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Abstract

Action-constrained reinforcement learning (RL)
is a widely-used approach in various real-world
applications, such as scheduling in networked sys-
tems with resource constraints and control of a
robot with kinematic constraints. While the exist-
ing projection-based approaches ensure zero con-
straint violation, they could suffer from the zero-
gradient problem due to the tight coupling of the
policy gradient and the projection, which results in
sample-inefficient training and slow convergence.
To tackle this issue, we propose a learning algo-
rithm that decouples the action constraints from
the policy parameter update by leveraging state-
wise Frank-Wolfe and a regression-based policy
update scheme. Moreover, we show that the pro-
posed algorithm enjoys convergence and policy
improvement properties in the tabular case as well
as generalizes the popular DDPG algorithm for
action-constrained RL in the general case. Through
experiments, we demonstrate that the proposed al-
gorithm significantly outperforms the benchmark
methods on a variety of control tasks.

1 INTRODUCTION

Action-constrained reinforcement learning (RL) is a popular
approach for sequential decision making in real-world sys-
tems. One classic example is maximizing the network-wide
utility by optimally allocating the network resource under
capacity constraints (Xu et al., 2018; Gu et al., 2019; Zhang
et al., 2020a). Another example is robot control under kine-
matic constraints (Pham et al., 2018; Gu et al., 2017; Jaillet
and Porta, 2012; Tsounis et al., 2020), which capture the lim-
itations of the physical components of a robot (e.g., in terms
of velocity, torque, or output power). In these examples, the
constraints essentially characterize the set of feasible ac-

tions at each state. To ensure the safe and normal operation
of these real-world systems, it is required that these action
constraints are satisfied throughout the evaluation as well as
the training processes (Chow et al., 2018; Liu et al., 2020a;
Gu et al., 2017). Therefore, in action-constrained RL, an
effective training algorithm is required to achieve the fol-
lowing two tasks simultaneously: (i) iteratively improving
the policy and (ii) ensuring zero constraint violation at each
training step.

To enable RL with action constraints, one popular generic
approach is to include an additional differentiable projec-
tion layer at the output of the policy network and follow the
standard end-to-end policy gradient approach (Pham et al.,
2018; Dalal et al., 2018; Bhatia et al., 2019). While being a
general-purpose solution, this projection layer could result
in the zero-gradient issue during training due to the tight
coupling of the policy gradient update and the projection
layer. Specifically, zero gradient occurs when the original
output of the policy network falls outside of the feasible
action set and any small perturbation of the policy param-
eters does not lead to any change in the final output action
due to the projection mechanism. To better understand the
zero-gradient issue, let us consider a toy example of a policy
network with one hidden layer and a linear output layer used
to produce a deterministic scalar action. Suppose the actions
are required to be non-negative. To satisfy the non-negativity
action constraint, an additional L2-projection layer, which
is equivalent to a Rectified Linear Unit (ReLU), is added
to the output of the policy. It can be seen that the policy
network can easily suffer from zero gradient due to the clip-
ping effect of ReLU (Maas et al., 2013). If the zero-gradient
issue occurs in a large portion of the state space, the training
process could be sample-inefficient as most of the samples
are wasted, and therefore the convergence speed could be
slow. Notably, the zero-gradient issue can be particularly
severe in the early training phase since the pre-projection
actions produced by the policy network are likely to be far
away from the feasible sets.

The fundamental cause of the zero-gradient issue is the
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 tight coupling of the policy parameter update and the pro-
jection layer under the standard policy gradient framework.
Specifically, in the end-to-end policy-gradient-based train-
ing process, the update of the policy parameters relies on
the gradient of the actual policy output with respect to the
policy parameters and thereby involves the gradient of this
additional projection layer. To escape from the zero-gradient
issue, we take a different approach and propose a learning
algorithm that decouples the parameter update for policy
improvement from constraint satisfaction, without using the
policy gradient theorem. The proposed algorithm can be
highlighted as follows:

• To accommodate the action constraints, we leverage the
Frank-Wolfe method (Frank et al., 1956) to search for fea-
sible action update directions directly within the feasible
action sets in a state-wise manner. Through this procedure,
for a collection of states, we obtain the reference actions
that are used to guide the update of the policy parameters
for improving the current policy.

• To update the parameters of the policy network, we pro-
pose to construct a loss function (e.g., mean squared error)
that enables the policy network to adjust its outputs toward
the reference actions. This update scheme can be viewed
as solving a regression problem based on the reference
actions by taking one-step gradient descent. In this way,
the parameter update is completely decoupled from the
action constraints.

Since the proposed framework obviates the need for the
gradient of a projection layer, it avoids the zero-gradient
issue by nature.

