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Abstract

Markov blanket feature selection, while theo-
retically optimal, is generally challenging to
implement. This is due to the shortcomings
of existing approaches to conditional indepen-
dence (CI) testing, which tend to struggle ei-
ther with the curse of dimensionality or com-
putational complexity. We propose a novel
two-step approach which facilitates Markov
blanket feature selection in high dimensions.
First, neural networks are used to map features
to low-dimensional representations. In the sec-
ond step, CI testing is performed by applying
the k-NN conditional mutual information esti-
mator to the learned feature maps. The map-
pings are designed to ensure that mapped sam-
ples both preserve information and share simi-
lar information about the target variable if and
only if they are close in Euclidean distance.
We show that these properties boost the per-
formance of the k-NN estimator in the second
step. The performance of the proposed method
is evaluated on both synthetic and real data.

1 INTRODUCTION

A prominent approach for selecting features relevant to
a target variable is to choose a minimal set that renders
the target variable conditionally independent of the rest
of the features. This approach is referred to as Markov
blanket feature selection, and has attracted wide attention
due to its theoretical optimality and strong performance
(Aliferis et al., 2010). However, testing for conditional
independence (CI) from data is a notoriously challenging
task, especially for continuous-valued variables of high
dimension (Paninski, 2003). As a result, Markov blanket
feature selection is challenging to implement in the case
of high-dimensional features. For instance, time-series
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features with high Markov order, such as speech samples,
are equivalent to high-dimensional variables.

One of the most promising approaches for (conditional)
independence testing is based on the estimation of mu-
tual information (MI) and conditional mutual informa-
tion (CMI). Due to its desirable properties, such as
invariance under invertible transformations and ability
to capture arbitrary nonlinear relationships (Cover and
Thomas, 2006), MI commonly appears in several ma-
chine learning tasks, including feature selection (Bat-
titi, 1994), clustering (Kraskov and Grassberger, 2008),
and learning graphical models (Koller and Friedman,
2009). Numerous MI and CMI estimators have been
proposed for continuous-valued variables. Most non-
parametric estimators are based on k-NN density esti-
mation (Kraskov et al., 2004; Frenzel and Pompe, 2007;
Gao et al., 2017) or kernel density estimation (Moon
et al., 2017). Those estimators have been demonstrated
to be fast and reliable for many problems with moderate
dimension and sample size, yet have difficulty scaling to
high dimensions and may exhibit high sample complex-
ity (Gao et al., 2015).

Towards MI estimation in high dimensions, model-based
approaches, which optimize variational bounds on MI,
have recently been proposed (Belghazi et al., 2018; Poole
et al., 2019). Model-based methods take advantage of
the representational power of neural networks in order to
discover complex structures in the variables. This can
give them an advantage over non-parametric methods in
high dimensions. Similar model-based approaches have
also been proposed for CMI estimation (Mukherjee et al.,
2019). However, model-based methods require an indi-
vidual neural network to be trained and tuned for each
CI test performed, rendering those methods unsuitable
for Markov blanket feature selection.

In this paper, we propose a model-augmented approach
to CI testing suitable for Markov blanket feature selec-
tion. Our method simultaneously retains the computa-



tional tractability of non-parametric estimators and lever-
ages the representational power of model-based methods.
The main contributions of our work are as follows.

• We present an efficient Markov blanket feature
selection algorithm for high-dimensional features
based on CMI estimation. It efficiently implements
the required CI tests by gradually increasing the
conditioning set size (Section 2).

• We propose a two-step approach for efficiently es-
timating each of the required CMIs in the high di-
mensional case. In the first step, low-dimensional
mappings of the features are learned by optimiz-
ing an objective with a likelihood and regularization
term. In the second step, the k-NN CMI estimator is
used to perform the CI tests on the mapped samples.

• Regarding the likelihood term in the objective, we
show that it minimizes an upper bound on the CMI
estimation error introduced by the mappings. Thus
it preserves all the information required for accurate
CMI estimation (Subsection 3.1).

• We propose an efficient method for simultaneously
learning the feature mappings for all CI tests that
uses parameter sharing and a feature dropout tech-
nique that we call block-dropout (Subsection 3.2).

• Regarding the regularization term in the objective,
we propose a novel regularization approach which
ensures that the mappings satisfy the information
efficiency property: mapped samples share similar
information about the target variable if and only if
they are close in Euclidean distance. We show that
the regularization term improves the performance of
the k-NN CMI estimator in the second step of our
approach (Section 4).

The proposed method is evaluated on both synthetic and
real data in Section 5. We applied our method to se-
lect time-series diagnostic features for predicting data-
center hard disk drive (HDD) failures. Due to the non-
stationary nature of the data, existing methods either fail
to eliminate all redundant features consistent with expert
knowledge or miss many informative features.

Related Work. There is an extensive literature on non-
parametric CI tests that use test statistics other than CMI.
For example, kernel-based methods characterize CI in
reproducing kernel Hilbert spaces (Gretton et al., 2007;
Lee and Honavar, 2017). Those methods have demon-
strated some success for high-dimensional problems, but
tend to scale poorly with sample size since large kernel
matrices need to be computed. Model-based approaches
have been proposed for the problem of general-purpose

CI testing in high dimensions (Sen et al., 2017). How-
ever, as is the case for model-based CMI estimators, the
complexity of those methods renders them unsuitable for
Markov blanket feature selection. In this work, we fo-
cus on the k-NN CMI estimator in the second step of our
approach since it performs comparably to kernel-based
methods (Runge, 2018), yet is computationally easier.

Our Markov blanket feature selection approach is sim-
ilar to embedded feature selection methods, which at-
tempt to efficiently consider relationships between fea-
tures by performing feature selection and learning simul-
taneously. For example, the Lasso (Tibshirani, 1996)
selects features using `1 regularization for regression;
this concept has since been extended to more general
learning-based feature selection (Li et al., 2015). Other
approaches attempt to quantify the effect of a feature on
a learned model (Ye and Sun, 2018) or learn a fixed-size
set of features in an unsupervised setting (Balın et al.,
2019). Unlike those methods, our proposed approach di-
rectly seeks the minimal feature set for a particular pre-
diction task using conditional independence information.

