

Formal Verification of Neural Networks for Safety-Critical Tasks

in Deep Reinforcement Learning

Davide Corsi1 Enrico Marchesini1 Alessandro Farinelli1

1 Department of Computer Science , University of Verona , 37135, Verona, Italy
name.surname@univr.it

Abstract

In the last years, neural networks achieved ground-
breaking successes in a wide variety of applica-
tions. However, for safety critical tasks, such as
robotics and healthcare, it is necessary to provide
some specific guarantees before the deployment
in a real world context. Even in these scenarios,
where high cost equipment and human safety are
involved, the evaluation of the models is usually
performed with the standard metrics (i.e., cumula-
tive reward or success rate). In this paper, we intro-
duce a novel metric for the evaluation of models
in safety critical tasks, the violation rate. We build
our work upon the concept of formal verification
for neural networks, providing a new formulation
for the safety properties that aims to ensure that
the agent always makes rational decisions. To per-
form this evaluation, we present ProVe (Property
Verifier), a novel approach based on the interval
algebra, designed for the analysis of our novel be-
havioral properties. We apply our method to differ-
ent domains (i.e., mapless navigation for mobile
robots, trajectory generation for manipulators, and
the standard ACAS benchmark). Results show that
the violation rate computed by ProVe provides a
good evaluation for the safety of trained models.

1 INTRODUCTION

In the last few years, Deep Reinforcement Learning (DRL)
has been applied in several safety critical domains (e.g.,
robotics [Gu et al., 2017] and healthcare [Ruan et al., 2018]),
where the search space becomes not manageable for tradi-
tional RL algorithms. In these tasks, where high-cost equip-
ment and human safety are involved, the behavior of a Deep
Neural Network (DNN) must be evaluated before the de-
ployment in the real scenario to avoid undesirable and poten-

tially dangerous situations. Nonetheless, even in such safety-
critical contexts, the evaluation of DRL approaches is typi-
cally performed on standard metrics, such as the total reward
or the success rate over independent episodes. However,
Ian Goodfellow [2015] shows that human-imperceptible
perturbations in the input space of DNNs, may result in a
tremendous difference in the predicted output. This is a well-
known problem in literature, and in particular in the field of
computer vision [Madry et al., 2019]. Recently, Huang et al.
[2017] discovered that neural network policies, generated
by state of the art DRL algorithms, are also vulnerable to
adversarial inputs. These particular input configurations are
challenging to detect with empirical testing phases and con-
sequently ignored by the standard metrics, underlining the
limits of the traditional evaluation approaches.

Following the recent trend in formal verification for Neural
Networks, we propose to design a set of safety properties,
that encode different constraints on the behaviour of the
agent, as a complementary metric for the reward. Ideally,
given a safety property and a neural network, a verification
framework should either guarantee that the property is al-
ways satisfied or return counterexamples [Liu et al., 2019].
The effectiveness of such methodology relies on the estima-
tion accuracy of the output bounds [Xiang et al., 2018a] and
has been successfully addressed by several recent studies
[Wang et al., 2018a, Dutta et al., 2018]. One of the main lim-
itations of these approaches concerns the design of the safety
properties. State of the art methods has proven to be fast
and efficient only if the input domain is strict and the target
behaviour is well known [Bunel et al., 2020]. However, for-
malizing a set of properties that satisfy these requirements
may not be possible without a deep prior knowledge of the
environment and, forcing the agent to respect such strict re-
quirements, may negatively affect the final policy generated
by the DRL algorithm. In contrast, in this paper, we focus
on the formal verification of properties that describe the
general behaviour of the agent (i.e., behavioral properties),
and that aim at ensuring that the policy makes rational deci-
sions (e.g., if there is an obstacle close to the right never turn

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

 right). Crucially, we show that a model that respects such
soft constraints is overall safer than a model evaluated only
on the long term reward. Notice that, properties of this form
typically require large input domains, as they need to cover
a wide variety of possible input configurations for the DDN
(i.e., possible situations for the agent). As a consequence,
they are rarely respected in the whole input domain and
state of the art approaches typically return only SAT (i.e.,
the property is respected) or UNSAT (i.e, the property is vio-
lated with at least one input configuration), failing to provide
useful information on the safety of the model. Against this
background, we introduce ProVe a formal verification tool
for DNN based on interval analysis [Wang et al., 2018a], de-
signed to verify safety properties for decision-making tasks
defined over large input spaces. While previous approaches
provide verification tools that aim at verifying whether the
bound of an output of the network lies in a given interval,
in a DRL context, DNNs typically encode decision-making
policies and require the analysis of multiple outputs, con-
sidering the relationships among them. To verify this kind
of properties we need to modify the standard analysis of
the output interval, in fact, as detailed in Section 2, even
in an ideal scenario with a perfect estimation of the output
intervals, state of the art tools can not always provide useful
information on the relationships among the outputs (i.e., can
not exploit the comparison rules of the intervals analysis
[Moore, 1963]). To this end, in this paper, we propose a
novel approach, that provides an accurate shape estimation
of the output functions, by computing an iterative bisection
of the input intervals. In detail, for a property that should
be evaluated in the global domain I , we analyze indepen-
dently a set of n smaller domain in (s.t., I =

⋃n
i=1 ii). This

paves the possibility to handle properties encoded in the
form described above. Moreover, we ca exploit the compu-
tation independence of the intervals to encode the process
in a parallel fashion (e.g., multi-core CPU or GPU), improv-
ing the performances of the standard verification tools and
hence handling very large input spaces. Crucially, with our
approach, it is possible to compute the size of the domain
that violates the safety property, providing a safety metric
for the evaluation of a model (violation rate). Finally, we
empirically evaluate ProVe on different domains including:
(i) the airborne collision avoidance system (ACAS) [Owen
et al., 2019], used in literature as a standard benchmark,
(ii) a mapless navigation task for a TurtleBot3, which is a
well-known task in DRL [Tai et al., 2017, Zhang et al., 2017,
Wahid et al., 2019] and (iii) trajectory generation for the
commercial Panda manipulator.