Our Contributions. In this paper, we revisit the action-
constrained RL problem and propose a novel learning frame-
work that avoids the zero-gradient issue and achieves zero
constraint violation simultaneously:

• We formally identify the important zero gradient issue
in the existing projection-based approaches for action-
constrained RL. We also pinpoint that the fundamental
cause of the zero-gradient issue is the tight coupling of the
policy parameter update and the projection layer under
the standard policy gradient framework. To the best of
our knowledge, this is the first time that the zero-gradient
issue is discussed in the context of action-constrained RL.

• To better describe the proposed learning framework, we
start from the case of finite state spaces and introduce
Frank-Wolfe policy optimization (FWPO) with tabular
policy parameterization, which can be viewed as an in-
stance of the generalized policy iteration. By directly
searching for update directions within the feasible sets via
state-wise Frank-Wolfe, FWPO automatically achieves
zero constraint violation and does not require any addi-
tional projection. Moreover, we establish the convergence
of FWPO as well as its policy improvement property.

• Built on FWPO, we propose Neural FWPO (NFWPO) by
extending the idea of FWPO to the general neural policies

via a regression argument. By constructing a loss func-
tion and leveraging state-wise Frank-Wolfe, we decouple
the policy parameter update from the action constraints.
This design automatically prevents the zero-gradient issue.
Moreover, we show that the vanilla DDPG is a special
case of NFWPO if there is no action constraints.

• Through experiments on various real applications, we em-
pirically show the zero-gradient problem and demonstrate
that the proposed algorithms significantly outperform the
popular benchmark methods for action-constrained RL.

2 PRELIMINARIES

We consider an infinite-horizon discounted Markov decision
process (MDP) defined by a tuple (S,A, p, r, γ), where S
is state space, A denotes the action space, p is the state
transition probability, r is the reward function, and γ ∈
(0, 1) denotes the discount factor. We assume that the action
space A ⊆ RN is continuous and the reward function takes
value in [0, 1] for all state-action pairs. At each time step
t = 0, 1, · · · , the learner observes state st, takes an action
at, and receives an immediate reward rt. In this paper, we
consider the action-constrained MDPs where for each state
s ∈ S there is a feasible action set C(s) ⊆ A determined
by the underlying collection of constraints. We assume that
C(s) is compact and convex. In this paper, we focus on
deterministic policies and use π(·; θ) : S → A to denote a
deterministic parametric policy with parameter vector θ ∈
Rn. Under a policy π, the value functions are defined as the
expected long-term rewards

V (s;π) = E
[ ∞∑
t=0

γtr(st, at)|s0 = s, π
]
, (1)

Q(s, a;π) = E
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, π
]
. (2)

To make a comparison between policies, for any two policies
π and π′, we say that π ≥ π′ if V (s;π) ≥ V (s;π′), for all
s ∈ S. This essentially constructs a partial ordering among
policies. To construct a total ordering of all the policies,
consider the performance objective defined as a weighted
average of the value function

Jµ(π) := Es∼µ[V (s;π)], (3)

where µ is called the restarting state distribution (Kakade
and Langford, 2002). Note that one common choice of µ is
the initial state distribution. It is also convenient to define
the discounted state visitation distribution dπµ as dπµ(s) :=
(1− γ)Es0∼µ[

∑∞
t=0 γ

tP (st = s|s0, π)], for each s ∈ S.

Notations. We use the standard notations ‖·‖p and ‖·‖F to
denote the Lp-norm of a vector and the Frobenius norm of a
matrix, respectively. We use 〈·, ·〉 to denote the inner product
of two real vectors. For a setD, we define the diameter ofD
as diam‖·‖2(D) := supx1,x2∈D ‖x1 − x2‖2. We use domf
to denote the domain of a function f .



 2.1 POLICY GRADIENT

To optimize the objective Jµ(π), the typical approach is to
apply gradient ascent based on the policy gradient. Under
the standard regularity conditions, the deterministic policy
gradient (Silver et al., 2014) can be written as

∇θJµ(π(·; θ))

= Es∼dπµ
[
∇θπ(s; θ)∇aQ(s, a;π(·; θ))|a=π(s;θ)

]
. (4)

As a practical implementation of the deterministic policy
gradient approach, DDPG (Lillicrap et al., 2016) extends
deep Q-learning (Mnih et al., 2015) to continuous action
space in an actor-critic manner. Specifically, DDPG up-
dates the policy parameter θ by applying stochastic gradi-
ent ascent according to (4) and obtains an approximated
Q-function Q(s, a;φ) parameterized by φ by using a Q-
learning-like critic, which updates φ by minimizing the
loss E(s,a,s′,r)∼ρ[(r+γQ(s′, π(s′; θ−);φ−)−Q(s, a;φ))2],
where ρ denotes the sampling distribution of the replay
buffer, θ− and φ− are the parameters of the actor and critic
target networks, respectively.

