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Abstract

We consider the problem of structure learn-
ing for linear causal models based on obser-
vational data. We treat models given by possi-
bly cyclic mixed graphs, which allow for feed-
back loops and effects of latent confounders.
Generalizing related work on bow-free acyclic
graphs, we assume that the underlying graph
is simple. This entails that any two observed
variables can be related through at most one
direct causal effect and that (confounding-
induced) correlation between error terms in
structural equations occurs only in absence of
direct causal effects. We show that, despite
new subtleties in the cyclic case, the consid-
ered simple cyclic models are of expected di-
mension and that a previously considered crite-
rion for distributional equivalence of bow-free
acyclic graphs has an analogue in the cyclic
case. Our result on model dimension justifies
in particular score-based methods for structure
learning of linear Gaussian mixed graph mod-
els, which we implement via greedy search.

1 INTRODUCTION

Inferring the structure of a causal model with feedback
loops from observational data is a notoriously difficult—
if not impossible—problem, particularly if one also
seeks to guard against presence of latent confounders
[9, 29]. We consider this problem for linear causal mod-
els given by mixed graphs (or path diagrams) with di-
rected and bidirected edges. As detailed in Section 2, the
vertices of such a graph correspond to the observed vari-
ables, and the directed edges encode structural equations
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that relate these variables up to stochastic noise. The
bidirected edges indicate possible correlations among the
noise terms, as may be induced by latent confounders.

Much work has gone into algorithms that exploit condi-
tional independence relations for learning the structure
of causal models, or rather suitable equivalence classes
of graphs encoding this structure; see, e.g., [10, 17, 18,
24, 25] or also the review of Spirtes and Zhang in [21,
§18]. While methods have been developed that use in-
formation about conditional independence relations also
in settings with feedback loops or latent variables, there
is an inherent limitation to this approach as causal mod-
els with feedback loops or latent variables can gener-
ally not be characterized using conditional independence
constraints alone [8, 27, 31, 32]. Alternatively, struc-
ture learning can be approached using score-based search
techniques; see, e.g., [3, 28, 30]. For models with feed-
back loops and/or latent variables, however, the defini-
tion of an appropriate statistical score is non-trivial as
the model parameters need not be identifiable and, conse-
quently, the model dimension may differ from the num-
ber of parameters that are used to specify the model.
Although methods exist to detect identifiability or lack
thereof [11, 19, 33], it is generally unclear when a linear
causal model with feedback loops or latent variables is
of the dimension expected from a parameter count [4].

Motivated by these difficulties, prior work has also made
attempts to determine more tractable settings. For in-
stance, it has been shown that if an acyclic mixed graph
is bow-free, i.e., no pair of nodes is joined by both a di-
rected and a bidirected edge, then the parameters of the
induced model are generically identifiable [2], which en-
tails expected dimension. Score-based methods for struc-
ture learning in this setting were proposed in [22].

In this paper we generalize results that have been ob-
tained for bow-free acyclic mixed graphs to graphs that
may have a cyclic directed part. In other words, we con-
sider mixed graphs that are simple, i.e., have at most



one edge between any pair of nodes, but which need not
be acyclic. The presence of cycles brings about many
new challenges [1] and, in particular, generic identifia-
bility cannot be guaranteed. However, as our main re-
sults show, the considered simple cyclic models are of
expected dimension (Theorem 3.1) and a previously con-
sidered criterion for distributional equivalence of bow-
free acyclic graphs has an analogue in the cyclic case
(Theorem 4.1). Using the result on dimension, we
propose a model selection score and associated greedy
search techniques for structure learning of linear Gaus-
sian mixed graphs. Numerical experiments indicate the
need to carefully account for the large size of the set of
models/graphs the search considers (Section 5).

2 BACKGROUND

LetX = (Xi : i ∈ V ) be a random vector whose coordi-
nates correspond to observed variables. The considered
models assume X to be the solution to a linear equation
system of the form

X = ΛTX + ε, (1)

where Λ = (λij) ∈ RV×V is a matrix of unknown pa-
rameters, and ε = (εi : i ∈ V ) is a random vector
whose coordinates represent stochastic noise. Suppose
ε has (unknown) covariance matrix Ω = (ωij). Assum-
ing that I−Λ is invertible (I denotes the identity matrix),
the system in (1) is solved uniquely by X = (I−Λ)−T ε
with covariance matrix

Var[X] = (I − Λ)−TΩ(I − Λ)−1 =: φ(Λ,Ω). (2)

Specific models of interest place restrictions on the sup-
port of Λ and Ω, and this is naturally represented by a
graph. More precisely, we adopt mixed graphs since we
have two parameter matrices, Λ and Ω, whose rows and
columns are indexed by the same set V .