Summarizing, this work makes the following contribution to
state of the art: (i) we introduce ProVe, a tool for the formal
verification of trained networks that encode decision-making
tasks for DRL; (ii) we propose a novel formalism for the
safety properties, introducing a new metric to evaluate the
safety of a policy (violation rate); and (iii) we empirically
evaluate our approach on a set of standard benchmarking

scenarios, showing that ProVe provides a good evaluation
for the safety of trained models.

2 PRELIMINARIES

Formal verification of deep neural network can be addressed
in many ways. Typically, a verification framework should
check whether an input-output relation respects some given
constraints. Given a neural network function fθ(x) (with
parameters θ) with an input domain Dx ⊆ Rki and output
domain Dy ⊆ Rko , where ki is the number of input nodes
and ko the number of output nodes, solving the verification
problem requires to formally show that a property in the
following form holds:

x ∈ X ⇒ y = fθ(x) ∈ Y (1)

where, X ⊆ Dx and Y ⊆ Dy. The input set X can have
different geometries, a common representation is based on
hyperrectangle, which correspond to multi-dimensional rect-
angle with a defined center c ∈ Rki and r0 ∈ Rki :

Xh = {x : ‖x− c‖2 ≤ r0} ⊆ Dx (2)

More in general the input domain of a safety properties is
represented with polytopes, defined as halfspace-polytopes
in the following form:

Xp = Cx ≤ d (3)

where C ∈ Rk×ki , d ∈ Rk and k is the number of inequali-
ties that define the polytope. In literature [Liu et al., 2019],
verification approaches are subdivided in two different cat-
egories: (i) optimization approaches, that use optimization
methods (e.g., linear programming [Bastani et al., 2016] or
mixed integer linear programming [Lomuscio and Maganti,
2017, Tjeng et al., 2018]) to falsify an assertion; and (ii)
reachability approaches which, given the input domain for
the property X , try to compute the corresponding output
domain [Wang et al., 2018b, Weng et al., 2018]. For the
first class of problem, frameworks try to falsify the assertion
searching for a counter example x̃ ∈ X such that:

f(x̃) /∈ Y (4)

If no counter example is found, the given property is re-
spected and the solver returns SAT, otherwise the solver
return UNSAT or unknown if a timeout is reached.

2.1 REACHABILITY APPROACHES

In contrast to optimization approaches, a reachability frame-
work does not directly returns SAT or UNSAT. Instead, it try
to compute the output reachable set, formally, given the neu-
ral network function fθ(x) and the property input domain
X , the reachability set is defined as:

Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X} (5)

 In this scenario, a property is violated if Γ(X , fθ) * Y .
However, even state of the art approaches [Wang et al.,
2018a, Weng et al., 2018] struggle to compute the exact
reachable set, succeeding only in finding an overestimation
of the real set Γ̃(X , fθ) . Research, in recent years has thus
been focused on finding different strategies to reduce the
overestimation and find a Γ̃ as close as possible to Γ.

Input Area Propagation In the last years, previous
works show how to extend the Interval Analysis [Moore,
1963] in the field of DNNs verification, partially mitigating
the computational limitation of the optimization approaches,
to compute the reachability set. In detail, these methods
propagate layer by layer the input domain represented as one
bound for each input node (input area). Naive approaches
[Xiang et al., 2018b] computes the bound ([lnew, unew])
for each nodes of the network in an independent fashion,
applying node wise the following linear mapping:

lnew = max(θ, 0) ∗ l + min(θ, 0) ∗ u
unew = max(θ, 0) ∗ u+ min(θ, 0) ∗ l (6)

adding the biases if required and propagating the obtained
bound through the activation function. In the last years has
been shown that some more sophisticated approaches based
on the symbolic propagation [Wang et al., 2018b] and the
linear relaxation [Wang et al., 2018a] can provide more
accurate estimations of Γ̃(X , fθ) drastically reducing the
computation time, while we refer the interested reader to
the original works for further details, it is crucial to high-
light that these methods can not be easily parallelized and
therefore can not take full advantage of the growing com-
putational power. Moreover, these approaches requires the
piecewise linearity of the activation functions while the
naive method can be applied to any networks with mono-
tone functions.

To describe the input area propagation, we considered an ex-
planatory example with a network with two inputs (x0, x1),
one output (y0) and an input area ([0, 2], [1, 5]) to propagate

Figure 1: Area propagation, iterative refinement and area bi-
section. A possible subdivision of area ([0, 2], [1, 5]), results
in two sub-areas: ([0, 1], [1, 5]), ([1, 2], [1, 5])

through the network (Figure 1A). By performing interval
multiplications, additions and applying the linear activa-
tion considered in this example, we compute the output
bound. This method ignores the interdependencies of the
input variables, resulting in a very loose estimation (over-
estimation problem). The overestimation problem has been
addressed by the iterative refinement [Wang et al., 2018b].
This technique obtains a more accurate estimation of the
output bound, leveraging the fact that the dependency error
for Lipschitz continuous functions decreases as the width of
the interval decreases [Weng et al., 2018]. In detail, iterative
refinement subdivides the input area in smaller sub-areas,
computing the corresponding output bound for each of them.
The union of the output bounds results in a more accurate
bound of the original area. Figure 1B shows an example of
iterative refinement, where the process results in a better
estimation of the output bound (i.e., [8, 54] in contrast to the
[6, 56] estimation of the mere input area propagation).