2.2 FRANK-WOLFE METHODS

In this section, we provide an overview of the Frank-Wolfe
algorithms. Consider an optimization problem in the form

max
x∈X

F (x), (5)

where F (·) : Rd → R is a differentiable function with
a Lipschitz continuous gradient, X ⊆ Rd is the feasible
set characterized by the underlying constraints on x. One
popular approach is to apply the projected gradient ascent
method (Bubeck et al., 2015), which combines the standard
gradient ascent with a projection step. By contrast, as a
projection-free method, the classic Frank-Wolfe algorithms
(Frank et al., 1956) and its variants solve the constrained
optimization problems in (5) by leveraging a first-order sub-
problem. We briefly summarize the Frank-Wolfe algorithm
for non-convex objective functions in the batch settings as
follows (Lacoste-Julien, 2016; Reddi et al., 2016):

• Initialization. Let xk denote the input at the k-th iteration
and choose an arbitrary x0 ∈ X to be the initial point.

• Search for an update direction within the fea-
sible set. In the k-th iteration, compute vk =
argmaxv∈X 〈v,∇xF (x)|x=xk〉 and update the iterate as
xk+1 = xk + βk(vk − xk), where vk − xk is the update
direction and βk denotes the learning rate.

For unconstrained optimization problems, the convergence
properties are typically analyzed in terms of the gradient
norm ‖∇xF (x)‖2. By contrast, for constrained maximiza-
tion problems, one widely-used metric of convergence in

the Frank-Wolfe literature is the Frank-Wolfe gap defined
as G(x) := maxz∈X 〈z − x,∇xF (x)〉1. It is easy to verify
that G(x) = 0 is a necessary and sufficient condition of that
x is a stationary point.

3 FRANK-WOLFE POLICY
OPTIMIZATION

In this section, we formally present the proposed learning
algorithms for action constrained RL. To better describe
the proposed learning framework, we start from a stylized
setting with tabular policy parameterization for finite state
spaces and extend the idea to develop a more practical algo-
rithm for the general parametric policies.

3.1 FRANK-WOLFE POLICY OPTIMIZATION
WITH DIRECT POLICY
PARAMETERIZATION (FWPO)

For ease of exposition, we first illustrate the proposed algo-
rithm for the case of finite state spaces and tabular policies
with direct parameterization, i.e., π(s; θ) ≡ θ(s), for all
s ∈ S. We consider the performance objective Jµ(π) with
some restarting state distribution µ with µ(s) > 0, for all
s ∈ S, and define µmin := mins∈S µ(s). For ease of nota-
tion, we also define Ds := diam‖·‖2(C(s)) for each s and
Dmax := maxs∈S Ds.

Now we present the proposed FWPO algorithm. We use
θk to denote the policy parameters in the k-th iteration and
choose feasible initial policy parameters θ0 which satisfy
θ0(s) ∈ C(s), for all s ∈ S. FWPO adopts the generalized
policy iteration framework (Sutton and Barto, 2018) by
alternating between two subroutines in each iteration:

• Policy update via state-wise Frank-Wolfe. FWPO up-
dates the policy by finding a feasible update direction of
each state s ∈ S via Frank-Wolfe as

ck(s) = argmax
c∈C(s)

〈c,∇aQ(s, a;π(·; θk))|a=θk(s)〉, (6)

θk+1(s) = θk(s) + αk(s)(ck(s)− θk(s)), (7)

where ck(s) − θk(s) is the update direction and αk(s)
denotes the (state-dependent) learning rate. Moreover, it
is natural to define the state-wise Frank-Wolfe gap of the
Q-function at θk as

gk(s) := 〈ck(s)− θk(s),∇aQ(s, a;π(·; θk))|a=θk(s)〉.
(8)

1In the literature, the Frank-Wolfe gap is typically defined
as maxz∈X 〈z − x,−∇xF (x)〉 since the goal is to minimize an
objective function. By contrast, as the goal of RL is to optimize the
policy in terms of rewards, we consider the maximization problem
in the form of (5) and make the required changes accordingly.



 It is easy to verify that gk(s) ≥ 0, for all k ∈ N and
for all s ∈ S. As will be shown momentarily, to ensure
convergence, the learning rate is configured to be αk(s) =
(1−γ)µmin

LD2
s

gk(s).

• Evaluation of the current policy. FWPO then evaluates
the updated policy and obtain the Q-function (or an ap-
proximated version) for the next iteration. This can be
done by a standard policy evaluation approach.

The above scheme of FWPO is detailed in Algorithm 1. As
suggested by Algorithm 1, FWPO always searches for an
update direction within the feasible action sets. Therefore,
FWPO automatically achieves zero constraint violation and
does not require any additional projection by nature.

