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Abstract

Recent advances in convolutional neural networks
(CNNs) usually come with the expense of exces-
sive computational overhead and memory foot-
print. Network compression aims to alleviate this
issue by training compact models with compara-
ble performance. However, existing compression
techniques either entail dedicated expert design or
compromise with a moderate performance drop.
In this paper, we propose a novel structured spar-
sification method for efficient network compres-
sion. The proposed method automatically induces
structured sparsity on the convolutional weights,
thereby facilitating the implementation of the com-
pressed model with the highly-optimized group
convolution. We further address the problem of
inter-group communication with a learnable chan-
nel shuffle mechanism. The proposed approach can
be easily applied to compress many network archi-
tectures with a negligible performance drop. Exten-
sive experimental results and analysis demonstrate
that our approach gives a competitive performance
against the recent network compression counter-
parts with a sound accuracy-complexity trade-off.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have made signifi-
cant advances in a wide range of vision and learning tasks
[Russakovsky et al., 2015, Long et al., 2015]. However, the
performance gains usually entail a heavy computational cost,
which makes the deployment of CNNs on portable devices
difficult. To meet the memory and computational constraints
in real-world applications, numerous model compression
techniques have been developed.

*Xin-Yu Zhang (xinyuzhang@mail.nankai.edu.cn) and Kai
Zhao contribute equally to this work.

Existing network compression techniques are mostly based
on weight quantization [Chen et al., 2015, Courbariaux et al.,
2016, Rastegari et al., 2016, Wu et al., 2016], knowledge
distillation [Hinton et al., 2015, Chen et al., 2017, Yim et al.,
2017], or network pruning [Li et al., 2017, He et al., 2017,
Liu et al., 2017, Molchanov et al., 2019, Tang et al., 2020].
Weight quantization methods use low bit-width numbers
to represent weights and activations, which usually bring a
moderate performance degradation. Knowledge distillation
schemes transfer knowledge from a large teacher network to
a compact student network, which are typically susceptible
to the teacher/student network architectures [Mirzadeh et al.,
2020, Liu et al., 2019b]. Closely related to our work, net-
work pruning approaches reduce the model size by removing
a proportion of model parameters that are considered unim-
portant. Notably, filter pruning algorithms [Li et al., 2017,
Liu et al., 2017, Molchanov et al., 2019, Tang et al., 2020]
remove the entire filters and result in structured architec-
tures that can be readily incorporated into modern BLAS
libraries.

Identifying unimportant filters is critical to the filter pruning
methods. It is well-known that the weight norm can serve
as a good indicator of the corresponding filter importance
[Li et al., 2017, Liu et al., 2017]. Filters corresponding to
smaller weight norms are considered to contribute less to the
outputs. Furthermore, the L1 regularization can be used to
promote sparsity [Liu et al., 2017]. However, there are still
several issues in the existing pruning methods: 1) pruning a
large proportion of convolutional filters will result in severe
performance degradation; 2) pruning alters the input/out-
put feature dimensions, and thus meticulous adaptation is
required to handle network architectures with shortcut con-
nections (e.g., residual connections [He et al., 2016] and
dense connections [Huang et al., 2017]).

Before presenting the proposed method, we briefly intro-
duce the group convolution (GroupConv) [Russakovsky
et al., 2015], which plays an important role in this work.
For the vallina convolution operation, the output features
are densely-connected with the input features, while for the
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 GroupConv, the input features are equally split into several
groups and transformed within each group independently.
Essentially, each output channel is connected with only a
proportion of the input channels, which leads to sparse neu-
ron connections. Therefore, deep CNNs with GroupConvs
can be trained on less powerful GPUs with smaller amount
of memory.

In this work, we propose a novel approach for network com-
pression where unimportant neuron connections are pruned
to facilitate the usage of GroupConvs. Nevertheless, convert-
ing vallina convolutions into GroupConvs is a challenging
task. First, not all sparse neuron connectivities correspond
to valid GroupConvs, while certain requirements must be
satisfied, e.g., mutual exclusiveness of different groups. To
guarantee the desired structured sparsity, we impose struc-
tured regularization upon the convolutional weights and
zero out the sparsified weights. Another challenge is that
stacking multiple GroupConvs sequentially will hinder the
inter-group information flow. Zhang et al. [2018] propose
the ShuffleNet with a channel shuffle mechanism, i.e., gather-
ing channels from distinct groups, to ensure the inter-group
communication, though the order of permutation is hand-
crafted. However, we solve the problem of channel shuffle
in a learning-based scheme. Concretely, we formulate the
learning of channel shuffle as a linear programming problem,
which can be solved by efficient algorithms like the network
simplex method [Bonneel et al., 2011]. Since the structured
sparsity is induced among the convolutional weights, our
method is nominated as structured sparsification.