A mixed graph with vertex set V is a triple G =
(V,D,B) where D,B ⊆ V × V are two sets of edges.
The set D comprises ordered pairs (i, j), i 6= j, that en-
code directed edges, which we also denote by i → j.
Node j is the head of such an edge. The elements of B
are unordered pairs {i, j} with i 6= j that encode bidi-
rected edges, also denoted by i ↔ j. These edges have
no orientation, and i↔ j ∈ B if and only if j ↔ i ∈ B.
It is convenient to call both endpoints i and j heads of
i ↔ j. A collider triple in G = (V,D,B) is a triple
of vertices (i, j, k) such that there are edges between i
and j and between j and k, with j being a head on both
these edges. In other words, the two edges form a path
of the form i → j ← k, i ↔ j ← k, i → j ↔ k or
i ↔ j ↔ k. We emphasize that whether (i, j, k) is a
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Figure 1: Two simple mixed graphs.

collider triple does not depend on absence or presence of
an edge between i and k. Finally, the skeleton of G is
the undirected graph obtained by replacing all edges in
(V,D ∪B) by undirected edges.

In Section 4 we will use the concept of treks. A trek is a
path without collider triples and thus takes the form:

vLl ← · · · ← vL1 ↔ vR1 → · · · → vRr , or

vLl ← · · · ← v0 → · · · → vRr .

Each trek can be decomposed in two directed paths, re-
ferred to as the right and the left side of the trek. A trek
is simple if its left- and right-hand side do not intersect,
with the exception of an intersection at the top node v0

for the second type of trek.

In the sequel, the key assumption we make about the con-
sidered graphs is that they be simple mixed graphs. This
means that we do not allow more than one edge (of any
type) between any two nodes. Note that this allows for
presence of directed cycles of length at least 3.

Example 2.1. Two simple mixed graphs are displayed
in Figure 1. The first is a directed 3-cycle, which has no
collider triples. The second graph has the collider triple
(1, 3, 2). Both graphs have the same skeleton.

Let RD be the set of real V ×V -matrices Λ = (λij) with
support in D, that is,

RD =
{

Λ ∈ RV×V : λij = 0 if i→ j /∈ D
}
. (3)

Define RDreg to be the subset of matrices Λ ∈ RD for
which I − Λ is invertible. Similarly, let PD be the cone
of positive definite symmetric V×V -matrices, and define
PD(B) to be the subcone with support over B, that is,

PD(B) =
{

Ω = (ωij) ∈ PD : ωij = 0

if i 6= j and i↔ j /∈ B
}
.

Definition 2.2. The linear Gaussian model given by the
mixed graph G = (V,D,B) is the family of all multi-
variate normal distributions on RV with covariance ma-



trix in

MG =
{

(I − Λ)−TΩ(I − Λ)−1 :

Λ ∈ RDreg, Ω ∈ PD(B)
}
.

The covariance parametrization of the model is the map

φG : RD × PD(B) 7→ PD , (4)

(Λ,Ω) 7→ (I − Λ)−TΩ(I − Λ)−1.

Note that the model leaves the mean vector of the normal
distribution unrestricted. Without loss of generality, we
may assume it to be zero.

It is well-known that different mixed graphs may induce
the same modelMG, which we describe as follows.
Definition 2.3. Two mixed graphs G1 and G2 are distri-
butionally equivalent ifMG1

=MG2
.

Distributional equivalence is a stronger requirement than
Markov equivalence, which only requires the same con-
ditional independence relations. For acyclic simple
mixed graphs, distributional equivalence is implied by
having the same skeleton and collider triples [22].

3 EXPECTED DIMENSION

Knowing the dimension of the set of covariance matri-
ces MG of a linear causal model is crucial for statis-
tical model selection. In particular, the dimension fea-
tures in model selection scores/information criteria [7].
Because MG is defined by the pair of parameter ma-
trices (Λ,Ω), it is natural to expect that its dimension
dim(MG) equals the number of unknown parameters,
which is |V | + |D| + |B|. For general graphs, however,
this may fail to be true in subtle ways [11]. Nevertheless,
the following theorem shows that this complication does
not arise when considering simple graphs.
Theorem 3.1. If the graph G is simple, then

dim(MG) = |V |+ |D|+ |B|.

Let JG be the Jacobian of the covariance parametrization
φG. As discussed, e.g., in [13], the dimension of MG

equals the maximal rank of JG. Before proving Theo-
rem 3.1 based on this fact, we extend observations from
[11] that simplify studying the rank of JG.