Algorithm 1 Frank-Wolfe Policy Optimization (FWPO)

1: Input: Initialize the policy parameters as θ0 that satis-
fies θ0(s) ∈ C(s) for all s ∈ S

2: for each iteration k = 0, 1, · · · do
3: Evaluate π(·; θk) and obtain Q(s, a;π(·; θk))
4: for each state s ∈ S do
5: Compute the Frank-Wolfe update direction by

ck(s) = argmaxc∈C(s)〈c,∇aQ(s, a;π(·; θk))〉
6: gk(s) = 〈ck(s)− θk(s),∇aQ(s, a;π(·; θk))〉
7: αk(s) = (1−γ)µmin

LD2
s

gk(s)

8: θk+1(s) = θk(s) + αk(s)(ck(s)− θk(s))
9: end for

10: end for

Remark 1 One salient feature of FWPO is that the policy
update in (6)-(7) is done by searching for feasible update
directions based on ∇aQ(s, a;π) on a per-state basis with
state-dependent learning rates, instead of using the stan-
dard policy gradient of the performance objective Jµ(π). As
will be seen in Section 3.2, this design plays a critical role
in decoupling the policy parameter update from constraint
satisfaction. Another advantage of FWPO is that it is agnos-
tic to the discounted state visitation distribution dπµ (cf. the
deterministic policy gradient in (4)) due to the state-wise
nature. This feature allows FWPO to be directly applicable
in the off-policy settings in its original form2.

Remark 2 As the policy update under FWPO is done on
a state-by-state basis instead of directly on Jµ(π), the con-
vergence guarantees of the standard Frank-Wolfe methods
do not directly apply to the objective Jµ(π) under FWPO.
From this perspective, FWPO is not a trivial combination of
the Frank-Wolfe methods and policy iteration.

As suggested by Remark 2, we proceed to establish the
convergence result of FWPO. For the convergence analysis,

2In the off-policy settings, the deep policy gradient approaches
typically require dropping a term in the policy gradient expression
to accommodate the behavior policy (Silver et al., 2014).

based on the state-wise Frank-Wolfe gaps defined in (8), we
define the effective Frank-Wolfe gap of Jµ(π(·; θ)) at θk as

Gk :=
(∑
s∈S

gk(s)2
)1/2

. (9)

Note that Gk = 0 if and only if the update direction is
zero for all the states, i.e., ck(s) − θk(s) = 0. Hence, Gk
indicates whether the Jµ(π(·; θ)) converges to a stationary
point. We also define ḠT := min0≤k≤T Gk. To establish
the convergence results, we also assume mild regularity
conditions on r and p as follows.

Definition 1 A differentiable function f : domf → R is
said to be L0-smooth if there exists L0 ≥ 0 such that for
any x, y ∈ domf , ‖∇f(x)−∇f(y)‖2 ≤ L0‖x− y‖2.

Regularity Assumptions:
(A1) The reward function r(s, a) is differentiable and is
Lr-smooth in a, for all s, a.

(A2) The transition probability p(s′|s, a) is twice differ-
entiable and Lp-smooth in a, for all s, s′, a. Moreover,
p(s′|s, a) satisfies sups,a,s′ ‖∇ap(s′|s, a)‖2 < Cp.

As the first step, we introduce the following proposition on
the smoothness of the performance objective Jµ(π(·; θ)).
Notably, given the regularity assumptions of r and p in
action, it remains non-trivial to establish the smoothness of
Jµ(π(·; θ)) in θ due to the multi-step compound effect of
the changes in policy parameters on the value functions.

Proposition 1 Under the regularity assumptions (A1)-(A2),
there exists some constantL > 0 such that for any restarting
state distribution µ, Jµ(π(·; θ)) is L-smooth in θ.

The proof of Proposition 1 is provided in Appendix A.1.
Now we are ready to present the convergence result.
Proposition 2 Under the FWPO algorithm with αk(s) =
(1−γ)µmin

LD2
s

gk(s), {π(·; θk)} form a non-decreasing sequence
of policies in the sense that π(·; θk+1) ≥ π(·; θk), for all
k. Moreover, the effective Frank-Wolfe gap of FWPO con-
verges to zero as k →∞, and the convergence rate can be
quantified as

∞∑
k=0

G2
k ≤

2LD2
max

(1− γ)3µ2
min

, (10)

which implies that ḠT = O(T−1/2).

Proof Due to space limitation, we provide a sketch of proof:
(i) To show the non-decreasing property, we leverage the
policy difference lemma (Kakade and Langford, 2002) and
verify a sufficient condition of strict policy improvement;
(ii) To show the convergence result, we leverage the smooth-
ness of the value functions as well as the objective and use
the technique for convergence of non-convex optimization
similar to that in (Reddi et al., 2016; Lacoste-Julien, 2016);



 (iii) A proper learning rate can be selected by taking the
smoothness conditions as well as the restarting state distri-
bution into account. For completeness, the detailed proof is
provided in Appendix A.2.