The proposed structured sparsification method is designed
for three goals. (a) Our approach can better handle those
network architectures with shortcut connections. A wide
range of backbone architectures are amenable to our method
without the need for any special adaptation. (b) Our method
is capable of achieving high compression rates. In modern
efficient network architectures, the complexity of 3 × 3
convolutions is highly compressed, while the computation
bottleneck becomes the point-wise convolutions (i.e., 1× 1
convolutions) [Zhang et al., 2018]. For example, the point-
wise convolutions occupy 81.5% of the total FLOPs in the
MobileNet-V2 [Sandler et al., 2018] backbone and 93.4%
in ResNeXt [Xie et al., 2017]. Our method is applicable to
all convolution operators so that a high compression rate is
reachable. (c) Our approach brings negligible performance
drop. As all filters are preserved under our methodology, we
retain stronger representational capacity of the compressed
model and achieve better accuracy-complexity trade-off than
the pruning-based counterparts (see Fig. 3).

The main contributions of this work are as follows.

• We propose a learnable channel shuffle mechanism
in which the permutation of the convolutional weight
norm matrix is learned via linear programming;

• We formulate a novel structured sparsification frame-

work for efficient network compression, which unifies
weight pruning, GroupConv, and the learnable channel
shuffle;

• The experimental results on the CIFAR-10 and Ima-
geNet datasets demonstrate that the proposed struc-
tured sparsification performs well against the concur-
rent filter pruning approaches with a balanced trade-off
of accuracy and complexity.

2 RELATED WORK

Network Compression. Compression methods for deep
models can be broadly categorized based on weight quanti-
zation, knowledge distillation, or network pruning. Closely
related to our work are the network pruning approaches
based on filter pruning. It is well-acknowledged that filters
with smaller weight norms are considered to make negligi-
ble contribution to the outputs and can be pruned. Li et al.
[2017] prune filters according to the L1 norm of the convo-
lutional weights, while Liu et al. [2017] prune models with
batch normalization [Ioffe and Szegedy, 2015] by removing
the channels with smaller batch-norm scaling factors. An
L1 regularization term is further imposed on these scaling
factors to promote sparsity.

However, removing those filters corresponding to smaller
weight norms may significantly reduce the representational
capacity. Instead, we propose a structured sparsification
method that enforces structured sparsity among neuron con-
nections and merely removes certain unimportant connec-
tions while the entire filters are preserved. As a result, the
network capacity is less affected than the pruning-based
approaches [Li et al., 2017, Liu et al., 2017, Molchanov
et al., 2019, Tang et al., 2020]. Furthermore, our method
does not alter the input/output dimensions, and can be easily
incorporated into numerous backbones.

Group Convolution. Group convolution (GroupConv) is
introduced in the AlexNet [Russakovsky et al., 2015] to
overcome the GPU memory constraints. GroupConv par-
titions the input features into mutually exclusive groups
and transforms the features within each group in parallel.
Compared with the vallina (i.e., densely connected) convo-
lution, a GroupConv with G groups can reduce the computa-
tional cost and number of parameters by a factor of G. The
ResNeXt [Xie et al., 2017] designs a multi-branch architec-
ture by employing GroupConvs and defines the cardinality
as the number of parallel transformations, which is simply
the group number in each GroupConv. If the cardinality
equals to the number of channels, GroupConv becomes the
depthwise separable convolution, which is widely used in
recent lightweight neural architectures [Howard et al., 2017,
Sandler et al., 2018, Zhang et al., 2018, Ma et al., 2018,
Chollet, 2017].

However, the aforementioned methods all treat the cardi-



 nality as a hyper-parameter, and the connectivity patterns
between consecutive features are hand-crafted as well. On
the other hand, there is also a line of research focusing on
learnable GroupConvs [Huang et al., 2018, Wang et al.,
2019, Zhang et al., 2019]. Both CondenseNet [Huang et al.,
2018] and FLGC [Wang et al., 2019] pre-define the cardinal-
ities of GroupConvs and learn the connectivity patterns. We
note that the work by Zhang et al. [2019] learns the cardi-
nality and neuron connectivity simultaneously. Essentially,
this dynamic grouping convolution is modeled by a binary
relationship matrix U where Uji indicates the connectivity
between the ith input channel and the jth output channel. To
guarantee that the resulting operator is a valid GroupConv,
the relationship matrix is constructed using a Kronecker
product of several binary symmetric 2× 2 matrices, which
is a sufficient but unnecessary condition. Consequently, the
space of all valid GroupConvs is not fully exploited.