On the domain RDreg × PD, define the map

g : (Λ,Σ) 7→ (I − Λ)TΣ(I − Λ). (5)

A positive definite matrix Σ is in MG if and only if
there exist Λ ∈ RDreg and Ω ∈ PD(B) such that Σ =
φG(Λ,Ω), which holds if and only if g(Λ,Σ) = Ω. Let

N = {{i, j} : i, j ∈ V, i 6= j, {i, j} /∈ B}.

Then Σ ∈ MG if and only if there exists Λ ∈ RDreg such
that

gij(Λ,Σ) =
[
(I − Λ)TΣ(I − Λ)

]
ij

= 0 (6)

for all {i, j} ∈ N . Consider then the N × D Jacobian
matrix J(Λ,Σ) whose entries are the partial derivatives

J(Λ,Σ){i,j},(k,l) =
∂gij(Λ,Σ)

∂λkl
(7)

with {i, j} ∈ N and k → l ∈ D. For i 6= j, gij is
multilinear in Λ and

∂gij(Λ,Σ)

∂λkl
=


−[(I − Λ)TΣ]jk if l = i,

−[(I − Λ)TΣ]ik if l = j,

0 if l /∈ {i, j}.
(8)

Lemma 3.2. For Λ ∈ RDreg, Ω ∈ PD(B), let Σ =
φG(Λ,Ω). Then the rank of the Jacobian JG(Λ,Ω) is
equal to

rank (J (Λ,Σ)) + |B|+ |V |.

Proof. On RDreg × PD(B), define the map

h : (Λ,Ω) 7→ (Λ, φG(Λ,Ω)).

Composing with g from (5), we have

(g ◦ h)(Λ,Ω) = Ω. (9)

Differentiating this equation with respect to the free en-
tries (i.e., nonzero) in Λ gives

∂

∂Λ
g(Λ,Σ)|Σ=φG(Λ,Ω)

+
∂

∂Σ
g(Λ,Σ)|Σ=φG(Λ,Ω)

∂

∂Λ
φG(Λ,Ω) = 0. (10)

Similarly, differentiating with respect to the free entries
of Ω gives

∂

∂Σ
g(Λ,Σ)|Σ=φG(Λ,Ω)

∂

∂Ω
φG(Λ,Ω) =(

0
I|B|+|V |

)
. (11)

Here, the rows are indexed by unordered pairs {i, j}, due
to the symmetry of the matrices in (9). In the partitioning
of the rows, the pairs in N are listed first.

By (8), again ordering the pairs in N first, we have

∂

∂Λ
g(Λ,Σ) =

(
J(Λ,Σ)

0

)
.



For the Jacobian JG = (∂φG

∂Λ , ∂φG

∂Ω ), we obtain that

∂

∂Σ
g(Λ,Σ)|Σ=φG(Λ,Ω) · JG(Λ,Ω) =(

−J(Λ,Σ)|Σ=φ(Λ,Ω) 0
0 I|B|+|V |

)
, (12)

with rows and columns partitioned as (N,B ∪ V ) and
(D,B ∪ V ), respectively. Restricting g by fixing Λ ∈
RDreg gives the bijection Σ 7→ (I−Λ)TΣ(I−Λ). Hence,
the matrix ∂g

∂Σ is invertible. It follows that the rank of
JG equals the rank of the partitioned matrix on the right-
hand side of (12), which in turn equals rank (J (Λ,Σ))+
|B|+ |V |, as was our claim.

We now consider the Jacobian JG(0, I) obtained by spe-
cializing Λ = 0 and Ω = I .

Lemma 3.3. The Jacobian JG(0, I) has full column
rank |V |+ |B|+ |D| if and only if the mixed graph G is
simple.

Proof. The choice Λ = 0 and Ω = I yields covariance
matrix Σ = φG(0, I) = I . By Lemma 3.2, it thus suf-
fices to show that the matrix J(0, I) defined in (8) has
full column rank |D| if and only if G is simple.

Suppose G is simple. Let k → l ∈ D be any directed
edge indexing a column of J(0, I). With Λ = 0 and
Σ = I , we have −(I − Λ)TΣ = −I and the considered
column contains precisely one nonzero entry, namely,

J(0, I){k.l},(k,l) = −1;

note that k → l ∈ D implies {k, l} ∈ N if G is simple.
Arranging the row indices {k, l} for k → l ∈ D first, it
becomes evident that J(0, I) has rank |D| as

J(0, I) =

(
−ID

0

)
.