Our results (Section 5) show that, with a sufficient number
of subdivision it is possible to obtain a reachable set com-
patible with state of the art approaches (e.g., [Wang et al.,
2018a]). Crucially, while with a standard computation this
approach would lead to a significant overheard on the re-
quired computational time, in our parallel setup this method
drastically reduce the wall-clock time required by the anal-
ysis, paving the possibility to compute Γ̃ online inside the
training loop.

3 BEHAVIORAL PROPERTIES

Verification of DNN for decision-making requires the com-
parison between the outputs and this may be difficult to
achieve with previous approaches. In particular Figure 2
visualizes different scenarios of our output analysis as a 2d
graph, to simplify its understanding. Notice that a network
with n > 1 requires a multi-dimensional graph, however,
we assume that each point on the x-axis represents a tuple
of n inputs (x ∈ X) in an arbitrary order (as it does not
affect the analysis), we represent the outputs (f(X)) on
the y-axis. Figure 2a shows the typical result of previous
verifiers: a generic representation of a single output func-
tion. This is also an ideal scenario where the overestimation
problem is solved (i.e., the output bounds [a, b] matches
minimum and maximum of the output function). However,
figure 2b clearly shows the limitations of such methods in
the verification of decision-making tasks, where y0 and y1
represent the output functions generated by two nodes of
a generic network. In particular, it is not possible to infer
which output action will be selected as they only compute
the output bounds, without considering the shape (and the
relationship) of the output functions. The main insight of
ProVe is to compute an accurate estimation of the output
function shape, subdividing the input area into multiple
subareas and computing the previous operations for each

Figure 2: Explanatory output analysis of: (a) one output function with one subdivision; (b) decision-making problem with
two outputs and one subdivision. (c) Estimation of an output function shape, using multiple subdivisions. (d) Output analysis
with three outputs and multiple subdivisions.

subarea. Figure 2c shows that, through this process, it is
possible to obtain a better estimation of an output shape.
Finally, Figure 2d considers multiple outputs and subareas,
allowing ProVe to state that output y0 is the output that the
network will choose for the given input area (i.e., y0 always
returns a higher value than the other outputs). This analysis
of the relationships among the network outputs is necessary
to formally verify a decision-making property.

3.1 DEFINITION OF SAFETY PROPERTIES FOR
DECISION-MAKING

Following the formulation provided by Liu et al. [2019]
(and adopted as standard in previous state of the art works),
a safety property for a neural network formalizes an input-
output relationship. In detail, a safety property can be for-
malized in the following form:

Θ : If x0 ∈ [a0, b0]∧ ...∧xn ∈ [an, bn]⇒ yj ∈ [c, d] (7)

where xk ∈ X , with k ∈ [0, n] and yj is a generic output.

A property in this form aims at verifying if an output of
a network lies in a specific interval. This formulation can
be applied to many problems related to robotics and deep
learning in general (e.g. the velocity limit of a motor or the
probability in a classification task). However, even if it is
possible to adapt this formulation to verify simple decision-
making properties, it requires to manually modify the input
network and introduces overhead in the verification process.

In contrast, we propose a different formulation, specifically
designed for decision making problems:

Θ : If x0 ∈ [a0, b0] ∧ ... ∧ xn ∈ [an, bn]⇒ yj > yi (8)

We refer to these properties as safe-decision properties as
they can be used to ensure that a given action (e.g., yj) is
always preferred over the others for a given input configura-
tion.

Following the insights of the previous section, we exploit
this proposition to prove (or deny) a variety of properties in
the form of Prop. 8. In detail, ProVe compares the computed
bounds, verifying if the values of one of them is strictly

lower than the others, which means that the DNN never
selects the action related to the output with the lower value.
As an example, to verify properties for a simplified naviga-
tion scenario encoded by a DNN with: (i) inputs xi ∈ [0, 1]
with i = 0, .., 3, representing the normalized distance from
an obstacle in the four cardinal directions (1 translates in a
distance ≥ 1m in that direction), where x0 is the right dis-
tance and x1 is the left distance. (ii) outputs y0 = right, y1
= left, representing the directions where the agent can turn.
We could be interested in a property as: Θ: If an obstacle is
close to the right and other directions are obstacle-free, al-
ways turn left. Assume we measured the minimum distance
from an obstacle (0.07m) that allows our autonomous drone
to avoid a collision when turning in the opposite direction,
supposing the worst case, where the robot is moving at its
maximum speed. We can exploit this constraint to formalize
the safety property in the form:

Θ : If x0 ∈ [0, 0.07] ∧ x1, x2, x3 ∈ D ⇒ y0 < y1 (9)

where D = (0.07, 1].

To verify the relation between two (or more) outputs, ProVe
relies on the interval algebra of Moore [1963]. In partic-
ular, supposing y′ = [a, b] and y′′ = [c, d] we have the
preposition:

b < c⇒ y′ < y′′ (10)

To better explain the key problem of previous interval
analysis based approaches, that prevent a direct applica-
tion to decision-making, in Figure 2 we show a simpli-
fied visual example of an output analysis for a decision-
making property. In a typical scenario we often have that
max(y1) > min(y0), hence we can not assert anything on
the property. Figure 2b shows an example of this behavior,
where d ≮ a, (i.e. the bounds overlaps). In this scenario
verification frameworks can not formally verify the property
(i.e., we do not have enough information to state if the prop-
erty condition is true or false). ProVe directly addresses this
problem by computing the propagation for a subset of the
input area to obtain a more accurate estimation of the output
function shape (Figure 2c). This leads to Figure 2d, where
y1(x) < y0(x) for any x ∈ X (X is the set of the possible

 Algorithm 1 ProVe
Input: network NET, input area matrix AREAS, property
PRP, precision EPS.
Output: VIOLATION RATE (%), if 0 the property is
verified on the entire input area.