In contrast to the prior art [Zhang et al., 2019], our method
can learn the optimal connection over all possible neuron
connectivity patterns, thus resulting in better model struc-
tures and performance. The connection between two layers
is represented by the composition of a permutation matrix
(over the permutation set) and the convolutional weights.
The importance of each neuron connection is quantified by
the corresponding entry of the weight norm matrix.

Channel Shuffle Mechanism. The ShuffleNet [Zhang
et al., 2018] combines the channel shuffle mechanism with
GroupConv for efficient network design, in which channels
from different groups are gathered so as to facilitate the
inter-group communication. Without channel shuffle, stack-
ing multiple GroupConvs will eliminate the information
flow among different groups and weaken the representa-
tional capacity. Different from the hand-crafted counterpart
[Zhang et al., 2018], the proposed channel shuffle operation
is learnable over the space of all possible channel permuta-
tions. Furthermore, without bells and whistles, our channel
shuffle only involves a simple permutation along the channel
dimension, which can be conveniently implemented by an
index operation.

Neural Architecture Search. Neural Architecture
Search (NAS) [Zoph and Le, 2017, Baker et al., 2017,
Zoph et al., 2018, Real et al., 2019, Wu et al., 2019] aims
to automate the process of designing neural architectures
within certain budgets of computational resources. Existing
NAS algorithms are developed based on reinforcement
learning [Zoph and Le, 2017, Baker et al., 2017, Zoph
et al., 2018], evolutionary search [Real et al., 2019],
and differentiable approaches [Liu et al., 2019a, Wu
et al., 2019]. Our method can be viewed as a special
case of hyper-parameter (i.e., cardinality) optimization
and neuron connectivity search. However, different from
existing approaches evaluated on numerous architectures,
the proposed method can determine the compressed

architecture in one single training pass. We highlight that
the efficiency of our approach is in accordance with the aim
of neural architecture search.

3 STRUCTURED SPARSIFICATION

3.1 OVERVIEW

The structured sparsification method is designed to zero
out a proportion of the convolutional weights so that the
vanilla convolutions can be structured into group convolu-
tions (GroupConvs) via a learned permutation matrix. We
adopt the “train, compress, finetune” pipeline, in a way
similar to the recent pruning approaches [Liu et al., 2017].
Concretely, we first train a large model under the struc-
tured regularization, then compress vanilla convolutions into
GroupConvs under a certain criteria, and finally finetune the
compressed model to recover accuracy. To this end, three
issues need to be addressed: 1) how to learn the connectivity
patterns (Sec. 3.2); 2) how to design the structured regular-
ization (Sec. 3.3); 3) how to decide the grouping criteria
(Sec. 3.4). Additional details of our pipeline are presented
in Sec. 3.5.

3.2 LEARNING CONNECTIVITY WITH LINEAR
PROGRAMMING

Let F ∈ RC in×H×W be the input feature map, where C in

denotes the number of input channels. We apply a vallina
convolution1 with weights W ∈ RCout×C in×K×K to F ,
i.e., O = W ∗ F , where O ∈ RCout×H×W with Cout de-
noting the number of output channels. Each entry of O is a
weighted sum of a local patch of F , namely,

Oj,p,q =
∑
i,k,l

Wj,i,k,lFi,p+k,q+l. (1)

In Eq. (1), the ith channel of F relates to the jth channel
of O via weights Wj,i,:,:. Motivated by the norm-based
importance estimation in filter pruning [Li et al., 2017, Liu
et al., 2017], we quantify the importance of the connection
between Fi and of Oj by ‖Wj,i,:,:‖. Thus, the importance
matrix S ∈ RCout×C in

can be defined as the norm along the
“kernel size” dimensions of W , i.e., Sj,i = ‖Wj,i,:,:‖.

Next, we extend our formulation to GroupConvs with cardi-
nality G. A GroupConv can be considered as a convolution
with sparse neuron connectivity, in which only a proportion
of input channels is visible to each output channel. Without
loss of generality, we assume both C in and Cout are divisible

1For simplicity, we omit the bias term from Eq. (1), and assume
the convolution operator is of stride 1 with proper paddings.
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Figure 1: Illustration of the learnable channel shuffle mechanism. The original convolutional weights (first column) are
shuffled along the input/output channel dimensions in order to solve Eq. (4). The structured regularization is imposed upon
the permuted weight norm matrix (second column) to promote the structured sparsity, and connections with small weight
norms are discarded (third column). In the original ordering of channels, a structurally sparse connectivity pattern is learned
(fourth column), and notably every valid connectivity pattern can be possibly reached in this manner.