Conversely, suppose that G is not simple, with k and l
being two nodes joined by at least two edges. Without
loss of generality, assume that one of these edges is k →
l ∈ D. We distinguish two cases. First, suppose k ↔ l ∈
B. Then {k, l} /∈ N . Therefore, the column of J(0, I)
that is indexed by (k, l) is zero, which implies that the
rank of J(0, I) is smaller than |D|. Second, suppose k ↔
l /∈ B but l → k ∈ D. Then the two columns of J(0, I)
indexed by (k, l) and (l, k) are identical. Again the rank
of J(0, I) is smaller than |D|.

Proof of Theorem 3.1. If G is simple, then Lemma 3.3
implies that the maximal rank of the Jacobian JG is |V |+
|D|+ |B|, which equals the count of parameters.

For simple acyclic mixed graphs, having the same skele-
ton is a necessary condition for distributional equiva-
lence [22], but this condition is not necessary for cyclic
graphs [14]. However, by Theorem 3.1, two distribution-
ally equivalent simple cyclic mixed graphs must at least
have the same number of edges.

4 SUFFICIENT CONDITIONS FOR
DISTRIBUTIONAL EQUIVALENCE

In this section, we show that the sufficient condition for
distributional equivalence from [22] admits an extension
to our setting of possibly cyclic graphs. To this end, we
defineMG to be the closure ofMG (in Euclidean topol-
ogy). Two mixed graphs G1 and G2 are then distribu-
tionally equivalent up to closure ifMG1

=MG2
.

Theorem 4.1. Let G1 and G2 be two simple mixed
graphs with same skeleton and collider triples. Then G1

and G2 are distributionally equivalent up to closure.

Note that the likelihood functions of two models that are
equal up to closure have the same supremum.

While our proof of Theorem 4.1 (developed in §4.1-4.2)
concludes equality up to closure, we do not know any
examples where the models are not exactly equal. The
condition in Theorem 4.1 is also far from being neces-
sary, e.g., it does not include the well-known characteri-
zation of Markov equivalence for directed acyclic graphs
(DAGs). However, the theorem is useful to assert equiv-
alence in our simulations (Section 6.1). We are also not
aware of better (tractable) conditions in the literature. In-
deed, distributional equivalence for cyclic mixed graphs
is a subtle problem as the following example shows.

Example 4.2. Let G1 and G2 be the two simple mixed
graphs displayed in Figure 1(a) and (b), respectively. By
Theorem 3.1, bothMG1

andMG2
are full-dimensional

(i.e., 6-dimensional) subsets of the cone of positive def-
inite 3 × 3 matrices. Graph G2 is acyclic, andMG2

is
easily seen to be equal to PD . However, as observed in
[5], the setMG1 is a strict subset ofMG2 = PD .

4.1 Useful Lemmas

Let G1 = (V,D1, B1) and G2 = (V,D2, B2) be two
mixed graphs. Let (Λ1,Ω1) ∈ RD1

reg×PD(B1) be param-
eters for G1. The essence of the proof of Theorem 4.1 is
a strategy to find parameters (Λ2,Ω2) ∈ RD2

reg×PD(B2)
such that ΦG2(Λ2,Ω2) = ΦG1(Λ1,Ω1). The key steps
of the construction are a reduction to correlation matri-
ces and an edge-relabeling considered in the acyclic case
by [22]. However, the cyclic case brings about new sub-
tleties in this approach.



Let R : PD → PD be the standardization map that
takes covariance matrices to correlation matrices via
R(Σ)ij =

Σij√
ΣiiΣjj

.

Lemma 4.3. LetG = (V,D,B) be simple and Σ ∈ PD .
Then Σ ∈MG if and only if R(Σ) ∈MG.

Proof. We show one direction as the converse can be ver-
ified similarly. If Σ ∈MG then

Σ = ΦG(Λ,Ω) = (I − Λ)−TΩ(I − Λ)−1.

for some matrices Λ ∈ RDreg ,Ω ∈ PD(B). Setting ∆

diagonal with entries ∆ii = Σ
− 1

2
ii it holds that

R(Σ) = ∆Σ∆

= (∆−1 −∆−1Λ)−TΩ(∆−1 −∆−1Λ)−1

= ΦG(Λ̃, Ω̃)

with Λ̃ = ∆−1Λ∆ ∈ RDreg , Ω̃ = ∆Ω∆ ∈ PD(B).