Notation. We denote random variables by capital let-
ters (e.g., X) and their realizations by small letters (e.g.,
X = x). We assume that all variables are jointly con-
tinuous, although the results can be extended to the case
of discrete target variable Y by appropriately replacing
densities with discrete distributions.

Let V = {X1, ..., Xm} denote the set of all the features
and let Y be the target variable. We denote the set of
indices = {1, ..., k} for 1  k  m by [k], and a subset
of the features with indices in S ✓ [m] by XS .

2 AN EFFICIENT IMPLEMENTATION
OF MARKOV BLANKET FEATURE
SELECTION

In this Section, we first formally define Markov blanket
feature selection and then present an efficient implemen-
tation of this approach in Subsection 2.1.

Consider a set of features V = {X1, ..., Xm} that are
used to predict a target variable Y . The goal of feature
selection is to find a minimal subset of the Xi’s that can
be used to optimally predict Y . We focus on the case
where Y is low-dimensional, either initially or with the
aid of dimensionality reduction. The features may be
high-dimensional however, rendering direct application
of the k-NN CMI estimator impractical.

Definition 1 (Markov blanket). A subset XSM ✓ V is a
Markov blanket of Y if it is a minimal set such that Y is
conditionally independent of any subset XS ✓ V given
XSM . This is denoted as Y ?? XS |XSM .



Therefore, given the Markov blanket, the values of the
rest of the variables become superfluous. Any approach
which chooses relevant features in the sense of Definition
1 is referred to as Markov blanket feature selection.

Let G be the DAG corresponding to the Bayesian net-
work of V [{Y }. Xi is called a parent of Y if there is an
edge Xi ! Y in G; similarly, Xi is a child of Y if there
is an edge Y ! Xi. Under some conditions (see Supple-
mentary Materials), the Markov blanket of each variable
is unique and consists of its parents, its children, and the
other parents of its children (called the coparents) (Koller
and Friedman, 2009).

2.1 CONTROLLING THE CONDITIONING SET
SIZE

From Definition 1 it is evident that a single CI test is
sufficient to determine whether a feature belongs to the
Markov blanket of the target variable; of course, this
test is performed conditioned on all of the other fea-
tures. In practice, testing for conditional independence
is challenging when the conditioning set is large due to
the curse of dimensionality. Therefore, in general one
cannot hope to determine whether or not a particular fea-
ture is in the Markov blanket using only a single CI test.

Our feature selection approach provides an efficient
method for identifying the Markov blanket, and is pre-
sented in Algorithm 1. In this algorithm, � denotes the
maximum degree of the underlying Bayesian network,
which in practice can be treated as a hyperparameter. The
first part of the algorithm (lines 3-14) searches for the set
Adj, which is the set of all features adjacent to the tar-
get variable (parents and children). A feature is declared
to be non-adjacent if a feature set rendering it condition-
ally independent of Y is found. For each feature, we
gradually increase the number of conditioning variables,
starting with the empty set; this is similar to the approach
of the PC algorithm for causal structure learning (Spirtes
et al., 2000). As is the case for PC, the computational
complexity of this part of the algorithm is polynomial in
the number of features.

As mentioned earlier, coparents of Y also belong to the
Markov blanket of Y . Coparents have the property that
they are statistically dependent conditioned on any sub-
set of variables which contains at least one of their com-
mon children (Pearl, 2014). Therefore, in order to find
the coparents of Y we perform a CI test conditioned on
variables adjacent to Y (lines 15-21). Finally, Algorithm
1 returns the set of adjacents and coparents of Y .

In many applications, the target variable cannot be the
cause of any of the features in the system. This is always
the case when features are time series and the target is
a variable to be predicted at the end of the time horizon.

Algorithm 1 Markov Blanket Feature Selection
1: input: features V , target Y ,
2: max conditioning set size �
3: // Identify Adjacents (Parents and Children)
4: Initialize Adj  V
5: for c from 0 to � do
6: for Xi 2 Adj do
7: for XS ✓ Adj \ {Xi} such that |XS | = c do
8: if Y ?? Xi|XS then
9: Adj  Adj \ {Xi}

10: break
11: end if
12: end for
13: end for
14: end for
15: // Identify Co-parents
16: Initialize CoP  ;.
17: for Xi 2 V \ Adj do
18: if Y 6?? Xi|Adj then
19: CoP  CoP [ {Xi}
20: end if
21: end for
22: return Adj [ CoP

One example is the HDD failure prediction problem con-
sidered in Section 5. In this case, Markov blanket feature
selection is equivalent to causal feature selection, which
is desirable for its robustness to shifts in the distributions
(Guyon et al., 2007). This connection is explored in more
detail in the Supplementary Materials.

We use CMI as the test statistic for the CI tests in Algo-
rithm 1. The following section introduces our proposed
CMI estimation method.

3 MODEL-AUGMENTED CMI
ESTIMATION

For jointly continuous random variables X , Y , and Z,
the CMI between X and Y given Z is defined as

I(X; Y |Z) = E
"

log
p(X, Y |Z)

p(X|Z)p(Y |Z)

#
, (1)

where p(X, Y |Z), p(X|Z), and p(Y |Z) are the condi-
tional densities and the expectation is taken over the joint
distribution. When the conditioning on Z is removed, (1)
is known as the mutual information (MI) between X and
Y , and is denoted by I(X; Y ).

For Markov blanket feature selection, Algorithm 1 re-
quires estimates of a collection of CMI values of the form
I(Y ; Xi|XS) for a feature Xi 2 V and conditioning set
XS ✓ V \ {Xi}. We propose a two-step approach for
estimating each of those CMI values.



1. For each feature Xi, find a low dimensional map-
ping fi : Xi 7! fi(Xi).

2. Estimate I(Y ; fi(Xi)|F (XS)) as a proxy for the
true CMI I(Y ; Xi|XS) using the k-NN CMI esti-
mator, where F (XS) := {fj(Xj) : j 2 S}.