by G, and Eq. (1) can be adapted as

Oj,p,q =

nm∑
i=(n−1)m+1

∑
k,l

Wj,i,k,lFi,p+k,q+l, (2)

where n = ceil(jG/Cout) indicates the jth output channel
belongs to the nth group, and m = C in/G is the number of
input channels within each group. Clearly, the valid entries
of W form a block diagonal matrix with G equally-split
blocks at the input/output channel dimensions. Thus, the
GroupConv module requires C inCoutK2/G parameters and
C inCoutK2HW/G FLOPs for processing the feature F ,
and the computational complexity is reduced by a factor of
G compared with the vanilla counterpart.

We note that if a vanilla convolution operator can be con-
verted into GroupConv without affecting its functional prop-
erty (we call such convolution operators groupable), the
convolutional weights W must be block diagonal after cer-
tain permutations along the input/output channel dimensions.
Due to the positive definiteness property of the norm, a nec-
essary and sufficient condition of a convolution operator W
being groupable is that

∃P ∈ PCout
and Q ∈ PC in

,

s.t. PSQ is block diagonal with equally-split blocks,
(3)

where PN denotes the set of N ×N permutation matrices.
Here, the permutation matrices P and Q shuffle the chan-
nels of the input and output features, and thus determine the
connectivity pattern between F and O (see Fig. 1).

However, a randomly initialized and trained convolution
operator by no means can be groupable unless sparsity con-

straints are imposed. To this end, we resort to permuting S
so as to make S′ = PSQ “as block diagonal as possible”.
The next question is how to rigorously characterize the term
“as block diagonal as possible”. Here, we assume both C in

and Cout are powers of 2, where the most widely-used back-
bone architectures (e.g., VGG [Simonyan and Zisserman,
2015] and ResNet [He et al., 2016]) satisfy this assumption2.
Then, the potential cardinality is also a power of 2. As the
cardinality grows, more and more non-diagonal blocks are
zeroed out (see Fig. 2(c)). As illustrated in Fig. 2(b), we
define the cost matrix R to progressively penalize the non-
zero entries of the non-diagonal blocks. Finally, we utilize
S′ ⊗R as a metric of the “block-diagonality” of the ma-
trix S′, where ⊗ indicates element-wise multiplication and
summation over all entries, i.e., A ⊗B =

∑
i,j Ai,jBi,j .

Therefore, we can give the optimal connectivity pattern
between the adjacent layers by optimizing the following:

min
P ,Q

PSQ⊗R

s.t. P ∈ PCout
and Q ∈ PC in

.
(4)

However, the optimization over the set of permutation ma-
trices is a non-convex and NP-hard problem, which requires
combinatorial search. To overcome the difficulty, we re-
lax the feasible space to its convex hull and alternatively
optimize P and Q. The Birkhoff-von Neumann theorem
[Birkhoff, 1946] states that the convex hull of the set of per-
mutation matrices is the set of doubly-stochastic matrices3,

2Similar reasoning can be applied if both C in and Cout have
many factors of 2. (See appendix A in the supplementary material.)

3Doubly-stochastic matrices are non-negative square matrices
whose rows and columns sum to one.
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Figure 2: Illustration of the structured regularization matrix
Rg and the relationship matrix Ug corresponding to the
group level g. (a) Heat map of the permuted weight norm
matrix S′. Non-diagonal blocks of the weight norm are
sparsified. (b) Structured regularization matrix Rg . The reg-
ularization coefficient decays exponentially as the group
level grows. A special case of the decay rate of 0.5 is
demonstrated. Besides, the matrix Rg depends on the cur-
rent group level g, and when the maximal possible group
level is achieved, the matrix Rg becomes the cost matrix
R in Eq. (4); (c) Relationship matrix Ug. The entries of
the permuted weight norm matrix corresponding to the zero
entries of the relationship matrix will be zeroed out during
grouping.

known as the Birkhoff polytope:

BN = {X ∈ RN×N
+ : X1N = 1N , X

>1N = 1N}, (5)

where 1N denotes the column vector composed of N ones.
Then, we alternatively optimize P and Q on the Birkhoff
polytope until convergence. For example, when optimizing
P , the objective can be formulated as follows:

min
P

P ⊗RQ>S>

s.t. P ∈ BC
out
.

(6)

Similarly, we can have the objective for optimizing Q.