1: mul-matrix← generate-mul-matrix(NET)
2: AREAS← split-area(AREAS, EPS, mul-matrix)
3: for sub-area in AREAS do
4: output-bound-matrix ← get-out-bound(NET, AR-

EAS)
5: end for
6: denied-areas← []
7: proved-areas← []
8: for output-bound in output-bound-array do
9: test← check-property(output-bound, PRP)

10: if test is VIOLATED then
11: append sub-area to violated-areas
12: update-violation-rate()
13: end if
14: if test is PROVED then
15: append sub-area to proved-areas
16: end if
17: remove [denied-areas, proved-areas] from AREAS
18: end for
19: if len(AREAS) not empty then
20: return: ProVe(NET, AREAS, PRP, EPS)
21: end if
22: return: DONE, denied-areas, violation-rate

inputs), which translates, de facto, in y1 < y0 (i.e. the net-
work always choose the action represented by y0 inside the
input area specified by the property). Furthermore, y2 ≮ y1
(the agent can choose y2 in that input domain).

4 PROVE

In this section, we address the huge amount of memory and
time required to compute and verify the output bounds for
decision-making properties. Furthermore, we introduce a
violation rate metric to measure the reliability of a model
with respect to a property, showing that in some scenarios,
we can design a simple controller to ensure the correct
behavior of a DNN in the entire input area.

Considering the pseudo-code in Algorithm 1, ProVe takes
as input: (i) a trained DNN; (ii) the input area encoded as
a matrix, (iii) the property to verify (expressed in the form
described in Section 3.1), and (iv) a discretization value ε
(Section 4.1). ProVe proceeds by performing an iterative
recursive splitting process using a matrix encoding. In more
detail, ProVe generates the multiplication matrix (Section
4.1) for the iterative splitting of the input area, performing
the first input split. Then, ProVe propagates the input to
compute the output bounds for each unverified sub-areas (a

subdivision of the former area, as described in Section 2).
This is the most computationally demanding part of ProVe
(the number of sub-areas is exponential in the recursion
depth). However, this procedure is easily parallelizable on
GPU, given that the propagation of each sub-area is inde-
pendent and the computed output bounds can be analyzed
individually, sequentially loading on the GPU memory a
subset of the former sub-areas. After these preliminary oper-
ations, ProVe evaluates the safety property for each output-
bound, returning three possible outputs: (i) the property is
violated; (ii) the property holds or (iii) we can not conclude
anything on the property in this area (i.e. the bounds overlap
as detailed in Section 2). In the first two cases, the property
is verified (proved or denied) and we remove the verified
area from the matrix. In the third case, the area matrix is
not empty, and we recursively call the algorithm with the
remaining unverified sub-area as input. Moreover, during
all the main loop the violation rate is constantly kept up-
dated (Section 4.2). In general, a property could require an
uncountable number of splits to be verified. For this rea-
son, we introduce a discretization value ε to create an upper
bound on the possible number of iterations (Section 4.1). If
the area matrix is empty, we return all the violated areas as
counterexample along with the violation rate that represents
an overestimation of the probability for a property to fail in a
real execution. If the violation rate equals to 0, the property
is formally verified in the given input area (i.e. the property
is true).

4.1 MATRIX ENCODING

The verification of decision making DNNs may require a
large number of area splitting, hence to use this technique
in practical applications the iterative splitting process must
be very efficient. The core idea behind ProVe is to exploit
matrix operations for the iterative splitting process. Matrix
multiplication is a widely used operation for several op-
timizations and inference tasks, it is known to be highly
parallelizable and there exist several dedicated and efficient
implementations. We encode the area splitting by using a
matrix A0 of size m × 2n, where m is the number of en-
tries (i.e. the sub-areas to split) and n the number of input
nodes (i.e. the bounds for each node, which are couple of
values). To split the k-th input node, we first generate a
multiplication-matrix B2n×4n. These are structured as:

A0
m×2n =

 [a0,0, b0,0] ... [a0,n, b0,n]
...

[am,0, bm,0] ... [am,n, bm,n]


B2n×4n =

[
Ĩ2n
′
Ĩ2n
′′
]

In detail, the matrix B is formed by two identity matrices.
Both these matrices maintain the values of an identity matrix
2n× 2n, except for the following elements:

Figure 3: Overview of (left) the most frequent input config-
uration encountered in a typical execution of the CartPole
environment and (right) the configurations found by ProVe,
that cause a property violation.

Ĩ2n
′
[2k][2k + 1] = 0.5

Ĩ2n
′
[2k + 1][2k + 1] = 0.5− ε,

Ĩ2n
′′
[2k][2k] = 0.5 Ĩ2n

′′
[2k + 1][2k] = 0.5 + ε

where ε is required to solve the infinite splitting loop that
we analyze in the next section. The result of matrix multi-
plication A1 = A0 × B is a matrix m × 4n, where a row
contains two parts of the corresponding input area, splitted
on the desired k-th node. Finally, in time O(1) we reshape
the matrix A1 to the desired matrix A1

2m×2n:

A1
2m×2n =

 [a0,0, b0,0] ... [a0,n, b0,n]
...