We propose a regularized maximum likelihood objective
for learning the feature mappings in the first step. The
analysis of the likelihood part of the objective and our
proposed efficient implementation are presented in Sub-
sections 3.1 and 3.2, respectively. The regularization part
of the objective is introduced in Section 4.

3.1 LEARNING INFORMATION-PRESERVING
FEATURE MAPPINGS

As mentioned earlier, we propose to use a maximum
likelihood approach to learn the mappings. In this sec-
tion we analyze the connection between the likelihood
term and the mapping-induced error.

We first discuss the case of estimating the MI I(Y ; Xi)
between the target variable and a single feature Xi; this is
required for the unconditional independence tests in Al-
gorithm 1. We show that a maximum likelihood estima-
tor minimizes an upper bound on the mapping-induced
error I(Y ; Xi) � I(Y ; fi(Xi)); note that this quantity
is positive by the data-processing inequality (Cover and
Thomas, 2006).

Since the underlying distributions are unknown, for each
i 2 [m] we introduce a distribution q✓i(Y |fi(Xi)), pa-
rameterized by ✓i, which serves as a surrogate for the
true conditional distribution p(Y |fi(Xi)). In practice,
the surrogate distributions are chosen to be in a paramet-
ric family. For example, q✓i may be chosen to be a nor-
mal distribution for continuous, univariate Y , where the
mean and variance are functions of fi(Xi) parameterized
by neural networks.
Theorem 1. The following minimizes an upper bound
on the non-negative error I(Y ; Xi)� I(Y ; fi(Xi)):

max
fi,✓i

E
⇥
log q✓i(Y |fi(Xi))

⇤
, (2)

where the expectation is taken over the joint distribution
of Y and Xi.

Intuitively, by maximizing the data log likelihood of a
surrogate distribution q✓i(Y |fi(Xi)), fi is encouraged to
be a sufficient statistic of Xi for Y .

The following theorem shows a similar result for esti-
mating the CMI I(Y ; Xi|XS). For all i 2 [m] and S ✓
[m]\{i}, consider surrogate distributions q✓i(Y |fi(Xi))
and q✓i,S (Y |fi(Xi), F (XS)) with respective parameters
✓i and ✓i,S for the true distributions p(Y |fi(Xi)) and
p(Y |fi(Xi), F (XS)).

Theorem 2. The following minimizes an upper bound
on the error |I(Y ; Xi|XS)� I(fi(Xi)|F (XS))|:

max
✓i,✓i,S ,

fj :j2{i}[S

E
h
log q✓i(Y |fi(Xi))

+ log q✓i,S (Y |fi(Xi), F (XS))
i
, (3)

where the expectation is over the joint distribution of Y ,
Xi, and XS .

For any CI test in Algorithm 1, we need to solve an opti-
mization problem in the form of (2) or (3) over a separate
set of mappings and surrogate distributions.
Example 1. In the case of m = 2, we need to maximize

• E[log q✓1(Y |f1(X1))] over f1 and ✓1,

• E[log q✓2(Y |f2(X2))] over f2 and ✓2,

• E[log q✓0
1
(Y |f 0

1(X1))+ log q✓1,{2}(Y |f 0
1(X1), f 0

2(X2))]
over f 0

1, f 0
2, ✓01, and ✓1,{2}, and

• E[log q✓̃2(Y |f̃2(X2))+ log q✓2,{1}(Y |f̃2(X2), f̃1(X1))]

over f̃1, f̃2, ✓̃2, and ✓2,{1}.

Evidently, 6 different mappings and 6 different sets of
parameters are required.

For general m, when estimating all CMI values of the
form I(Y ; fi(Xi)|F (XS)), 2m�1 individual mappings
fi are needed for Xi when there is no limit on the degree,
each corresponding to a conditioning set S ✓ [m] \ i.
Note that separate mappings are required for the condi-
tioning sets as well. Moreover, a similar number of con-
ditional distributions (in the form of q✓i and q✓i,S ) are
required. This is clearly intractable, even for small m.

A naive solution to this issue is to maximize the likeli-
hood of only a single surrogate distribution q✓(Y |F (V ))
conditioned on all of the feature mappings. However,
consider the following example. Suppose X1 and X2

are identical copies containing the same information
about Y , such that I(Y ; X1) = I(Y ; X2) > 0. Us-
ing the naive approach, f1 and f2 are not guaranteed
to produce f1(X1) and f2(X2) satisfying I(Y ; X1) =
I(Y ; f1(X1)) = I(Y ; f2(X2)). This is due to the fact
that the best predictor of Y given both X1 and X2 is no
better than the best predictor of Y given X1 only. Sup-
pose f2 ⌘ 0 and f1(X1) = X1; no predictor given both
X1 and X2 is strictly better than the optimal predictor
given f1(X1) and f2(X2), yet I(Y ; f2(X2)) = 0. Note
that the error in estimating I(Y ; X2) also propagates to
the estimation of I(Y ; X1|X2). This example demon-
strates that, while redundancy in the input variables need
not be retained for prediction, any redundancy should be
retained for CMI estimation. We propose an approach to
circumvent the exponential nature of the problem in the
next subsection.



3.2 PARAMETER SHARING AND
BLOCK-DROPOUT

We make two approximations to address the exponen-
tial number of required mappings and surrogate condi-
tional distributions, respectively. First, we learn a sin-
gle set of mappings f1,...,fm which are shared for all
CMI estimations. A multi-objective optimization is re-
quired for learning the shared mappings jointly, where
the objectives are in the form of (2) or (3). For any
subset S ✓ [m], let q✓S (Y |F (XS)) be a surrogate for
p(Y |F (XS)). We minimize the weighted sum

max
✓S :S✓[m]
fi:i2[m]

X

S✓[m]

PS · E
⇥
log q✓S (Y |F (XS))

⇤
, (4)

where PS is a discrete distribution over S.