Remark 3 The style of the convergence guarantee in Propo-
sition 2 is common in the analysis of gradient descent meth-
ods for non-convex smooth functions (Bottou et al., 2018).
Moreover, the result (i.e., convergence to a stationary point)
in Proposition 2 resembles those of the policy gradient al-
gorithms (Sutton, 2000; Silver et al., 2014), but for the
action-constrained RL settings. On the other hand, in (6),
the search of the update direction requires the gradient of
the Q-function. In practice, it may not be feasible to obtain
the whole true Q-function, and a value function approxima-
tor can be included. In practice, it can be expected that a
sufficiently accurate critic shall provide a sufficiently good
update direction.

3.2 NEURAL FRANK-WOLFE POLICY
OPTIMIZATION (NFWPO)

In this section, we formally present the proposed NFWPO
algorithm for general parametric policies for action-
constrained RL. As highlighted in Section 1, we propose to
decouple constraint satisfaction from the policy parameter
update. Specifically, to accommodate the action constraints,
we extend the state-wise Frank-Wolfe subroutine to the gen-
eral parametric policies. One inherent challenge of such
extension is that the Frank-Wolfe method searches for an
update direction within the feasible set by nature. How-
ever, under neural parameterization, an action produced by
the neural network is not guaranteed to stay in the feasi-
ble action set. To address this, we propose to incorporate a
projection step into the state-wise Frank-Wolfe subroutine.
Define a projection operator as

ΠC(s)(z) = argmin
y∈C(s)

‖y − z‖2. (11)

For ease of exposition, in the sequel we call the input z a
pre-projection action and ΠC(s)(z) a post-projection action.

NFWPO adopts the actor-critic architecture. Let θ̄ and φ̄
be the current parameters of the actor and the critic, respec-
tively. The main features of NFWPO are captured by the
actor part as below.

• Derive reference actions via state-wise Frank-Wolfe.
For each s in the mini-batch B, NFWPO uses Frank-Wolfe
to compute the reference action at each state s as

ãs = ΠC(s)(π(s; θ̄)) + α
(
c̄(s)−ΠC(s)(π(s; θ̄))

)
, (12)

where α is the learning rate of Frank-Wolfe and

c̄(s) = argmax
c∈C(s)

〈c,∇aQ(s, a; φ̄)|a=ΠC(s)(π(s;θ̄))〉. (13)

(Note that the projection ΠC(s)(·) is only for generating
feasible actions and does not require backpropagation.)

• Construct an MSE loss function. NFWPO constructs
a loss function LNFWPO(θ; θ̄) as the MSE between the
actions of the current policy and the reference actions,
i.e.,

LNFWPO(θ; θ̄) =
∑
s∈B

(
π(s; θ)− ãs

)2
. (14)

• Update policy by gradient descent. NFWPO updates
the policy parameter by minimizing the MSE loss in (14)
by using gradient descent for one step, i.e.,

θ ← θ − β∇θ LNFWPO(θ; θ̄). (15)

On the other hand, the critic of NFWPO can be based on any
standard policy evaluation technique. For ease of exposition,
for NFWPO, we use the same critic as the vanilla DDPG
(as described in Section 2.1). The detailed pseudo code of
NFWPO is provided in the supplementary material.

Notably, similar to (6), NFWPO only uses∇aQ(s, a; φ̄) for
deriving reference actions, without using the deterministic
policy gradient in (4). This design allows NFWPO to decou-
ple constraint satisfaction in (12)-(13) from the parameter
update in (14)-(15). As highlighed in Section 1, this de-
coupling obviates the need for the gradient of a projection
layer and hence automatically avoids the zero-gradient issue.
Moreover, below we show that DDPG is actually a special
case of NFWPO when there is no action constraints. The
proof is provided in Appendix B

Proposition 3 If there is no action constraints, then the
policy update scheme of NFWPO in (12)-(15) is equivalent
to the vanilla DDPG by (Lillicrap et al., 2016).

Remark 4 While NFWPO leverages a projection step in
(12), this projection step is only for deriving reference ac-
tions and does not take part in the policy parameter update.
As a result, NFWPO does not require backpropagation of
the projection step (as shown in (12)-(15)) and therefore au-
tomatically avoids the zero-gradient issue. Hence, NFWPO
is essentially different from the existing solutions that com-
bine DDPG with a projection layer for end-to-end training
(Pham et al., 2018; Dalal et al., 2018).

4 EXPERIMENTAL RESULTS

In this section, we empirically evaluate FWPO and NFWPO
in various real-world applications, including bike sharing
systems, communication networks, and continuous control
in MuJoCo. We compare the proposed algorithms against
the following popular benchmark methods:

• DDPG+Projection: The training procedure is identical
to the vanilla DDPG (Lillicrap et al., 2016) except that
the action is post-processed by the L2-projection operator
ΠC(s)(·) before being applied to the environment.



 • DDPG+RewardShaping: Built on DDPG+Projection,
this algorithm adds the L2-norm between the pre-
projection and post-projection actions as a penalty to the
intrinsic reward.