Throughout the rest of this section, letG1 = (V,D1, B1)
and G2 = (V,D2, B2) be two mixed graphs. If the
graphs have the same skeleton, then there is a natural way
to copy the edge labels from one graph to the other. To
describe the procedure, we decompose an error covari-
ance matrix, Ω, into its diagonal and off-diagonal parts,
denoted Ωd and Ωod, respectively. So, Ω = Ωd + Ωod.
Definition 4.4. Let G1 and G2 be simple mixed graphs
with the same skeleton. Given a choice (Λ1,Ω1) ∈
RD1

reg × PD(B1), the induced edge labeling on G2 is the
pair of matrices (Λ2,Ω

od
2 ) obtained as

(Λ2)ij =


(Λ1)ij if i→ j ∈ G1, i→ j ∈ G2,

(Λ1)ji if i← j ∈ G1, i→ j ∈ G2,

(Ω1)ij if i↔ j ∈ G1, i→ j ∈ G2,

0 if i→ j /∈ G2,

(Ωod2 )ij =


(Λ1)ij if i→ j ∈ G1, i↔ j ∈ G2,

(Λ1)ji if i← j ∈ G1, i↔ j ∈ G2,

(Ω1)ij if i↔ j ∈ G1, i↔ j ∈ G2,

0 if i↔ j /∈ G2 or i = j.

For the construction from Definition 4.4, it holds that
Λ2 ∈ RD2

reg. Moreover, Ωod2 can be turned into a matrix in
PD(B2) by addition of a diagonal matrix.
Lemma 4.5. LetG1 andG2 be simple mixed graphs with
same skeleton and collider triples, and let (Λi,Ωi) ∈
RDi×PD(Bi) for i = 1, 2. If (Λ2,Ω

od
2 ) equals the edge

labeling induced by (Λ1,Ω1) then

det(I − Λ1) = det(I − Λ2).

In particular, if Λ1 ∈ RD1
reg then Λ2 ∈ RD2

reg .

Proof. The determinants depend on the values of cycle
products [6, Lemma 1]. Let SV be the group of permu-
tations of the nodes in V . For σ ∈ SV , let V (σ) be the
set of nodes contained in a non-trivial cycle of σ. Then

det(I − Λ) =
∑

σ∈SV (G)

(−1)sgn(σ)
∏

i∈V (σ)

Λσ(i),i (13)

where SV (G) is the subset of permutations such that i =
σ(i) or i → σ(i) ∈ D for all i ∈ V . We remark that
even though the lemma in [6] is stated for Λ ∈ RDreg,
the proof relies on Laplace expansion of the determinant
which holds even if I − Λ is not invertible.

Now, since collider triples are preserved, an edge that is
part of a directed cycle of G1 cannot be bidirected in G2.
Furthermore, if G1 contains a cycle which has a directed
edge that is reversed inG2, then the cycle must be chord-
less in G1 (that is, every node in the cycle can have only
one child in the cycle) and must be fully reversed in G2.
Since the labels agree, the cycle products in (13) remain
unchanged and therefore det(I−Λ1) = det(I−Λ2).

4.2 Constructing Covariance Matrices

The key to completing the proof of Theorem 4.1 is to
show that a correlation matrix obtained from a generic
choice of parameters (Λ1,Ω1) ∈ RD1

reg × PD(B1) also
belongs toMG2 . Let ◦ denote the Hadamard (entrywise)
product of matrices, and defineH : RDreg → RV×V by

H(Λ) := (I − Λ)−1 ◦ (I − Λ)−1.

We denote the spectral radius of a matrix Λ by ρ(Λ).

Lemma 4.6. Let G1, G2 be simple mixed graphs with
same skeleton and collider triples. Let (Λ1,Ω1) ∈
RD1

reg × PD(B1) such that Σ = ΦG1
(Λ1,Ω1) ∈ MG1

is a correlation matrix and consider the induced edge la-
beling (Λ2,Ω

od
2 ). If

(i) ρ(Λj) < 1 for j = 1, 2, and

(ii) det(H(Λ2)) 6= 0,

then there exists a unique diagonal matrix Ωd2 such that
with Ω2 = Ωd2 + Ωod2 it holds that (Λ2,Ω2) ∈ RD2

reg ×
PD(B2) and Σ = ΦG2(Λ2,Ω2) ∈MG2 .

Proof. By Lemma 4.5, we have indeed that Λ2 ∈ RD2
reg .

We need to construct Ωd2 such that

ΦG2
(Λ2,Ω2) = (I − Λ2)−TΩd2(I − Λ2)−1

+ (I − Λ2)−TΩod2 (I − Λ2)−1 = Σ.



Since Σii = 1, this requires for all i ∈ V that

((I − Λ2)−TΩd2(I − Λ2)−1)ii

= 1− ((I − Λ2)−TΩod2 (I − Λ2)−1)ii.