Although the optimization (4) eliminates the need for
having multiple mappings for each feature, an exponen-
tial number of surrogate conditional distributions still
needs to be estimated. We propose a randomization-
based implementation to circumvent this issue. Our
method enables us to share a single set of parameters
✓ among all of the surrogate conditional distributions.
More specifically, let W = [W1 · · · Wm] be a binary
random vector of length m. Also, denote FW (V ) =
{Wi · fi(Xi) : i 2 [m]}. For instance, in the case
of m = 2, FW (V ) = {W1f1(X1), W2f2(X2)}. Note
that W is a binary mask for the feature mappings. We
propose the following optimization for finding the map-
pings:

max
✓,fi:i2[m]

X

w2{0,1}m

Pw · E
⇥
log q✓(Y |Fw(V ), w)

⇤
. (5)

For every feature subset S, there is a corresponding W
such that Wi equals 1 if i 2 S, and 0 otherwise. For this
choice of S and W , we take q✓(Y |FW (V ), W ) to be the
surrogate of p(Y |F (XS)) and set PW = PS in (5).

We next introduce a dropout-based implementation of
the program (5), which we refer to as block-dropout.
The distribution q✓ is parameterized by a neural network
which takes FW (V ) and W as inputs. In order to obtain
samples of FW (V ), for each sample of F (V ), a subset of
its feature mappings are randomly dropped out, i.e., set
to zero, according to the discrete distribution PW . Note
that if an individual feature mapping is vector-valued, the
entire block of entries corresponding to that mapping are
set to zero. Figure 1 illustrates the proposed approach for
learning the feature mappings.

Our proposed approach is reminiscent of dropout regu-
larization, which was originally proposed as a compu-
tationally efficient approach for approximate model av-
eraging (Srivastava et al., 2014). In fact, our approach
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Figure 1: Proposed approach for learning the feature
mappings. X1, ..., Xm are individually mapped to rep-
resentations f1(X1), ..., fm(Xm). Each mapping fi(Xi)
is dropped with some probability (multiplied with binary
Wi). The conditional distribution q✓(Y |FW (V ), W ) is
parameterized by the remaining mappings.

is equivalent to a dropout layer applied to the feature
mappings when W is chosen to be a random vector
with i.i.d. Bernoulli entries and the feature mappings
are scalar. Unlike dropout, block-dropout removes en-
tire feature mappings at a time. Moreover, we instead
choose W to be uniformly distributed over length-m bi-
nary vectors with number of ones between 1 and � + 1,
due to (3) and the fact that � is the largest conditioning
set size in Algorithm 1.

In the following section, we propose a regularization
term that, when added to the objective (5), ensures that
non-parametric estimators such as k-NN perform well
when given mapped data samples of F (V ).

4 INFORMATION EFFICIENCY

The second step of our approach employs a non-
parametric CMI estimator on samples of the learned fea-
ture mappings for CI testing. We focus on the k-NN ap-
proach, although the following discussion is generaliz-
able to other non-parametric estimators which are based
on local density estimates around each data point.

Kraskov et al. (2004) introduced the k-NN MI estimator
for the continuous case as an improvement over meth-
ods that combine quantization and discrete estimators,
which are known to have non-negligible bias (Panin-
ski, 2003). The k-NN MI estimator was based on the
widely-adopted k-NN estimator of differential entropy
(Kozachenko and Leonenko, 1987), and was later ex-
tended to CMI (Frenzel and Pompe, 2007). In the k-NN
approach, the joint density is assumed to be constant in
a hypercube centered around each data point. The diam-
eter of this hypercube is determined by the point’s `1
distance to its k-nearest neighbor, and the sample com-
plexity of the k-NN method depends on the rate at which
k-NN distances shrink as sample size grows (Gao et al.,
2018). The faster k-NN distances converge to zero, the



better the sample complexity.

While the k-NN estimator is consistent under mild as-
sumptions (Gao et al., 2017, 2018), it can exhibit arbitrar-
ily high sample complexity due to its reliance on `1 dis-
tance. Notably, k-NN is known to under-perform for dis-
tributions with bounded support, a phenomenon known
as boundary bias. Intuitively, for a point on the bound-
ary of the support, the distance to its k-th nearest neigh-
bor shrinks more slowly than the distance for a point in
the interior of the support as the sample size grows. As
a result, for a fixed k, densities on the boundaries tend to
be systematically under-estimated.

Boundary bias is an example of a fundamental issue with
the k-NN approach: the estimation of the density at a
point is not accurate unless the point is surrounded by
sufficiently many similar points. To resolve this issue,
we propose adding a regularization term to the likeli-
hood objective (5) that ensures that the mappings are
suitable for the k-NN CMI estimator. The main idea
is that mapped samples should share similar information
about the target variable if and only if they are close in
Euclidean distance.

We formalize this intuition by introducing the concept of
information efficiency defined as follows. For this defi-
nition we use the notion of the Jeffreys divergence (Jef-
freys, 1948) between two distributions p and q, which is
defined as

DJ(pkq) =
1

2
D(pkq) +

1

2
D(qkp), (6)

where D(·k·) denotes the KL-divergence.

Definition 2 (Information Efficiency). X is information-
efficient with respect to Y if for any ✏ > 0 there exists
a � > 0 such that for any realizations x and x0 of X ,
kx � x0k < � if and only if DJ(p(Y |x)kp(Y |x0)) < ✏,
where k · k is any norm on the domain of X .

The word “efficiency” is used to emphasize that Defini-
tion 2 is a condition for how efficiently the k-NN method
uses the data points. Section 5 provides an example that
shows that the sample complexity of k-NN for estimat-
ing I(X; Y ) can be improved by replacing samples of
X with those of f(X), where f(X) is both information
efficient and a sufficient statistic. We chose Jeffreys di-
vergence as a distance measure between distributions be-
cause it is symmetric and can be computed analytically
in many cases.

To produce statistics f1(X1), ..., fm(Xm) which exhibit
the information efficiency property with respect to Y ,
we propose a regularization term that maps dissimilar
mapped samples apart while pulling similar samples to-
gether. For each feature Xi, let X 0

i and X 00
i be two i.i.d.