Note that the Birkhoff polytope is a simplex. Therefore, the
linear programming problem in Eq. (6) can be solved by
efficient linear programming algorithms such as the network
simplex method [Bonneel et al., 2011]. In addition, the

theory of linear programming guarantees that at least one
of the solutions is achieved at the vertex of the simplex,
and the vertices of the Birkhoff polytope are precisely the
permutation matrices [Birkhoff, 1946]. Thus the solution to
Eq. (6) is a naturally a permutation matrix without the need
of any post-processing operation. Furthermore, Eq. (6) can
be viewed equivalently as the optimal transport problem,
where an established computation library4 is available for
efficient linear programming.

3.3 STRUCTURED REGULARIZATION

Permutation alone does not suffice to induce structurally
sparse convolutional weights, and we still need to impose a
sparsity regularization to achieve the desired sparsity struc-
ture. Inspired by the sparsity-inducing penalty in Liu et al.
[2017], we impose the structured L1 regularization on the
permuted weight norm S′ = PSQ. Since the cardinality
should be a power of 2, suppose cardinality = 2g−1 and
here g is defined as the group level, as shown in Fig. 2.
Given the group level g, the structured L1 regularization
is formulated as5 Lreg = S′ ⊗Rg, where Rg denotes the
structured regularization matrix as illustrated in Fig. 2(b).
Intuitively, the proposed structured regularization aims to
zero out the non-diagonal entries so as to make the permuted
weight norm matrix S′ as much sparsified as possible. Fur-
thermore, the regularization coefficient decays exponentially
as the group level grows as we desire balanced cardinality
distribution among the network. In the end, the overall loss
becomes

L = Ldata + λLreg, (7)

where Ldata denotes the regular data loss (standard clas-
sification loss in the following experiments) and λ is the
balancing scalar coefficient.

3.4 CRITERIA OF LEARNING CARDINALITY

As the sparsity changes during the training process, we
need to determine the cardinality based on the structurally
sparsified convolutional weights. Since the weight norms
corresponding to the valid connections constitute at least
a certain proportion of the total weight norms, we set a
threshold p to determine the group level g. Motivated by
Zhao et al. [2020], the group level g can be determined by

g = max{g : S′ ⊗Ug ≥ p
∑
i,j

Si,j , g = 1, 2, · · · }, (8)

where p is a threshold set to 0.9 in all of the experiments and
Ug is the relationship matrix [Zhang et al., 2019] as illus-

4https://github.com/rflamary/POT/
5For simplicity, we here compute the regularization of a single

convolutional layer. In the experiments, the regularization is the
summation of those of all the convolution layers.

https://github.com/rflamary/POT/


 Algorithm 1: Training Pipeline.
Initially update the permutation matrices P and Q.
for t := 1 to #epochs do

Train for 1 epoch with the structured regularization;
Solve Eq. (4) to update the matrices P and Q;
Determine the current group levels g by Eq. (8);
Update the structured regularization matrices;
Adjust the coefficient λ.

end

trated in Fig. 2(c) and specifies the valid neuron connections
at group level g.

3.5 IMPLEMENTATION DETAILS

Overall Configuration. Our implementation is based on
the PyTorch library [Paszke et al., 2019]. The proposed
method is applied to the ResNet [He et al., 2016] and
DenseNet [Huang et al., 2017] families, and evaluated on
the CIFAR-10 [Krizhevsky et al., 2009] and ImageNet [Rus-
sakovsky et al., 2015] datasets. For the CIFAR-10 dataset,
we follow the common practice of data augmentation [He
et al., 2016, Liu et al., 2017, Xie et al., 2017]: zero-padding
of 4 pixels on each side of the image, random crop of a
32× 32 patch, and random horizontal flip. For fair compar-
isons, we utilize the same network architecture as Liu et al.
[2017], and the model is trained on a single GPU with a
batch size of 64. For the ImageNet dataset, we adopt the
standard data augmentation strategy [Simonyan and Zisser-
man, 2015, He et al., 2016, Xie et al., 2017]: image resize
such that the shortest edge is of 256 pixels, random crop of
a 224× 224 patch, and random horizontal flip. The overall
batch size is 256, which is distributed to 4 GPUs. For both
datasets, we employ the SGD optimizer with momentum
0.9.

Training Protocol. For the first stage, we train a large
model from scratch with the structured regularization as de-
scribed in Sec. 3.3. At the end of each epoch, we update the
permutation matrices as in Sec. 3.2, determine the current
group levels as in Sec. 3.4, adjust the structured regulariza-
tion matrices accordingly, and search for the coefficient λ
to meet the desired compression rate as shown in the sup-
plementary material (see appendix B). We train with a fixed
learning rate of 0.1 for 100 epochs on the CIFAR-10 dataset
and 60 epochs on the ImageNet dataset and exclude the
weight decay due to the existence of the structured regular-
ization. The training pipeline is summarized in Alg. 1.