Solving for the diagonal of Ωd2 is equivalent (see [16,
Lemma 5.1.3] ) to the linear system Ax = b where

A = H(Λ2) = (I − Λ2)−1 ◦ (I − Λ2)−1

and the coordinates of the vector b are

bi = 1− ((I − Λ2)−TΩod2 (I − Λ2)−1)ii.

By hypothesis, det(H(Λ2)) 6= 0 and the system
has a unique solution. It thus remains to show that
ΦG2

(Λ2,Ω2) also matches Σ in all off-diagonal entries.

In general, if Φ(Λ,Ω) is a correlation matrix over a
mixed graph G and ρ(Λ) < 1, by [22, Theorem 4], the
entries for i 6= j are given by

ΦG(Λ,Ω)ij =
∑
τ∈Sij

∏
s→t∈τ

Λts
∏

s↔t∈τ
Ωst, (14)

where SijG is the set of simple treks from i to j. By as-
sumption, ρ(Λ1), ρ(Λ2) < 1, and we may apply the rep-
resentation in (14) toG1 andG2. In general, SijG1

6= SijG2
.

However, the fact that the graphs have the same skele-
ton and share collider triples implies that when replacing
(Λ,Ω) by (Λj ,Ωj), j = 1, 2, in (14), the induced edge
labeling guarantees that the right hand sides of the ex-
pression are equal. Hence,

ΦG1(Λ1,Ω1) = Σ = ΦG2(Λ2,Ω2)

as was the claim.

With these preparations in place, we may complete the
proof of the main result of this section.

Proof of Theorem 4.1. First, observe that the covariance
parametrization

ΦG1
: RD1 × PD(B1)→MG1

⊆ PD

is a rational map. Next, consider the algebraic map

Ψ : U ⊂ RD1 × PD(B1)→MG2
⊆ PD

defined as follows. First, apply the standardization map
on the parameter (Λ1,Ω1) to obtain (Λ̃1, Ω̃1,∆), as in
the proof of Lemma 4.3. We denote this map by R̃.
As (Λ̃1, Ω̃1) define a correlation matrix we may obtain
(Λ̃2, Ω̃2) from the procedure in Lemma 4.6, for repre-
sentation of the same correlation matrix. Finally, de-
standardize (Λ̃2, Ω̃2) with the matrix ∆ from the stan-
dardization map, and apply ΦG2

.

(Λ1,Ω1)
R̃ //

ΦG1

&&

(Λ̃1, Ω̃1,∆)
H // (Λ̃2, Ω̃2,∆)

R̃−1

��
(Λ2,Ω2)

ΦG2

��
Σ1 = Σ2

Figure 2: Commutative diagram illustrating two ways of ob-
taining a matrix Σ ∈ MG1 ∩MG2 . One is the parametrization
ΦG1 , while the other is a composition of maps (including the
map H defined via Lemma 4.6), that we denote Ψ.

Note that the map Ψ is well-defined for input that satis-
fies the two conditions in Lemma 4.6. This domain in-
cludes an open subset U ⊂ RD1 ×PD(B1). This subset
is nonempty because (0, I) ∈ U . The final application of
ΦG2

to (Λ2,Ω2) gives a matrix inMG2
, which by con-

struction and Lemma 4.6 coincides with ΦG1
(Λ1,Ω1).

The diagram in Figure 2 illustrates the situation.

The map Ψ is a composition of a rational map with alge-
braic maps that involve radicals (i.e., square roots in the
standardization R). Since Ψ coincides with the rational
map ΦG1 on the open set U , they must be equal outside
of an algebraic hypersurface (i.e., the zero set of a mul-
tivariate polynomial). This exceptional set has Lebesgue
measure zero (see, e.g., the lemma in [23]). Covariance
matrices inMG1

that are given by parameters (Λ1,Ω1)
outside the exceptional set are also in MG2 . We may
conclude thatMG1 ⊆MG2 because the elements of the
exceptional set are limits of sequences off the exceptional
set. By symmetry,MG1

=MG2
as claimed.

5 GREEDY SEARCH

Based on our result on the dimension of models given
by simple mixed graphs, we may form scores that trade
off model dimension and model fit. For model selec-
tion, we may then maximize such a score over the con-
sidered set of graphs. Given the large number of possi-
ble graphs, we follow prior work and consider a greedy
search that starts from some initial graph and iteratively
selects the highest-scoring graph from a local neighbor-
hood of graphs. The procedure stops when no higher
score can be found in the local neighborhood or a fixed
maximum number of iterations is reached. To mitigate
getting trapped in local optima, the search is running
from different (random) starting points. In the present
context, we take the local neighborhood of a graph G
to be the union of all simple mixed graphs that can be
obtained from G by adding one edge, by removing one
edge, or by reversing one directed edge; compare [22].