Algorithm 2 Feature Mapping Learning
1: input: batch size n, structure of f1, ..., fm and q✓

2: for number of training iterations do
3: Obtain n data samples {(y(k), v(k))}nk=1

4: Obtain n samples of W : {w(k)}nk=1

5: J  1
n

Pn
k=1 log q✓(y(k)|Fw(k)(v(k)), w(k))

6: for i = 1 to m do
7: {(v0i)

(k)}nk=1  {v(k)}nk=1

8: {(v00i )(k)}nk=1  {v(k)}nk=1

9: Shuffle xi samples of {(v00i )(k)}nk=1

10: for k in 1, ..., n do
11: if w(k)

i = 1 then
12: (q0i)

(k)  q✓(y(k)|Fw(k)((v0)(k)), w(k))

13: (q00i )(k)  q✓(y(k)|Fw(k)((v00)(k)), w(k))

14: D(k)
i  DJ((q0i)

(k)k(q00i )(k))

15: d(k)i  kfi((x0
i)

(k))� fi((x00
i )(k))k22

16: end if
17: J  J � � 1

n

��d(k)i �D(k)
i

��

18: end for
19: end for
20: Update ✓ and f1, ...fm to maximize J
21: end for
22: return learned mappings f1, ..., fm

random samples of Xi and define the modified feature
sets

V 0
i := {X1, ..., Xi�1, X

0
i, Xi+1, ..., Xm},

V 00
i := {X1, ..., Xi�1, X

00
i , Xi+1, ..., Xm}.

Furthermore, we define the conditional distributions
q0i := q✓(Y |FW (V 0

i ), W ) and q00i := q✓(Y |FW (V 00
i ), W ).

For each i, consider the regularization term

Ri =
���kfi(X 0

i)� fi(X
00
i )k22 �DJ(q0ikq00i )

���.

Minimizing Ri encourages fi to exhibit the information
efficiency property with respect to Y . We minimize

R =
mX

i=1

WiRi, (7)

where Wi is the i-th entry of the block-dropout variable
W . For each i, Ri is minimized only if Wi = 1 (Xi is
not dropped out). In summary, we maximize

max
✓,fi:i2[m]

E
⇥
log q✓(Y |FW (V ), W )� �R

⇤
, (8)
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Figure 2: Bullseye dataset (✏ = 0.3). (a) illustrates the support of X . Mapped samples of X produced by the proposed
method with (b) and without (c) the proposed regularization are plotted over heatmaps of Eq✓ [Y |fregularized(X)] and
Eq✓ [Y |fnominal(X)], respectively. Samples of fregularized(X) which lie on constant contours are mapped close together.

where � is a regularization hyperparameter and the ex-
pectation is taken over Y , V , W , and X 0

i , X 00
i for all i.

In practice, for each i we obtain minibatch samples of
X 0

i and obtain X 00
i by shuffling the samples of X 0

i . The
learning algorithm for optimizing (8) is presented in Al-
gorithm 2. Our regularization technique is conceptually
related to contrastive loss functions for representation
learning, e.g. Hadsell et al. (2006). However, (7) also
serves to separate points containing dissimilar informa-
tion, a characteristic important for k-NN performance.

5 EXPERIMENTS
In this section, we evaluate our proposed method on both
synthetic and real data. For all experiments, we use the
k-NN estimator in the second step of our proposed ap-
proach. In the case that the target variable Y is discrete,
we use a modification of the k-NN approach for discrete-
continuous mixtures (Gao et al., 2017). Additional de-
tails regarding the experiments can be found in the Sup-
plementary Materials.

5.1 2D BULLSEYE DATASET
Consider random variables R ⇠ Unif{[1, 2] [ [3, 4]},
⇥ ⇠ Unif[0, 2⇡], and N ⇠ Unif[�✏, ✏] for 0  ✏  0.5.
Let X = (R cos ⇥, R sin ⇥) and Y = R + N . Sam-
ples of X are plotted in Figure 2a for ✏ = 0.3; as seen
in the figure, the support of X resembles a bullseye in
R2. X is not information efficient with respect to Y ,
since Y only depends on the magnitude of X . There-
fore, we would expect that non-parametric estimators,
such as k-NN, systematically underestimate the mutual
information I(X; Y ). We now evaluate the ability of the
regularized objective (8) to learn an information efficient
mapping that improves subsequent k-NN MI estimation.

Learning an Information Efficient Mapping. Ob-
serve that X does not satisfy the information efficiency
property with respect to Y , since any two X values with
the same radial distance from the origin carry the same
information about Y . Furthermore, the geometry of the
support of X introduces a boundary bias. On the other

hand, the statistic R = kXk2 is information efficient
with respect to Y , and I(X; Y ) = I(R; Y ). This value
of this MI is derived in the Supplementary Materials.

In order to compare the effect of the proposed regu-
larization term (7), we learn two mappings fregularized
and fnominal by optimizing (8) and (5) respectively, i.e.,
fnominal is learned by optimizing only the likelihood
term. The surrogate distribution q✓(Y |FW (V ), V ) is
chosen to be a normal distribution parameterized by
three-layer feedforward neural networks, the mappings
are also learned using three-layer feedforward neural net-
works, and the regularization coefficient in (8) was cho-
sen to be 0.1. Mapped samples are shown in Figures
2b and 2c, respectively. In both cases, mapped sam-
ples are plotted over a heatmaps of Eq✓ [Y |fregularized(X)]
and Eq✓ [Y |fnominal(X)], respectively.1 Intuitively, the
proposed regularization term pulls points along constant
contours together. Unlike the samples of fnominal(X),
samples of fregularized(X) are clustered around a single
line resembling an embedding of R in R2.

Estimation of I(X;Y ). We now compare the perfor-
mance of five estimators of I(X; Y ): the k-NN method
(Kraskov et al., 2004), the weighted kernel density es-
timator GENIE (Moon et al., 2017), the model-based
MINE estimator (Belghazi et al., 2018), and the pro-
posed method, with (regularized) and without (nominal)
the proposed regularization term (7). In addition, we also
compare with the the performance of the k-NN estima-
tor given samples of R instead of samples of X , which
is denoted by k-NN (R). Figures 3a and 3b compare the
performance of those estimators across different values
of ✏ and sample size, respectively.