Finetune Protocol. The remaining parameters are re-
stored from the training stage and the compressed model is
finetuned with an initial learning rate of 0.1. We finetune for
160 epochs on the CIFAR-10 dataset and the learning rate
decays by a factor of 10 at 50% and 75% of the total epochs.

Table 1: Network compression results on the CIFAR-10
[Krizhevsky et al., 2009] dataset. “Baseline” means the net-
work without compression. The percentages in our method
indicate the compression rate (measured by the reduction
of “#Params.”), while those in other methods indicate the
pruning ratio.

Methods #Params.(105) ↓ FLOPs (107) ↓ Acc.(%) ↑

ResNet-20
Baseline 2.20 3.53 91.70 (±0.12)
Slimming-40% 1.91 (±0.00) 3.10 (±0.02) 91.74 (±0.35)
StrucSpars-20% 1.76 (±0.00) 3.18 (±0.07) 91.79 (±0.23)
Slimming-60% 1.36 (±0.02) 2.24 (±0.01) 89.68 (±0.38)
StrucSpars-40% 1.31 (±0.01) 2.58 (±0.00) 91.42 (±0.04)

ResNet-56
Baseline 5.90 9.16 93.50 (±0.19)
Slimming-60% 4.15 (±0.03) 5.75 (±0.10) 93.10 (±0.25)
StrucSpars-30% 4.08 (±0.05) 7.17 (±0.20) 94.19 (±0.16)
StrucSpars-50% 2.96 (±0.03) 4.81 (±0.03) 93.70 (±0.06)
Slimming-80% 2.33 (±0.04) 3.50 (±0.02) 91.01 (±0.02)
StrucSpars-60% 2.34 (±0.08) 4.20 (±0.08) 93.48 (±0.13)
StrucSpars-70% 1.80 (±0.00) 3.52 (±0.16) 93.25 (±0.02)

ResNet-110
Baseline 11.47 17.59 94.62 (±0.22)
Slimming-40% 9.24 (±0.03) 12.55 (±0.00) 94.49 (±0.12)
StrucSpars-20% 9.12 (±0.06) 14.76 (±0.02) 94.78 (±0.11)
StrucSpars-40% 6.69 (±0.24) 11.60 (±0.01) 94.55 (±0.18)
Slimming-60% 8.15 (±0.03) 10.66 (±0.00) 94.29 (±0.11)
StrucSpars-30% 7.89 (±0.03) 12.47 (±0.01) 94.69 (±0.08)
StrucSpars-60% 5.41 (±0.02) 10.66 (±0.01) 94.42 (±0.04)

On the ImageNet dataset, the learning rate is decayed ac-
cording to the cosine annealing strategy [Loshchilov and
Hutter, 2017] within 120 epochs. For both datasets, a stan-
dard weight decay of 10−4 is adopted to prevent overfitting.

4 EXPERIMENTS AND ANALYSIS

In this section, we present the experimental results on the
CIFAR-10 and ImageNet datasets. In addition, we carry
out ablation studies to demonstrate the effectiveness of
components of the proposed method. Please refer to ap-
pendix C in the supplementary material for more detailed
experimental results, and our source codes are available at
https://github.com/Sakura03/StrucSpars.

4.1 RESULTS ON CIFAR-10

We first compare our proposed method with the Network
Slimming [Liu et al., 2017] approach on the CIFAR-10
dataset. The Network Slimming approach is a representative
filter pruning method that compresses CNNs by pruning
less important filters. As the experimental results on the

https://github.com/Sakura03/StrucSpars


 CIFAR-10 dataset are somewhat random, we repeat the
train-compress-finetune pipeline for 10 times and record the
mean and standard deviation (std). As shown in Tab. 1, the
proposed structured sparsification performs favorably under
various compression rates. For ResNet-110, with 60% pa-
rameters compressed, the structured sparsification can still
achieve a 94.42% top-1 accuracy which is nearly equal to the
performance of the baseline method without compression.
Compared with the Network Slimming, our method consis-
tently performs better, especially under high compression
rates. Experiments on the CIFAR-10 dataset demonstrate
that our method is able to compress CNNs with negligible
performance drop and favorable accuracy against pruning
methods such as Network Slimming.