Let X ∈ Rn×p be a data matrix, assumed to hold in its
rows the realizations of n i.i.d. and centered Gaussian
random vectors. Let S = XTX/n be the sample covari-
ance matrix. The Gaussian log-likelihood function is

`(Σ;S) = −n
2

[
log det(2πΣ) + tr(Σ−1S)

]
.

Our proposed score for a mixed graph G = (V,D,B)
then takes the form

s(G) =
1

n

(
max

Σ∈MG

`(Σ;S)− penalty(p, k, n)

)
, (15)

where p = |V | and k = |D| + |B| is the number of
edges. To compute the maximum log-likelihood in (15)
we apply the block coordinate-descent algorithm from
[6]. The standard Bayesian information criterion (BIC)
uses penalty(p, k, n) = 1

2 (p + k) log(n); here p + k
is the model dimension. The authors of [22] double
this penalty when searching over acyclic simple mixed
graphs as it improved performance in experiments. An
increased penalty is supported by related work on select-
ing sparse graphical models [12].

There the increased penalty is induced from a prior dis-
tribution over graphs under which the number of edges is
uniformly distributed. Adopting these ideas in our case
we propose to define the score s(G) from (15) with

penalty(p, k, n) = 1
2 (p+ k) log(n) + log(p2k3k). (16)

The last term reflects that there are
(
p(p+1)/2

k

)
3k ∼

p2k3k simple mixed graphs with k edges. This penalty
is formulated with a view towards sparser graphs as en-
countered in the application we consider in Section 6.2.
We will also explore its use in simulated non-sparse
problems of small scale (Section 6.1). Note also that
the proposed penalty ignores the issue of distributional
equivalence, i.e., different graphs inducing the same
modelMG. Unfortunately this equivalence issue is still
poorly understood.

6 NUMERICAL EXPERIMENTS

In this section we present numerical experiments, in
which we apply the proposed greedy search to simulated
data and well-known protein expression data [26].

6.1 Simulation Studies

We consider graphs with p ∈ {5, 6} nodes. In each case
generate 100 simple mixed graphs uniformly at random
using an MCMC algorithm; in analogy to [22]. The pa-
rameters for the graphs’ edges are sampled uniformly
from [−0.9,−0.5] ∪ [0.5, 0.9]. The diagonal entries in

Table 1: Proportion of estimated graphs that share the dimen-
sion (Dim), skeleton (Skel) and both skeleton and set of collider
triples (Skel & Coll) with the true graph, and minimal structural
hamming distance (SHD*) averaged over simulations. Esti-
mates use BIC with standard (1) and increased penalty (2), and
search initialized at random (R) or at the true graph (TG).

BIC n Start Dim Skel Skel & Coll SHD*

1

102 R 0.39 0.13 0.07 3.79
TG 0.8 0.8 0.25 1.15

103 R 0.63 0.43 0.26 2.44
TG 0.88 0.88 0.53 0.63

104 R 0.76 0.59 0.45 2.29
TG 0.92 0.92 0.74 0.34

2

102 R 0.24 0.14 0.1 3.55
TG 0.92 0.92 0.36 1.03

103 R 0.48 0.34 0.21 2.78
TG 0.9 0.9 0.52 0.65

104 R 0.71 0.61 0.38 2.02
TG 0.93 0.93 0.71 0.42

Ω are set by adding independent χ2
1 draws to the abso-

lute row sums to ensure positive definiteness by diagonal
dominance. For each graph, we generate three Gaussian
data sets of size n ∈ {102, 103, 104}.

For each data set, we run the greedy search starting from
(i) 300 randomly selected graphs but also from (ii) the
true graph. For every single restart, we set the maximum
number of iterations of greedy search to be 104. In Ta-
ble 1 we report on how often the greedy search gives a
model of correct dimension, correct graph skeleton, and
both correct collider triples and skeleton when p = 5.
For each initialization scheme, we consider the BIC with
both standard penalty and penalty as in (16). Further-
more, in Table 2, the frequency distribution of the differ-
ence between the dimension for the true graph and for
the estimated graph is reported for the case p = 5 and
BIC with standard penalty.

In Table 1, we also report a structural Hamming distance
(SHD); counting edge additions, deletions and reversals
needed to move from one mixed graph to another. The
distance we give uses our theorems on dimension and
collider triples to bound the true minimal SHD between
a graph representing the selected model and one repre-
senting the true model. In other words, we minimize the
SHD over pairs of graphs (Ḡ1, Ḡ2), where Ḡ1 has the
same skeleton and collider triples as the true graph and
Ḡ2 has the same skeleton and collider triples as the es-
timated graph. While this upper bound SHD* needs not
be tight, it is on average only half as large as a naive SHD
computed for estimated and true graph directly.