Due to the generating model of Y , R is an information
efficient statistic for estimating the MI, and indeed k-NN
(R) consistently gives the best performance. Due to the
geometry of the distribution, the two non-parametric es-
timators k-NN and GENIE systematically underestimate

1Note that since block-dropout is not applicable for the MI
estimation task, the binary mask W is omitted.
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Figure 3: Performance comparison of MI estimators on the 2D Bullseye Dataset.
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Figure 4: CI Testing experiment with the 3D Bullseye Dataset.

the MI. The proposed method improves the performance
of k-NN, especially with the regularization term. The
performance improvement can be explained by Figures
2b and 2c. Samples of fregularized and fnominal containing
similar information about Y under the surrogate distri-
bution are clustered more closely together, although this
effect is more pronounced in the regularized case.

The proposed (regularized) method performs compara-
bly to the model-based MINE method, suggesting that
the gap in performance between k-NN and model-based
estimators can be bridged using a learned information-
efficient statistic. For this problem, knowledge of the
joint distribution of X and Y can be used to find a statis-
tic R that improves k-NN performance analytically. For
the general case, our proposed method provides a frame-
work for learning an appropriate statistic.

5.2 3D BULLSEYE DATASET
This experiment evaluates the proposed method for CI
testing. Consider the graphical model in Figure 4a. The
target variable Y and features X1, ..., X6 were generated
according to the following generalization of the bulls-
eye example of Subsection 5.1. Let X1 be uniformly
distributed on the surface of the sphere centered around
the origin with radius uniformly distributed according to
Unif{[1, 2][ [3, 4]}. For i 6= 1, Xi is also uniformly dis-
tributed on the surface of a sphere. The radius is given by
the average of the magnitudes of the parents of Xi, plus
noise Ni. Y is the average of kX3k2 and kX5k2, plus

noise NY . The noise variables Ni and NY are all i.i.d.
with distribution Unif[�✏, ✏].

We compare the performance of four different CI tests
for identifying a set of CI relationships involving the tar-
get variable Y : the proposed method, the k-NN-based
CI test (Runge, 2018), the kernel-based SDCIT (Lee and
Honavar, 2017), and the model-based CCIT (Sen et al.,
2017) using gradient-boosted decision trees. For uncon-
ditional independence tests, the Hilbert Schmidt Inde-
pendence Criterion (HSIC) (Gretton et al., 2007) is used
in place of SDCIT. The statistical significance of the pro-
posed and k-NN CI tests are assessed using the nearest-
neighbor permutation-based shuffling method proposed
by Runge (2018). The design choices for the proposed
method were chosen similarly as in Subsection 5.1. The
feature mappings were chosen to be one-dimensional.

Figure 4b illustrates receiver operating curves (ROC)
characterizing the CI tests’ ability to correctly declare
CI using 6000 samples with ✏ = 0.3. Overall, the pro-
posed method shows the strongest performance, since it
learns information-efficient scalar sufficient statistics for
each feature. As expected, of the other three methods, the
model-based CCIT method shows the best performance.
The geometry of the features’ distributions limits the ef-
fectiveness of the k-NN and kernel-based non-parametric
CI tests, which rely on local density estimates.



5.3 DATACENTER HARD DISK DRIVE
DATASET

While the HDD is the workhorse of data storage, its relia-
bility is known to be a weak link (Elerath, 2009). As a re-
sult, HDD failure prediction using diagnostic time-series
data has drawn recent attention (Xu et al., 2016). Accu-
rate failure prediction can reduce the amount of redun-
dant storage needed for ensuring data reliability, thereby
reducing datacenter costs. Commercial and industrial
HDDs report time series records of read error rate, tem-
perature, read/write rate, and other prognostics. The fol-
lowing experiment involves data collected from 10,000
Seagate drives of a single model, made publicly avail-
able by Backblaze2. A total of 36 features, denoted by
X1, ..., X36, are collected once daily for a period of 90
days. The task is to predict a binary variable Y which
indicates whether or not a drive fails at the end of the
period; around a quarter of the drives fail. Additional
details are presented in the Supplementary Materials.

We chose q✓(Y |FW (V ), W ) to be a Bernoulli distribu-
tion, and the feature mappings fi : 1  i  36, were
parameterized by recurrent neural networks, with each
fi(Xi) 2 R3. The maximum conditioning set size � was
set to 3, and the regularization coefficient was taken to be
� = 0.1. For evaluation, two fresh predictors of Y were
trained using all 36 and the selected time series features.
In addition, we also compared with an approach based
on `1 regularization, similar to the approach of Li et al.
(2015). Each feature was scaled by a trainable weight
before being fed into the model; the `1 norm of those
weights was regularized. Figure 5 compares ROCs of
the three resulting models using held-out test data.

The three predictors perform comparably on the test set,
although the proposed method was able to find a much
smaller feature set than the `1 approach. The proposed
method selected 7 features: current pending sector, load
cycle, and seek counts, logical blocks read and written,
power on hours, and temperature. Those features reflect
measurable forms of physical wear. HDDs rely on a
moving, mechanical actuator to read and write data from
a magnetic disk. Therefore, it is expected for logical
block read and write counts to be useful for failure pre-
diction. Similarly, the current pending sector count is a
measure of the number of memory units, or sectors, that
have become unreadable. The seek and load cycle counts
record how often the fragile mechanical actuator is repo-
sitioned and re-started, respectively, and are expected to
be early indicators of mechanical failures. Finally, drive
age and ambient operating temperatures are known cor-
relates of drive failures Elerath (2009).

2backblaze.com/b2/hard-drive-test-data.html
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6 CONCLUSION
The need for efficient CI testing in high dimensions has
limited the applicability of Markov blanket feature selec-
tion. Non-parametric methods, such as the CI test based
on the k-NN CMI estimator, are efficient and robust for
low-dimensional features but struggle with the curse of
dimensionality. On the other hand, while model-based
CI testing methods have demonstrated success in high
dimensions, their computational cost is prohibitive.