[a2m,0, b2m,0] ... [a2m,n, b2m,n]


Input Discretization The continuous domain of the in-
put space makes it always possible to split an input area,
hence ProVe could, in the some specific worst-cases, loop
infinitely on the iterative refinement process. To address
this, we introduce a discretization value ε to limit the input
precision and ensure the convergence of our algorithm in a
finite number of steps. Crucially, the ε parameter could be
as small as required by the application, however this will
have an impact on the worst case memory and computation
required by the approach. In particular, both time and space
complexity of the algorithm are exponential in ε, as we show
in the previous analysis. Notice that, ε can be considered as
a lever to address the trade-off between analysing input with
higher precision and maintaining the computation manage-
able. For several applications, and specifically for robotics, ε
can be tuned considering the precision of the sensing system.
In our mapless navigation task we set ε to be the precision
of the lidar system. With this setting ProVe was able to ver-
ify the application within an acceptable amount of time on
a standard computational architecture (Section 5 for more
details).

4.2 VIOLATION RATE

As we discussed in Section 2, while standard optimization
methods can only return SAT or UNSAT, a key component
of our approach is to quantify the number of violations
compared to the complete reachable set. We introduce a
violation rate metric to infer how a trained DNN performs
with respect to the given properties. We define this metric
as the percentage of the input area that causes a violation,
to compute this value at each step we normalize the size of
the area that violates the property with respect to the size
of the original input area. Crucially, the violation rate is an
upper bound for the actual probability of failure as visually
shown in Figure 3. In detail, the left figure shows the states
distribution over 10000 episodes of the CartPole scenario
[Sutton et al., 1983], while the right one shows the input
configurations that cause a violation of a safety property on
that environment. Clearly, the states where failures occur are
on rarely encountered input. This confirms that an empirical
evaluation would most probably not encounter those states,
ignoring errors that may appear during the deployment in a
real world context.

Definition 4.1 (Violation Rate). Given a set of behavioral
properties Π with input domain X , a neural network func-
tion fθ(x) and the corresponding estimated reachability
set Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X}. Defining
XUNSAT as a subset of the original domain X such that
Γ(XUNSAT, fθ) ∩ Y = ∅, we define the violation rate as
follow: v = |XUNSAT|

|X | ,

Definition 4.2 (Safe Rate). Given a set of behavioral prop-
erties Π with input domain X , a neural network function
fθ(x) and the corresponding estimated reachability set
Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X}. Defining XSAT as
a subset of the original domain X , such that Γ(XSAT, fθ) ⊆
Y , we define the safe rate as follow: s = |XSAT|

|X | .

Finally, in Section 5 we show how to exploit the violation
rate to design a simple controller to check at run-time if the
current network input causes a violation, formally guaran-
teeing the safety related to the desired properties.

5 EMPIRICAL EVALUATION

We empirically evaluate ProVe1 on three domains: ACAS,
trajectory generation for a robotic manipulator, and mapless
navigation. For these domains, we train the DNN by using
the Rainbow algorithm [Hessel et al., 2018]. Data are col-
lected on a commercial desktop computer (equipped with a
GPU NVIDIA2070, an 8-core CPU, and 16gb RAM), with
a c++ code based on CUDA11.

1code available at: https://github.com/d-corsi/ProVe

https://github.com/d-corsi/ProVe

Table 1: Comparison between the real collision probability
and the violation rate of our behavioural properties. The
table also shows the number of collisions for a model that
respects all the original 15 ACAS properties.

Model Properties V. Rate (%) Collision (%)

acas_50 θL, θR ≈ 50 14.21
acas_40 θL, θR ≈ 40 9.34
acas_30 θL, θR ≈ 30 8.22
acas_20 θL, θR ≈ 20 5.04
acas_10 θL, θR ≈ 10 3.71
acas_05 θL, θR ≈ 5 0.72

acas_og θ0, ..., θ15 ∅ 0.56

5.1 ACAS XU COMPARISON

The airborne collision avoidance system (ACAS), designed
to prevent the collision between aircrafts, has been widely
adopted by previous verification approaches [Owen et al.,
2019, Katz et al., 2017]. This system consists of a set of
networks, each one with five inputs: (i) distance between
ownship and intruders, (ii) heading of ownship with respect
to intruder, (iii) heading of the intruder relative to ownship,
(iv) speed of ownship and (v) speed of the intruder; and
five outputs to encode the action to take to avoid the col-
lision: (i) clear of conflict (which means that no action is
needed), (ii) weak right, (iii) strong right, (iv) weak left and
(v) strong left. For our evaluation, we rely on the Horizon-
talCAS implementation of Julian and Kochenderfer [2019],
which provides a set of trained networks and an extensive
dataset of safety critical situations.

In the previous sections, we introduced the problem of the
formalization of the safety properties. Design a set of prop-
erties that cover all the possible violations could be hard and
requires a deep prior knowledge of the environment. In some
cases (e.g., real world application or robotics) this process is
unfeasible. To support our claims, in Table 1 we show that,
even the 15 properties of ACAS, used as standard metric
to evaluate the safety in the state of the art works [Wang
et al., 2018a, Katz et al., 2017], are not informative enough
to guarantee the collision avoidance. In contrast, we pro-
pose to design a small set of behavioural safety properties,
that aims to ensure that the agent makes rational decisions,
instead to verify the complete set of unsafe possible actions.
We exploited ProVe to obtain the violation rate on only two
fundamental properties:

θL: If there is an intruder close on the left, never turn left.
θR: If there is an intruder close on the right, never turn right.

Table 1 shows our results. We compare six models that
achieve the maximum cumulative reward for the task, but
with significantly different violation rates. To obtain an
estimation of the real collision we rely on the safety-critical

configurations provided by Julian and Kochenderfer [2019],
comparing the behaviour of our models with the correct
actions of the dataset. More in detail, from the multitude
of trained models that achieve similar rewards, we select
a subset with a violation rate ranging from 50 to 4.8 (our
best result) with a step of 10. Notice that, in contrast to the
standard formulation, for our behavioural properties it is
difficult to obtain a violation rate of zero, having to cover a
huge amount of possible situations.