• DDPG+OptLayer: This design uses a differentiable pro-
jection layer, namely the OptLayer, that supports end-to-
end training via gradient descent (Pham et al., 2018).

Moreover, for the projection step (without the need
of backpropagation) required by DDPG+Projection,
DDPG+RewardShaping, and NFWPO, we implement this
functionality on the Gurobi optimization solver (Gurobi Op-
timization, 2021). Therefore, the post-projection actions are
guaranteed to satisfy the action constraints for all the algo-
rithms. For each task, each algorithm is trained under the
common set of 5 random seeds. Each evaluation consists of
10 episodes, and we report the average performance along
with the standard deviation in Figures 1-5. We also summa-
rize the average return over the final 10 evaluations in Table
1 and Table 2. The detailed training setup can be found in
Appendix D. The code of our experiments is available 3.

4.1 BIKE SHARING SYSTEMS

We use the open-source BSS simulator4, which was origi-
nally proposed by (Ghosh and Varakantham, 2017) and later
used for evaluating action-constrained RL by (Bhatia et al.,
2019). In a bike-sharing problem, there are m bikes and n
stations, each of which has a pre-determined bike storage
capacity C. An action is to allocate m bikes to n stations
under random demands. The reward signal consists of three
parts: (i) Moving cost: the cost of moving one or multiple
bikes from one station to another; (ii) Lost-demand cost: the
cost of unserved demand due to bike outage. (iii) Overflow
cost: the cost incurred when the number of bikes in one
station exceeds its capacity.

Evaluating FWPO. Since the bike sharing environment
has a finite state space, we first use it to evaluate FWPO
against the baseline methods, all with tabular policy param-
eterization. For the action value function, we use the same
Q-learning-like critic as the vanilla DDPG for all the al-
gorithms. A medium-sized system with n = 3, m = 90,
and C = 35 is chosen that allows to analytically find the
optimal policy. There are two types of constraints: (i) Global
constraint: all the action entries shall sum to 90; (ii) Local
constraints: each entry of the action shall be between 0 and
35. Figure 1(a) shows the average return of the three algo-
rithms. We observe that FWPO performs the best, while
DDPG+Projection and DDPG+RewardShaping both suffer
from slow learning. This is also reflected by Figure 1(b),
which shows that FWPO converges to a near-optimal policy
much faster than the baselines. The above phenomenon is
mainly due to the inaccurate policy gradient of DDPG under

3https://github.com/upupsheep/NFWPO_Final_Code
4BSS: https://github.com/bhatiaabhinav/gym-BSS

action constraints. Specifically, the critics of the two base-
lines are trained with samples with feasible actions while
the gradients ∇aQ(s, a;φ) are mostly evaluated at those
actions outside the feasible sets. By contrast, FWPO always
stays in the feasible action sets and hence naturally avoids
the issue of inaccurate gradients.

(a) (b)

Figure 1: Bike sharing problem with n = 3 (BSS-3) under
tabular policies: (a) Average return over 5 random seeds;
(b) L2-norm between the learned policies and the optimal
policy at each training step.

Evaluating NFWPO. We proceed to compare NFWPO
with the other three baselines in solving a larger-scale bike-
sharing problem with m = 150, n = 5, and C = 35.
As shown by Figure 2(a), NFWPO converges faster and
achieves a larger return than the other baselines. To better
understand its behavior, Figure 2(b) shows the cumulative
constraint violations of the pre-projection actions. Interest-
ingly, the pre-projection actions of NFWPO can largely
avoid constraint violation, and thus requires less help from
the projection during training. By contrast, all the base-
lines rely heavily on the projection step to stay feasible,
because most of their pre-projection actions fail to satisfy
the constraints. We also observe that DDPG+Projection
and DDPG+RewardShaping attain similar average return
and frequency of violation. This is because they both pro-
duce pre-projection actions far from the feasible sets and
thereby obtain similar post-projection actions. Meanwhile,
DDPG+OptLayer suffers from nearly zero learning progress
due to the zero-gradient issue. Figure 2(c) compares the
sample-based gradient with respect to the pre and post-
OptLayer actions. Since the gradients of the pre-OptLayer
actions (green line in Figure 2(c)) are mostly close to zero,
the sample-based policy gradients∇θĴµ(π(·; θ)) are there-
fore close to zero for most of the training steps. As the
gradients with respect to the post-OptLayer actions are al-
ways non-zero (blue dotted line in Figure 2(c)), we know
that the zero-gradient issue of∇θĴµ(π(·; θ)) indeed results
from the projection layer. This confirms that the additional
OptLayer could easily lead to the zero-gradient issue and
sample-inefficient training.
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Figure 2: Bike sharing problem with n = 5 (BSS-5) under neural policies: (a) Average return over 5 random seeds; (b)
Cumulative number of constraint violations of the pre-projection actions during training; (c) L2-norm of the sample-based
gradients with respect to the pre- and post-OptLayer actions of DDPG+OptLayer.