We proposed a novel two-step approach to performing
the CI tests required for Markov blanket feature selec-
tion that leverages both the tractability of non-parametric
methods and the representation power of model-based
methods. First, low-dimensional feature mappings are
simultaneously learned for each feature; the k-NN-based
CMI estimator is subsequently applied to the learned fea-
ture maps for CI testing. The mappings preserve all the
information required for CMI estimation, and are trained
using a novel regularization term that can improve the
performance of any non-parametric CMI estimator or CI
test that is based on local density estimation. The perfor-
mance of our proposed approach was evaluated on syn-
thetic data as well as a real dataset of datacenter hard disk
drive failures. We believe that the proposed approach can
be extended to improve setups such as learning graphical
models and causal structure learning when CI testing is a
bottleneck due to high dimension.
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A Bayesian Networks

Let G be a directed acyclic graph (DAG) in which each vertex represents one of the variables from X. Xi is called a
parent of Xj if we have the edge Xi ! Xj , and a child of Xj if we have the edge Xj ! Xi in G. The descendants
of Xj is the set of Xi such that a directed path exists from Xj to Xi. Every variable is assumed to be a descendent of
itself.

Definition 3. For DAG G and distribution P on the set of variables X, the pair (G, P ) is called a Bayesian network if
each variable in G is independent of its non-descendents given its parents in P (referred to as the Markov condition).
This leads to the following factorization of the joint distribution.

PX =
Y

Xj2X

PXj |Pa(Xj),

where Pa(Xj) denotes the set of the parents of Xj .

Let I(P ) represent the set of all conditional independence relationships in P , and I(G) represent the set of all d-
separation relations3 in G.

Definition 4 (Faithfulness). The distribution P is faithful to structure G if for any two variables Xi, Xj , and any subset
of variables XS , we have

(Xi d-sep Xj |XS) 2 I(G) if (Xi ?? Xj |XS) 2 I(P ).

If the Markov and faithfulness conditions hold, G is called a perfect I-map for distribution P . In general, perfect I-map
is not unique. For instance, for a joint distribution P on variables {X1, X2, X3}, such that I(P ) = {(X1 ?? X3|X2)}
all three DAGs G1 : X1 ! X2 ! X3, G2 : X1  X2 ! X3, and G3 : X1  X2  X3 are perfect I-maps.

Proposition 1. Under Markov and faithfulness assumptions, the Markov blanket of each variable is unique and con-
sists of its parents, children, and coparents.

B Connections to Causal Feature Selection

Causation is a topic of interest in many applied science disciplines. Knowing the causal structure among the set of
variables in the system, enables us to predict the consequence of actions and interventions in the system and answer
to counterfactual questions. Moreover, it provides us with a better understanding regarding the way a complex system
works by explaining the interactions among the components of the system.

As mentioned in Appendix A, a Bayesian network which is an I-map for a given distribution is not unique. Causal
Bayesian network is a Bayesian network in which directed edge Xi ! Xj implies that Xi is a direct cause of Xj .
The set of direct causes (parents) of variable Xj is denoted by DC(Xi). In the causal nomenclature, the mechanism
which takes the direct causes of a variable Xi as the input and outputs variable Xi, i.e., PXi|DC(Xi) is called the causal
module corresponding to variable Xi. According to the principle of independent causal mechanisms, if there are no
latent variables in the system, the causal modules are independent of each other Peters et al. (2017).

Knowing the causal modules enables us to perform prediction under distribution shift: Suppose in domain 1, we train
a predictor for target variable Y which takes the subset of features XS as the input. Now, if in a second domain

3See Pearl (2009) for the definition of d-separation.



the distribution of XS varies, but the causal module corresponding to Y remains fixed (based on the principle of
independent causal mechanisms, this is possible as the causal modules are independent), then if XS only contains
direct causes of Y , then the trained predictor can still be used in the second domain. However, if XS also contains
children of Y , as is the case for, say, a feature selection based on Markov blanket, then PY |XS

in the second domain
will not necessarily remain the same as the one in the first domain. Therefore, a feature selection scheme which
chooses the direct causes of the target variable, enables unsupervised domain adaptation. This scheme is referred to as
causal feature selection.

Note that in general, performing interventions is required to identify the direct causes of the target variable, and hence,
causal feature selection in general is not feasible. However, as mentioned in Section 2, in many applications, the
target variable cannot be the cause of any of the features in the system. For example, in our example of HDD failure
prediction, Y represents the health state of the HDD at the end of a time interval, and as such cannot be the cause of
any of the features as it cannot be the cause of past events. In this case, in the causal Bayesian network, the target
variable does not have any children. Therefore, the Markov blanket of the target variable will only contain its direct
causes. Hence, Markov blanket feature selection is equivalent to causal feature selection. We summarize this argument
as follows:

Assumption 1. The target variable Y does not have any children in the causal Bayesian network.

Theorem 3. Under the Markov and faithfulness conditions and Assumption 1, a feature selection scheme which
chooses features based on Definition 1, outputs the direct causes of the target variable.

C Proof of Theorems

Proof of Theorem 1. The error is given by

I(Y ; Xi)� I(Y ; fi(Xi)) = �h(Y |Xi) + h(Y |fi(Xi))

= �h(Y |Xi)� EXY [log q✓i(Y |fi(Xi))]�D(p(Y |fi(Xi)kq✓i(Y |fi(Xi))

 �h(Y |Xi)� EXY [log q✓i(Y |fi(Xi))]. (9)

The inequality (9) follows from the non-negativity of the KL-divergence. Since the right hand side of (9) is an
upper bound on the error and the (differential) conditional entropy h(Y |Xi) is not a function of fi or ✓i, maximizing
EXY [log q✓i(Y |fi(Xi))] over fi or ✓i minimizes an upper bound on the error.

Proof of Theorem 2. By the chain rule of mutual information, we have I(Y ; Xi|XS) = I(Y ; Xi, XS) � I(Y ; XS),
and similarly I(Y ; fi(Xi)|F (XS)) = I(Y ; fi(Xi), F (XS)) � I(Y ; F (XS)). Subtracting and applying the triangle
inequality gives
��I(Y ; Xi|XS)� I(Y ; fi(Xi)|F (XS))

�� 
��I(Y ; XS)� I(Y ; F (XS))

�� +
��I(Y ; Xi, XS)� I(Y ; fi(Xi), F (XS))

��
(a)
=

�
I(Y ; XS)� I(Y ; F (XS))

�
+

�
I(Y ; Xi, XS)� I(Y ; fi(Xi), F (XS))

�
.

