ ∈ {0,1}n. Thus, the cost
function fσ of the path Pσ is a unique piece (which includes
the point αn(σ)) in the lower envelope formed by the cost
functions { fσ}σ∈{0,1}n .

Remark. The proof of Theorem 6.3 works for a quadratic
choice of the functions f0 and f1 as well. However, then the
degree of the composed functions blows up exponentially,
thereby making their bit complexity prohibitively large.

7 HARDNESS OF NON-SCALAR GPP
WITH LINEAR WEIGHTS

In this section, we show that non-scalar GPP is NP-hard.

Theorem 7.1. Let (G,W,L,x0) be a GPP instance, where
G has n vertices and each edge e of G is labelled by a
two dimensional vector we(x). The vertices s, t are labelled
by two dimensional vectors x0, t0, respectively. Then it is
NP-hard to compute an optimal s-t path in G.

Note that Theorem 7.1 implies that Problem 1.2 with param-
eter k = 2 is NP-hard.

Proof of Theorem 7.1. We reduce from PRODUCT PARTI-
TION problem, a well-known NP-hard problem (Ng et al.
[2010]). The problem is similar to the set partition problem,
except that products of the elements are taken instead of
their sums. Formally, the problem asks if a given set of n
positive integers A = {a1, . . . ,an} can it be partitioned into
two subsets A0 and A1 such that their product is the same.

We now explain our reduction. Given a PRODUCT PARTI-
TION instance A = {a1, . . . ,an}, consider the graph Gn+1



 (Definition 5.2). For every i ∈ {0,1, . . . ,n−1}, there are
two edges from vi to vi+1 labelled by matrices[

ai 0
0 a−1

i

]
and

[
a−1

i 0
0 ai

]
.

We label s by the vector x0 = [1,1]T and t by t0 = [−1,−1]T.
Let A be an algorithm which solves Problem 1.2 with pa-
rameter k = 2. We will provide Gn+1 as input to A , and
show that A can be partitioned into two subsets having the
same sum if and only if A returns a path of cost −2.

Let σ = (σ1 · · ·σn) ∈ {1,−1}n. Let A1 be the subset of A
with characteristic vector σ , and let A0 = A\A1. The cost
of the path Pσ (Definition 5.3) from v0 to vn is

cost(Pσ ) =
[
1 1

]
·
[

∏
n
i=1 aσi

i 0
0 ∏

n
i=1 a−1·σi

i

]
·
[
−1
−1

]
.

Evaluating this, we obtain cost(Pσ ) = −(a+ a−1), where
a = ∏

n
i=1 aσi

i = ∏ai∈A0
ai ·∏ai∈A1

a−1
i . Further, a = 1⇐⇒

∏ai∈A0
ai = ∏ai∈A1

ai.

Since a> 0, the AM-GM inequality implies that a+a−1 > 2
for every a 6= 1. Therefore,−(a+a−1)<−2 for every a 6= 1,
and so A can be partitioned into two subsets whose product
is the same if and only if A returns a path of cost −2.

8 CONCLUSION & DISCUSSION

We study Generalized Path Problems on graphs with para-
metric weights. We show that the problem is efficiently
solvable when the weight functions are linear, but becomes
intractable in general when they are piecewise linear.

We assume that the weight functions are deterministic and
fully known in advance. Modelling probabilistic and par-
tially known weight functions and proposing algorithms for
them is a direction for future work. Furthermore, we have
assumed that only one edge can be taken at a time, resulting
in an optimization over paths. This requirement could be
relaxed to study flows on graphs with parametric weights.
Though there is some literature on such models in route plan-
ning algorithms (Liebig et al. [2017]), results with rigorous
guarantees such as the ones we have presented are chal-
lenging to obtain. In such cases, heuristic algorithms with
empirical evaluation measures might be worth exploring.
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PLOTS

In this section, we exhibit the plots of all the s-t paths (Defi-
nition 5.3) in the graphs Gn (Definition 5.2) for the weight
functions f0, f1 (Theorem 6.3), for some small values of n.
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