4.2 UTILITY MAXIMIZATION OF
COMMUNICATION NETWORKS

In this section, we evaluate the proposed methods over the
task of utility maximization in communication networks.
We simulate the network with the open-source network sim-
ulator from PCC-RL5 (Jay et al., 2019). For the network
topology, we consider the classic T3 NSFNET Backbone
and set the bandwidth of each link to be 50 packets per
second throughout the experiments. We generate three net-
work flows, each of which has three candidate paths from
its source to the destination. The action is to determine the
rate allocation of each flow along each candidate path. The
reward consists of three parts: (i) Throughput: the number
of received packets per second; (ii) Drop rate: the number
of dropped packets per second; (iii) Latency: the average
latency of the packets in the last second. For each flow
i, its immediate reward is log

(
throughputi

drop rate0.5i ×latency1.5i

)
, which

corresponds to the widely-used proportional fairness crite-
ria (Kelly, 1997). One salient feature of a communication
network is that when the total packet arrival rate of a link
approaches its bandwidth, the latency will grow rapidly, and
accordingly most of the packets would be dropped. There-
fore, in this environment, the action constraints correspond
to the link bandwidth constraints, i.e., the total assigned
packet arrival rate of each link should be bounded by 50.

Figure 3(a) shows the training curves and indicates that
NFWPO still converges fast (in about 105 steps) and
achieves much larger return than the baselines. Moreover,
similar to the bike-sharing problems, we see from Figure
3(b) that most of the pre-projection actions of NFWPO al-
ready satisfy the constraints. In this task, we find that reward
shaping does help in guiding the pre-projection actions to-
wards the feasible action sets, but only under some random
seeds (and therefore the large variance in Figures 3(a)-(b)).
Regarding DDPG+OptLayer, in the initial training phase,

5PCC-RL: https://github.com/PCCproject/PCC-RL

we observe that it mostly produces pre-OptLayer actions
with small flow rates, which lead to a smaller number of
constraint violations and moderate returns. To achieve a
higher return, DDPG+OptLayer then gradually increases
the flow rates but accidentally causes more constraint vio-
lations of pre-OptLayer actions and suffers from the inac-
curate gradient issue described in Section 4.1. Ultimately,
DDPG+OptLayer can only achieve a fairly low return.

(a) (b)

Figure 3: Utility maximization in NSFNET: (a) Average
return over 5 random seeds; (b) Cumulative constraint vio-
lations of the pre-projection actions during training.

4.3 MUJOCO CONTINUOUS CONTROL TASKS

To further validate NFWPO, we consider popular contin-
uous control tasks in MuJoCo (Todorov et al., 2012) with
non-linear and state-dependent action constraints. We fur-
ther compare the proposed algorithm with important bench-
marks RL algorithms for MuJoCo control taks, including
PPO (Schulman et al., 2017), TRPO (Schulman et al., 2015),
and SAC (Haarnoja et al., 2018). To make the compari-
son even more comprehensive, we also evaluate FOCOPS
(Zhang et al., 2020b), which is a recent approach designed
to address long-term total discounted cost constraints. As



 
Table 1: Average return over the final 10 evaluations.

Methods BSS-3 BSS-5 NSFNET
NFWPO -1673.04 -15132.21 13770.67
DDPG+Projection -2254.52 -16123.48 1514.44
DDPG+Reward Shaping -2308.00 -16123.48 9010.46
DDPG+OptLayer - -16686.04 1667.59

Table 2: Average return over the final 10 evaluations in the MuJoCo environments.

Methods Reacher Halfcheetah
NFWPO -4.76 6513.26
DDPG+Projection -11.15 2746.72
DDPG+Reward Shaping -8.66 3065.37
DDPG+OptLayer -7.25 1399.37
SAC+Projection -10.50 4874.45
TRPO+Projection -11.04 2247.82
PPO+Projection -10.68 1459.04
FOCOPS+Projection -12.23 1916.46

FOCOPS is not designed for handling state-wise action con-
straints, we relax the action constraints into the long-term
total discounted constraints required by FOCOPS. To en-
sure constraint satisfaction, we use the same technique as
DDPG+Projection, i.e., the actions of PPO, TRPO, SAC,
and FOCOPS are post-processed by L2-projection before
being applied to the environment.

Reacher with non-linear constraints. In this task, the ac-
tion space is 2-dimensional (denoted by u1, u2), and each
action entry corresponds to the torque of a joint of a 2-
DoF robot. To validate the applicability of NFWPO, we
impose nonlinear action constraints as: u1

2 + u2
2 ≤ 0.05.