The equality (a) follows from the data-processing inequality; each of the two terms inside the absolute values are
non-negative. Applying Theorem 1 to each of the two terms gives the result.

D Derivation of I(X; Y ) for the Bullseye Experiment

Assume that ✏  0.5. The mutual information is given by

I(X; Y ) = I(R; Y )

= h(Y )� h(Y |R)

= h(Y )� h(R + N |R)

= h(Y )� h(N).



Since N ⇠ Unif[�✏, ✏], it has differential entropy h(N) = log(2✏). To find h(Y ), first note that Y can be seen as a
randomization between the inner and outer rings:

Y =

(
Y1 w.p. 1/2

Y2 w.p. 1/2.
(10)

Define Y1 = R1 +N1 and Y2 = R2 +N2. R1 ⇠ Unif[0.25, 0.5], R2 ⇠ Unif[0.75, 1.0], and N1 and N2 are identically
distributed copies of N . The marginal distribution p(y1) is given by

p(y1) =

Z ✏

�✏
p(N = n)p(y1|n)dn (11)

=
1

2✏

Z ✏

�✏
p(R1 = y1 � n)dn (12)

=
2

✏

Z ✏

�✏
1{y1 2 [0.25 + n, 0.5 + n]}dn. (13)

There are three cases, depending on the value of y1. Taking the integral in each case gives

p(y1) =

8
><

>:

y1�0.25+✏
0.5✏ if y1 2 [0.25� ✏, 0.25 + ✏]

4 if y1 2 [0.25 + ✏, 0.5� ✏]
0.50+✏�y1

0.5✏ if y1 2 [0.50� ✏, 0.50 + ✏]

(14)

The marginal p(y2) can be obtained by shifting p(y1). h(Y ) can now be computed numerically for different values of
✏ using Eq. (14) and the fact that

h(Y ) = �
Z 1

�1

1

2
p(y1) log

✓
1

2
p(y1)

◆
dy1 �

Z 1

�1

1

2
p(y2) log

✓
1

2
p(y2)

◆
dy2. (15)

E Experiment Details

E.1 2D Bullseye

Both fregularized nominal fnominal are learned using three-layer, feedforward neural networks with 8 hidden units and
rectified linear activation. The parameters of the surrogate distribution were learned using a feedforward neural net-
work of the same configuration. The regularization coefficient was chosen to be � = 0.1, and the mappings were
trained using 2000 samples.

E.2 3D Bullseye

The mappings were each learned using a three-layer feedforward neural network with 32 hidden units and the rectified
linear activation. The parameters of the surrogate distribution were learned using a three-layer feedforward neural
network with 164 hidden units, again with the rectified linear activation. As before, we used � = 0.1. The mappings
were trained using 6000 examples. For the k-NN CI tests, we used a k-value of 100, 1000 shuffling instances, and
nearest-neighbor permutation kperm = 5, all following suggested values in (Runge, 2018). CCIT was set up using the
publicly available code4, and likewise for SDCIT5.

E.3 Datacenter HDD Dataset

Two layer gated recurrent units with 16 states were used to implement each feature mapping. The surrogate distribution
was parameterized by a three-layer feedforward neural network with 72 hidden units and the rectified linear activation.
As for the other experiments, we took � = 0.1. Each feature mapping was chosen to be 3-dimensional, and the
maximum conditioning set size was set to � = 3.

4https://github.com/rajatsen91/CCIT
5https://github.com/sanghack81/SDCIT



Table 1: SMART Attributes for Seagate’s drive model ST4000DM000. * denotes attributes reported in both normal-
ized and raw form. † have only normalized values, and ‡ only raw values. There are 36 attributes in total.

Feature Description

*Read Error Rate Rate of errors that occurred when reading data from disk surface
*Temperature Device temperature
*Airflow Temperature Contains same information as the Temperature feature
*Reallocated Sectors Count of bad memory sectors that have been found and remapped
*SATA Downshift Errors Number of downshifts of link speed
*End to End Errors Count of parity errors in the data path to the media via the drive’s cache RAM
*Load Cycles Count of load/unload cycles into head landing zone position
*Command Timeouts Count of aborted operations due to HDD timeout
*Current Pending Sectors Count of sectors waiting to be remapped, due to unrecoverable read errors
*Reported Uncorrectable Errors Count of errors that could not be recovered using error correction codes
*Power On Hours Count of hours in power-on state
*Start/Stop Count Count of read spindle start/stop cycles
*High Fly Writes Number of times a recording head is flying outside its normal operating range
†Offline Uncorrectable Sectors Count of uncorrectable errors when reading/writing a sector
†Cyclic Redundancy Check Errors Count of errors in external data transfer via interface cable
†Spin Up Time Average time of spindle spin up, from zero RPM to fully operational
†Seek Errors Number of seek errors of the magnetic heads
†Seek Count Total number of magnetic head seek operations
‡Power Off Retracts Count of power-offs or emergency head retractions
‡Power Cycles Count of HDD power on/off cycles
‡Head Flying Hours Total time positioning the read/write heads
‡Logical Blocks Written Count of logical block addresses written
‡Logical Blocks Read Count of logical block addresses read

We used data collected from 10,000 Seagate ST4000DM000 HDDs. Table 1 lists the time-series features reported
by each drive. The features are known as Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes.
Some of the features are reported in two separate formats: raw and normalized. The raw features can be considered as
raw sensor measurements, whereas the normalized features are quantized and scaled in a manufacturer-specific way
in order to be compared between HDD makes and models. Table 1 lists all of the features used for this experiment.
Finally, note that Seek Errors and Seek Count are not typically-reported SMART attributes. These were generated
by extracting the top 16 and bottom 32 bits of the raw SMART attribute ”Seek Error Rate.” Since we noticed that
the normalized version of ”Seek Error Rate” could be well-approximated by dividing the Seek Error count by the
Seek Count, we do not use Seek Error Rates for our experiments. Table 1 lists all of the features in the dataset, with
descriptions.6

6https://en.wikipedia.org/wiki/S.M.A.R.T.