4.2 RESULTS ON IMAGENET

Tab. 2 shows the evaluation results of the proposed method
against the recent representative network pruning ap-
proaches, including ThiNet [Luo et al., 2017], Slimming
[Liu et al., 2017], NISP [Yu et al., 2018], BN-ISTA [Ye et al.,
2018], FPGM [He et al., 2019], Taylor [Molchanov et al.,
2019], ABCPrunner [Lin et al., 2020b], HRank [Lin et al.,
2020a], Hinge [Li et al., 2020], DMC [Gao et al., 2020],
DSA [Ning et al., 2020], and SCOP [Tang et al., 2020].
Overall, the structured sparsification method performs fa-
vorably against the previous network compression methods
under different settings. These performance gains achieved
by our method can be attributed to the fact that discarding
the entire filters will negatively affect the representational
strength of the network model, especially when the pruning
ratio is high, e.g., 50%. In contrast, our method removes
only a proportion of neuron connections and preserves all
of the filters, thereby making a mild impact on the model
capacity. In addition, it is known that pruning neuron con-
nections would eliminate the information flow and affect
performance. To alleviate this issue, the learnable channel
shuffle mechanism assists the information exchange among
different groups, thereby minimizing the potential negative
impact.

4.3 ABLATION STUDIES

Accuracy v.s. Complexity. As shown in Fig. 3, the pro-
posed structured sparsification is designed to make sound
accuracy-complexity trade-off. On the ImageNet [Rus-
sakovsky et al., 2015] dataset, a slight top-1 accuracy drop
of 0.28% is compromised for about 25% complexity re-
duction on the ResNet-50 backbone, and an accuracy loss
of 1.02% for about 60% reduction on ResNet-101. Fur-
thermore, high compression rates can be achieved in our
methodology while maintaining competitive performance.
It is worth noticing that our method achieves an accuracy of
72.47% with only about 20% complexity of the ResNet-50
backbone, which performs favorably against the pruning

Table 2: Network compression results on the ImageNet [Rus-
sakovsky et al., 2015] dataset. The center-crop validation
accuracy is reported. “Baseline” means the network without
compression. The percentages in the table have the same
meaning as those in Tab. 1.

Methods #Params.(106) ↓ GFLOPs ↓ Acc.(%) ↑
ResNet-50

Baseline 25.6 4.14 77.10
NISP-A 18.6 ≈2.97 72.75
Slimming-20% 17.8 2.81 75.12
Taylor-19% 17.9 2.66 75.48
FPGM-30% N/A 2.39 75.59
StrucSpars-35% 17.2 3.12 76.82
ThiNet-30% 16.9 ≈2.62 72.04
NISP-B 14.3 ≈2.29 72.07
ABCPrunner-80% 11.8 1.89 73.86
Taylor-28% 14.2 2.25 74.50
DSA-50% N/A 2.07 74.69
Hinge-46% N/A ≈1.93 74.70
FPGM-40% N/A 1.93 74.83
HRank-36% 16.2 2.30 74.98
StrucSpars-65% 10.3 1.67 75.10
ThiNet-50% 12.4 ≈1.83 71.01
Taylor-44% 7.9 1.34 71.69
HRank-46% 13.8 1.55 71.98
Slimming-50% 11.1 1.87 71.99
StrucSpars-85% 5.6 0.90 72.47

ResNet-101
Baseline 44.5 7.87 78.64
FPGM-30% N/A 4.55 77.32
Taylor-25% 31.2 4.70 77.35
StrucSpars-40% 26.7 5.05 78.16
BN-ISTA-v1 17.3 3.69 74.56
BN-ISTA-v2 23.6 4.47 75.27
ABCPrunner-80% 17.7 3.16 75.82
Taylor-45% 20.7 2.85 75.95
Slimming-50% 20.9 3.16 75.97
SCOP-B 18.8 3.13 77.36
DMC-56% N/A 3.46 77.40
StrucSpars-65% 16.5 2.98 77.62
Taylor-60% 13.6 1.76 74.16
ABCPrunner-50% 12.9 1.98 74.76
StrucSpars-80% 10.6 1.70 75.73

DenseNet-201
Baseline 20.0 4.39 77.88
Taylor-40% 12.5 3.02 76.51
StrucSpars-38% 13.1 3.53 77.43
Taylor-64% 9.0 2.21 75.28
StrucSpars-60% 9.2 2.10 75.86

methods with two times complexity.

Learned Channel Shuffle Mechanism. We evaluate the
effectiveness of our learned channel shuffle mechanism on
the ResNet backbone with a compression rate of 65%. We
use the following five settings for performance evaluation:

1. FINETUNE: The preserved parameters after compression
are restored and the compressed model is finetuned. For
the other four settings, the parameters of the compressed
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Figure 3: Accuracy-complexity Trade-off on the Ima-
geNet [Russakovsky et al., 2015] dataset. (Upper left is
better.)

model are re-initialized for the finetune stage.
2. FROMSCRATCH: We keep the learned channel connec-

tivity, i.e., P and Q, from the training stage, and train
the model from randomly re-initialized weights.