Our results show a strong correlation between the violation
rate and the real collision estimation, highlighting the limits
of the reward for the evaluation of safety-critical tasks and
the relevance of our novel metric. Finally, Table 1 shows
that the models that obtain the lowest violation rate on our
properties (acas_05) result in a similar collision number to
the one that respect all the 15 original properties (acas_og).
This further motivates our claims and the hypothesis that
our behavioural properties, designed without a deep prior
knowledge of the environment, provide a good indicator of
the safety of a model.

5.2 MAPLESS NAVIGATION

In mapless navigation a robot must reach a given target
without a map of the surrounding environment, using only
local observation to avoid obstacles. This is a challenging
scenario for DRL that has attracted significant attention in
recent literature [Zhang et al., 2017, Wahid et al., 2019]. In
detail, we consider a Turtlebot3 navigating with constant
linear velocity, which is a widely used platform in several
previous works focusing on DRL for navigation [Tai et al.,
2017, 2016]. Here, we use Unity as simulator [Juliani et al.,
2018] (previous work [Corsi et al., 2020] demonstrates that
this is an efficient and realistic simulation of the behavior of
the robot).

In our setup, the network has twelve inputs: (i) the laser
sensor is used to collect a sparse 11-dimensional scan values
x0, .., x10 normalized ∈ [0, 1] and sampled between -90
and 90 deg in a fixed angle distribution. The lidar sensor
precision is the manufacturer specification used to set the
ε discretization value; (ii) the heading of the target with
respect to the robot heading (x11 normalized ∈ [0, 1]); and
three outputs for the angular velocity (i.e., [-90, 0, 90] deg/s).

We evaluate the robustness of the network with three differ-
ent properties, that represent important behaviors that the
agent must respect to be considered reliable in navigating
in a polygonal map without collision with the surrounding
walls.

ΘT,0: If the target is in front of the robot and no obstacle is
detected, go straight.
ΘT,1: If there is an obstacle close to the left never turn left.
ΘT,2: If there is an obstacle close to the right never turn
right.

Table 2: Execution time comparison between Neurify and
ProVe on the standard properties of the ACAS Xu dataset.
For each group of properties table shows the mean compu-
tation time (seconds) and the average speed up (x).

Property Neurify (sec) ProVe (sec) Gain (X)

ΘA,1 1037.37 345.12 3.01
ΘA,2 19352.12 339.72 56.08
ΘA,3 1359.89 159.22 8.54
ΘA,4 113.62 132.31 0.86
ΘA,5 22.07 5.16 4.27
ΘA,6 4.91 11.5 0.42
ΘA,7 1278.7 64.84 19.72
ΘA,8 412.29 11.21 36.78
ΘA,9 643.8 42.97 14.98
ΘA,10 60.01 10.08 5.95
ΘA,11 0.51 5.79 0.08
ΘA,12 8.82 8.86 0.99
ΘA,13 34.76 10.34 3.36
ΘA,14 23.74 8.09 2.93
ΘA,15 1136.55 8.22 16.61

Total: 25526.52 1163.43 21.94

5.3 TRAJECTORY GENERATION FOR A
ROBOTIC MANIPULATOR

We chose safety verification for robotic manipulators be-
cause they are critical assets for industrial environments.
Our task is to rotate each joint of the robot to generate a
real-time trajectory to reach a target (a similar task is con-
sidered in [Gu et al., 2017, Marchesini et al., 2019]). In
our setup, the input layer of the network contains 9 nodes
normalized in range [0, 1]: (i) one for each considered joint
and (ii) the last three to encode the target coordinate. We
use 12 nodes in the output layer: each joint is represented
by 2 nodes to decide if it should move ω degrees clock-
wise or anti-clockwise. This encoding of the output allows
a straightforward verification process for our tool (i.e., one
node represents only one specific action). Furthermore, op-
erating the manipulator in the Cartesian space, we can use ω
as the ε value. Hence, to formally verify if the manipulator
operates inside its work-space, we consider properties in the
following form: if the current angle of a joint ji is equal to
one of its domain limits, whatever is the configuration of
the other joints and whatever is the position of the target,
the robot must not rotate ji in the wrong direction (i.e. an
action that rotates ji causes the robot to exit from the work-
space). Considering the network architecture and our task
formalization, we design safety properties as:

ΘP,0: If the first joint current rotation is close to the left
limit of the work-space, never rotate that joint on the left.

Property ΘP,0L represents a configuration where the angle
of joint j0 equals to its limit on the left (i.e., a normalized

Figure 4: Comparison between the success rate and the safe
rate in our environments.

value 1) and whatever values the other inputs of the network
assume, the output value corresponding to the action rotate
left, must be lower than at least one of the others. For each
joint ji we consider two properties, one for the left limit
(ΘP,iL) and one for the right limit (ΘP,iR).

5.4 DISCUSSION

In order to collect statistically significant data, we performed
different training phases for each task, using different ran-
dom seeds [Colas et al., 2019]. We report mean and standard
deviation (smoothed over one hundred episodes) for each
task, considering (i) the success rate (i.e., the number of
successful episodes over 100 sequential steps) and (ii) the
safe rate (the complementary metric of the violation rate,
used for a clearer visualization of the graphs).