From Figure 4(a), we observe a similar trend that NFWPO
still converges faster and achieves a larger return than
the other baseline methods. In this task, DDPG+OptLayer
and DDPG+RewardShaping can achieve a return closer to
NFWPO as it has fewer pre-OptLayer (pre-projection) vio-
lations as shown in Figure 4(b). The other algorithms still
perform poorly as they always produce actions far from the
feasible sets and relies heavily on the projection step. This
is reflected by the fact that SAC, TRPO, and PPO violate the
constraint at almost every training step, as shown in Figure
4(b). Regarding FOCOPS, the violation of the constraint
in the second half of training is less than that in the first
half. This indicates that FOCOPS needs much more training
steps to find a policy that violate lesser, Despite this, the
return of FOCOPS remains fairly low as other benchmarks.

Halfcheetah with state-dependent constraints. In this
task, an action is 6-dimensional and is denoted by
(v1, · · · , v6). We consider a challenging scenario where the
constraint is state-dependent. Specifically, the imposed con-
straint is

∑6
i=1 |viwi| ≤ 20, where wi denotes the angular

velocity of the i-th joint and is part of the state. This con-
straint is meant to capture the limitation of total output

(a) (b)

Figure 4: Reacher-v2 with a non-linear action constraint:
(a) Average return over 5 random seeds; (b) Cumulative
constraint violations of the pre-projection actions during
training (“+P” stands for “+Projection”, “+RS” stands for
“Reward Shaping”, and “+Opt” stands for “+OptLayer”).

power. Similar to the other environments, from Figure 5(a)-
(b), we still observe that NFWPO achieves better sample
efficiency than the other baselines. Moreover, NFWPO vio-
lates the constraint for only 3% of the steps while getting
the highest return. On the other hand, PPO, TRPO, and SAC
all violate the constraint for more than 75% of the steps.
FOCOPS violates the constraint for about 15% of the time
but only achieves a fairly low return. Again, we see that
NFWPO outperforms all the baseline methods with much
less constraint violation.

5 RELATED WORK
The constrained RL problems have been extensively studied
from two main perspectives. The first category encodes the
constraints via cost signals, which are incurred at each step
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Figure 5: Halfcheetah-v2 with a state-dependent action con-
straint: (a) Average return over 5 random seeds; (b) Cumula-
tive constraint violations of the pre-projection actions during
training (“+P” stands for “+Projection”, “+RS” stands for
“Reward Shaping”, and “+Opt” stands for “+OptLayer”).

along with the reward signals, and accordingly focuses on
the average-cost constraints. This line of research works
borrows a variety of ideas from the optimization litera-
ture. For example, (Chow et al., 2015) addressed chance
constraints by using a primal-dual approach to achieve a
trade-off between return and risk. Similarly, (Tessler et al.,
2018) proposed Reward Constrained Policy Optimization
which applied Lagrangian relaxation and converted the con-
straints into penalty terms in the objective. (Achiam et al.,
2017) proposed Constrained Policy Optimization to achieve
strict policy improvement under the average cost constraints
by using the trust-region approach. In (Chow et al., 2018),
Lyapunov-based safe reinforcement learning was proposed
to address the constraints by solving a linear program. (Yang
et al., 2019) proposed Projection-Based Constrained Policy
Optimization to achieve no constraint violation by taking a
projection step after the local reward improvement update.
In (Liu et al., 2020b), Interior-point Policy Optimization
was proposed to handle the average cost constraints by aug-
menting the objective with logarithmic barrier functions.
(Satija et al., 2020) took a different approach by converting
the trajectory-level constraints into per-step state-wise con-
straints and accordingly defining a safe policy improvement
step. (Zhang et al., 2020b) proposed an approach to solving
the constrained policy optimization problem by first finding
a target policy directly in the policy space and thereafter
converting the target policy to a parameterized one through a
projection step onto the parameter space. Different from all
the above prior works, this paper considers the RL settings
with state-wise action constraints.

The second category is on the state-wise constraints that
need to be satisfied on a step-by-step basis. (Pham et al.,
2018) studied the state-wise action constraints of robotic
systems and proposed a projection-based OptLayer to en-
force the constraints. (Dalal et al., 2018) also considered

state-wise safety constraints under linearization and pro-
posed a projection-based safety layer to handle the con-
straints. Similarly, (Bhatia et al., 2019) considered resource
constraints and proposed variants of OptLayer to improve
the computational efficiency. (Shah et al., 2020) proposed
a more efficient projection scheme for enforcing linear ac-
tion constraints. Despite the similarity in the problem set-
ting, we take a different approach and propose a decoupling
framework by leveraging Frank-Wolfe to address the action
constraints and completely avoid the zero-gradient issue.

6 CONCLUSION
This paper revisits action-constrained RL to tackle the zero-
gradient issue and ensure zero constraint violation simul-
taneously. We achieve this goal by developing a learning
framework that decouples the policy parameter update from
constraint satisfaction by leveraging state-wise Frank-Wolfe
and a regression argument. Our theoretical and experimental
results demonstrate that the proposed learning algorithm is
indeed a promising approach for action-constrained RL.
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