3. SHUFFLENET: The same channel shuffle operation in
the ShuffleNet [Zhang et al., 2018] is adopted. Specifi-
cally, if a convolution is of cardinality G and has G×N
output channels, then the channel shuffle operation is
equivalent to reshaping the output channel dimension
into (G,N), transposing and flattening it back. Com-
pared with SHUFFLENET, the way of channel shuffle is
learned rather than pre-defined in our method, i.e., FINE-
TUNE and FROMSCRATCH.

4. RANDOM: The permutation matrices P and Q are ran-
domly given, independent of the training process.

5. NOSHUFFLE: The channel shuffle operations are re-
moved, i.e., P and Q are identity matrices.

The results are demonstrated in Tab. 3. First, the finetuned
models perform slightly better than those trained from
scratch, which implies that the preserved parameters take
an essential role in the final performance. Furthermore, the
model with learned channel shuffle mechanism, i.e., neu-
ron connectivity, performs the best among all settings. The
channel shuffle mechanism in the ShuffleNet [Zhang et al.,
2018] is effective as it outperforms the no-shuffle counter-

Table 3: Ablation study of different channel shuffle opera-
tions on the ImageNet dataset [Russakovsky et al., 2015].

Config. ResNet-50-65% ResNet-101-65%

Acc. Top-1 Top-5 Top-1 Top-5

FINETUNE 75.10 92.52 77.62 93.72
FROMSCRATCH 75.02 92.46 77.14 93.53
SHUFFLENET 74.97 92.41 76.91 93.38
RANDOM 69.45 89.45 73.16 91.44
NOSHUFFLE 73.30 91.39 75.31 92.64

Table 4: Wall-time acceleration of the structured sparsifica-
tion method.

Model GFLOPs Avg. Runtime (ms) FPS

ResNet-50 4.14 80.2 12.4
StrucSpars-35% 3.12 68.2 14.7
StrucSpars-65% 1.67 61.3 16.3
StrucSpars-85% 0.90 53.5 18.7

part. However, it can be further improved by a learning-
based strategy. Interestingly, the random channel shuffle
scheme performs the worst, even worse than the no-shuffle
scheme. This implies that learning the channel shuffle opera-
tion is a challenging task, and randomly gathering channels
from different groups gives no benefits.

Wall-time Acceleration We measure the wall-time of the
ResNet-50 backbone and the compressed variants on a
single core of the Intel E5-2603 v4@1.70GHz CPU. As
in Tab. 4, we report the average runtime and the frames
per second (FPS) of different models when processing the
224× 224 images. It can be seen that our method can result
in actual wall-time acceleration in the real-world scenarios.

5 FUTURE WORK

We discuss three potential directions for future work along
the line of our work.

(i) Data-Driven Structured Sparsification. In this work, the
structured regularization is uniformly imposed on the
convolutional weights, thus the learned cardinality dis-
tribution is prone to uniformity. Besides, the structured
regularization is calculated independently of the data
loss (see Eq. (7)), so the gradients of the structured reg-
ularization are not guided by the task information, thus
leading to task-agnostic cardinalities of the compressed
models. Nevertheless, it is possible to obtain model
structures with better performance if the structured reg-
ularization could be guided by the back-propagated
signals of the data loss. The optimization-based meta-
learning techniques [Finn et al., 2017] can be exploited
for this purpose.

(ii) Progressive Sparsification Solution. Typically, finetune-
free compression techniques are desired in practical
applications [Cheng et al., 2018]. Therefore, the spar-
sified weights can be removed progressively during
training, and the architecture search as well as model
training can be completed in a single training pass.

(iii) Combination with Filter Pruning Techniques. As the
entire feature maps are reserved in our approach, the
reduction of memory footprint is limited. This issue
can be addressed by combining with the filter pruning



 techniques, which is non-trivial as uniform filter prun-
ing is required within each group. It is of great interest
to exploit group sparsity constraints [Yoon and Hwang,
2017] to achieve such uniform sparsity.

6 CONCLUSION

In this work, we propose a structured sparsification method
for efficient network compression, where the structurally
sparse representations of the convolutional weights are in-
duced and the inter-group information flow is facilitated
by the learnable channel shuffle. The compressed model
can be readily incorporated in modern deep learning frame-
works thanks to their support for the group convolution. The
proposed approach is flexible with special network struc-
tures and highly compressible with negligible performance
degradation, as validated on the CIFAR-10 and ImageNet
datasets.
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