Figure 4 shows that the violation rate is not directly corre-
lated to the success rate (or cumulative reward). In particular,
in the early stage of the training, the safe rate is surprisingly
high (i.e., the model is overall safe), we motivate that be-
cause the agent has not yet learned the task, consequently,
it tends to stay still or move around the same point. After-
ward, the safe rate starts to follow the trend of the success
rate, reaching the best values, this is the fundamental phase,
where the agent starts to learn the policy with a good general-
ization for unseen situations. Moreover, Figure 4 highlights
the problem described in the previous sections, the safe rate
becomes unstable. A multitude of models with the same
performance for the standard metric, obtains significantly
different values from the safety point of view. Moreover,
our results show an overall drop in the safety of the mod-
els in the last stage of the training, in general, the agents
starts to learn shorter paths, taking more dangerous actions
to maximize the reward. This further motivates the need to
use additional evaluation metrics, before the deployment
in a real world scenario. Finally, Table 2 shows that ProVe
can also be applied on the standard properties, providing a
performance comparison between ProVe and Neurify [Wang
et al., 2018a]. On average, ProVe achieves a speedup up of
20x over Neurify. In particular, we found a huge improve-
ment on the most time-demanding properties (i.e. θ1, θ2,

 θ15) while we obtain slightly worse performance on the sim-
plest ones. We motivate this as our approach requires to load
all the data on the GPU memory before the operations, and
this is a bottleneck on simple (and fast to verify) properties.
An additional analysis of the time and space complexity, a
convergence proof of the algorithm and the mathematical
formulation of our safety properties can be found in the
supplementary materials.

Simple Controller Due to the low violation rate of our
properties, it is possible to design a simple controller to
guarantee the correct behavior of the network. To illustrate
this, we describe the process to decide whether the controller
can be designed for the trajectory generation environment.
From the manipulator data-sheet, a step of 2 degrees (i.e. the
ω value of our controller) requires ≈ 0.01s to be executed
by the arm and, with the violation rate presented in Figure
4, a complete search through the array of the sub-areas that
cause a violation, always requires less than 0.01s. Ideally,
this means that we can verify if the input state leads to a vio-
lation at each iteration, without lags in the robot operations
(notice that this depends on the hardware). In contrast, we
computed that with a violation rate of ≈ 12%, a complete
search requires approximately 1.02s, making our solution
unfeasible without operational lags. Clearly, the application
of a simple controller to guarantee the correct behavior un-
der a certain property is limited by many factors, such as
the nature of the task and the characteristic of the agent.

6 RELATED WORK

Safety for DRL can be addressed in many ways. A wide
branch of literature proposes the use of well-designed re-
ward functions or aim at constraining the exploration [Gar-
cıa and Fernández, 2015, Li et al., 2018]. These methods,
minimize undesirable behaviors but can not provide formal
guarantees. Since the input space is effectively infinite, it
is not possible to test all the input configurations and it is
well-known that DNNs are vulnerable to specific adversarial
attacks or to an incorrect generalization to new situations
[Papernot et al., 2016]. To overcome these limitations, in
the last years a novel research direction aims at providing
some formal guarantees on the network. Two of the first
attempts in this direction are NeVer [Pulina and Tacchella,
2010], which shows that it is possible to abstract the veri-
fication problem with the interval algebra [Moore, 1963]),
and ILP [Bastani et al., 2016], which is the first method that
proposes to apply linear programming approaches to verify
some properties on the neural network. However, both of
these early attempts suffer from scalability problems and
can not be applied to a general neural network with hetero-
geneous activation functions. Nevertheless, these two works
paved the way for the two different branches for the formal
analysis of neural networks [Liu et al., 2019], respectively
reachability approaches and optimization.

Reachability This class of methods compute the output
reachable set Γ(X , fθ) exploiting the interval algebra to
perform a layer-by-layer analysis. ExactReach [Xiang et al.,
2018a] computes, and maintains, an independent reachable
set for every linear segments of the piecewise activation
function. However, the number of segments grows expo-
nentially and become intractable for a realistic neural net-
work. To overcome this limitation Ai2 [Gehr et al., 2018]
proposes an evolution of the previous method by approxi-
mating the reachable set, joining the results from different
linear segment and obtaining a smaller number of set to
propagate. Unfortunately, this method is only applicable to
piecewise activation functions and can only provide a large
overestimation of the actual reachable set. In recent years,
ReluVal [Wang et al., 2018b] proposes a symbolic propa-
gation approach to reduce the overestimation, obtaining a
more accurate estimation of the reachable set. Weng et al.
[2018] and Wang et al. [2018a] propose an evolution of the
previous methods based on the linear relaxation to handle
different types of nonlinear activation functions.

Optimization These methods propose to look at the verifi-
cation as an optimization problem, representing the neural
network as a constraint. A keystone for this class of problem
is Reluplex [Katz et al., 2017], which proposes the use of the
simplex algorithm to find counterexamples that falsify the
given properties. MIPVerify [Tjeng et al., 2018] encodes the
ReLu activation functions as integer constraints for a mixed
integer linear programming problem. Built upon these ap-
proaches, Sherlock [Bastani et al., 2016] and BaB [Bunel
et al., 2018] propose a hybrid approach for the estimation
of the reachable set.

7 CONCLUSION

In this paper, we highlight the limits of the standard eval-
uation for safety critical tasks in DRL. To overcome this
limitation, we introduce a novel metric to measure the re-
liability of a trained model, the violation rate. We build
this evaluation strategy upon the concept of formal verifi-
cation for DDN, introducing a different encoding for the
safety properties, specifically designed to ensure that the
agents always make rational decisions. Crucially, we present
ProVe, an efficient novel framework designed to formally
evaluate these properties for real-world decision-making
problems. We evaluate ProVe on various tasks of interest
in DRL literature, the ACAS dataset and two robotic sce-
narios, mapless navigation, and trajectory generation for a
commercial manipulator. This paper paves the way for sev-
eral important research directions, which include exploiting
the information given by the property analysis to perform a
safe-oriented training phase. Moreover, to guarantee that the
network is trained to respect a set of safety properties, it is
possible to exploit ProVe in the early stages of the training
to guarantee a safe exploration process.

 References

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos,
Dimitrios Vytiniotis, Aditya Nori, and Antonio Crim-
inisi. Measuring neural net robustness with constraints.
In Conference on Neural Information Processing Systems,
2016.

Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet
Kohli, and M Pawan Kumar. A unified view of piece-
wise linear neural network verification. In Conference on
Neural Information Processing Systems, 2018.

Rudy Bunel, Oliver Hinder, Srinadh Bhojanapalli, et al. An
efficient nonconvex reformulation of stagewise convex
optimization problems. In Conference on Neural Infor-
mation Processing Systems, 2020.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A
hitchhiker’s guide to statistical comparisons of reinforce-
ment learning algorithms, 2019.

Davide Corsi, Enrico Marchesini, Alessandro Farinelli, and
Paolo Fiorini. Formal verification for safe deep reinforce-
ment learning in trajectory generation. In International
Conference on Robotic Computing, 2020.

Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan,
and Ashish Tiwari. Output range analysis for deep neural
networks. In NASA Formal Methods, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive
survey on safe reinforcement learning. In Journal of
Machine Learning Research, 2015.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen,
Petar Tsankov, Swarat Chaudhuri, and Martin Vechev.
Ai2: Safety and robustness certification of neural net-
works with abstract interpretation. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), 2018.

S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In International Conference
on Robotics and Automation, 2017.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bi-
lal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning.
In Conference on Artificial Intelligence, 2018.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan,
and Pieter Abbeel. Adversarial attacks on neural network
policies. International Conference on Learning Repre-
sentations, 2017.

Christian Szegedy Ian Goodfellow, Jonathon Shlens. Ex-
plaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations, 2015.

Kyle D Julian and Mykel J Kochenderfer. Guaranteeing
safety for neural network-based aircraft collision avoid-
ance systems. In Digital Avionics Systems Conference
(DASC), 2019.

Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao,
Hunter Henry, Marwan Mattar, and Danny Lange. Unity:
A general platform for intelligent agents. In arXiv, 2018.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and
Mykel J. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In Computer Aided
Verification, 2017.

Zhaojian Li, Uroš Kalabić, and Tianshu Chu. Safe rein-
forcement learning: Learning with supervision using a
constraint-admissible set. In Annual American Control
Conference, 2018.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark
Barrett, and Mykel J. Kochenderfer. Algorithms for veri-
fying deep neural networks. In Foundations and Trends
in Optimization, 2019.

Alessio Lomuscio and Lalit Maganti. An approach to reach-
ability analysis for feed-forward relu neural networks. In
arXiv, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks, 2019.

E. Marchesini, D. Corsi, A. Benfatti, A. Farinelli, and P. Fior-
ini. Double deep q-network for trajectory generation of a
commercial 7dof redundant manipulator. In International
Conference on Robotics and Automation, 2019.

Ramon Edgar Moore. Interval arithmetic and automatic
error analysis in digital computing. In Stanford University,
1963.

M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper.
Acas xu: Integrated collision avoidance and detect and
avoid capability for uas. In 2019 IEEE/AIAA 38th Digital
Avionics Systems Conference (DASC), 2019.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In
European symposium on security and privacy, 2016.

Luca Pulina and Armando Tacchella. An abstraction-
refinement approach to verification of artificial neural net-
works. In International Conference on Computer Aided
Verification, 2010.

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska.
Reachability analysis of deep neural networks with prov-
able guarantees. In International Joint Conference on
Artificial Intelligence, 2018.

 R. S. Sutton, A. G. Barto, and C. W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control
problems. In IEEE Transactions on Systems, Man, and
Cybernetics, 1983.

L. Tai, G. Paolo, and M. Liu. Virtual-to-real deep rein-
forcement learning: Continuous control of mobile robots
for mapless navigation. In International Conference on
Intelligent Robots and Systems, 2017.

Lei Tai, Shaohua Li, and Ming Liu. A deep-network solution
towards model-less obstacle avoidance. In International
conference on Intelligent Robots and Systems (IROS),
2016.

Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. Evaluat-
ing robustness of neural networks with mixed integer
programming. In International Conference on Learning
Representations, 2018.

Ayzaan Wahid, Alexander Toshev, Marek Fiser, and Tsang-
Wei Edward Lee. Long range neural navigation policies
for the real world. In International Conference on Intelli-
gent Robots and Systems, 2019.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang,
and Suman Jana. Efficient formal safety analysis of neural
networks. In Conference on Neural Information Process-
ing Systems, 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang,
and Suman Jana. Formal security analysis of neural net-
works using symbolic intervals. In USENIX Security
Symposium, 2018b.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui
Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon.
Towards fast computation of certified robustness for relu
networks. In International Conference on Machine Learn-
ing, 2018.

Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson.
Reachable set computation and safety verification for neu-
ral networks with relu activations. In Annual American
Control Conference, 2018a.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson.
Output reachable set estimation and verification for mul-
tilayer neural networks. In IEEE transactions on neural
networks and learning systems, 2018b.

J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard.
Deep reinforcement learning with successor features for
navigation across similar environments. In International
Conference on Intelligent Robots and Systems, 2017.

	Introduction
	Preliminaries
	Reachability Approaches

	Behavioral Properties
	Definition of Safety Properties for Decision-Making

	ProVe
	Matrix Encoding
	Violation Rate

	Empirical Evaluation
	ACAS XU Comparison
	Mapless Navigation
	Trajectory Generation for a Robotic Manipulator
	Discussion

	Related Work
	Conclusion