By Theorem 3.1, the frequency of having the same di-
mension gives an upper bound for the frequency of get-
ting equivalent models. Additionally, Theorem 4.1 indi-
cates that the frequency of having both the same set of



Table 2: Absolute frequency distribution of the difference be-
tween the dimension for the true graph (TG) and the dimension
of the estimated graph (EST) in 100 simulations for p=5 and
BIC with standard penalty.

n Start Dim(EST) - Dim(TG)

-3 -2 -1 0 1 2

102 R 5 14 35 39 7 0
TG 0 0 0 80 20 0

103 R 1 3 25 63 8 0
TG 0 0 0 88 12 0

104 R 0 2 14 76 8 0
TG 0 0 0 97 7 1

collider triples and the same skeleton is a lower bound
for the frequency of getting equivalent models. Hence,
according to our experiment with 100 simulations, when
starting from the true graph, the estimated graph is distri-
butionally equivalent to the true graph between 74% and
92% of times when p = 5 and n = 104 (BIC with stan-
dard penalty, see Table 1) and between 61% and 80%
when p = 6 (results not given in Table). On the other
hand, if the greedy search algorithm is started from a
random graph, the estimated graph belongs to the equiv-
alence class of the true graph between 38% and 57% of
times when p = 5 and between 21% and 60% when
p = 6. The standard penalty seems to slightly outper-
form the increased penalty when p ∈ {5, 6}, although
this is not so evident from the upper bound on the true
minimal structural Hamming distance. Additional par-
tial experiments we carried out for p = 10 suggest that
for a larger number of nodes, smaller Hamming distances
result from the increased penalty.

6.2 Protein Expression Data

For further illustration, we consider a frequently studied
collection of data sets on expression of p = 11 proteins
in human T-cells [26]. The collection comprises 14 data
sets, each obtained under different experimental condi-
tions. The sample size of these data sets ranges from 707
to 927. The focus on 11 proteins is due to limitations in
the experimental technology. Figure 2 in [26] suggests
presence of further relevant but unobserved proteins and
leaves open the possibility of a feedback cycle.

To accommodate departures from our linear Gaussian
models, at least at the level of marginal distributions,
we consider a Gaussian copula version of the models
[15, 20]. In other words, each observed variable is as-
sumed to be a deterministic and isotonic function of a
Gaussian latent variable. As shown in [20], consistent
estimation in the Gaussian copula models is achieved by
replacing the sample covariance matrix in the Gaussian

Table 3: Summary statistics on the number of edges in the
estimated graphs for the 14 protein expression datasets.

Type of edges Min Median Max

All 10 13 13
Directed 2 8 11

Bidirected 2 4.5 8

likelihood function (and the model selection score) by a
bias-corrected Kendall’s tau correlation matrix. The en-
tries of this matrix are sin(π2 τ̂ij), where τ̂ij is Kendall’s τ
for the pair of variables (Xi, Xj). With this substitution,
we actually project a p(p+1)

2 -dimensional covariance ma-
trix to the p(p−1)

2 -dimensional space of correlation ma-
trices. However, our sufficient condition for equivalence
remains unchanged, and the result on expected dimen-
sion still holds as long as the graph has no more than
p(p−3)

2 edges.

For each dataset, the greedy search based on the bias-
corrected Kendall’s tau matrix was repeated 100 times,
each time starting from a random graph and using BIC
with increased penalty. The highest scoring graph for
each data set was then determined. As reported in Table
3, the total number of edges in the 14 estimated graph
ranges from 10 to 13, with the median being 13. The
table also gives these statistics for the count of directed
and bidirected edges. The proportion of directed edges in
each graph ranges from a minimum of 0.2 to a maximum
of 0.85. A total of 4 of the 14 graphs contain a directed
cycle: datasets 3, 6 and 7 each yield a graph with one
3-cycles, and dataset 4 leads to one 4-cycle.

We display two of the selected graphs in Figure 3,
one with minimum (dataset 1) and one with maximum
(dataset 6) number of edges, the latter also displaying a
3-cycle. Although further work is needed to fully deter-
mine possible equivalences, there is no obvious reason
(e.g., by Theorem 4.1) for a distributionally equivalent
graph without a cycle to exist. We conjecture that this is
indeed not the case. Considering all 14 graph estimates
together it is reassuring to observe that some structure is
shared. Figure 4 shows the (undirected) edges that ap-
pear in all/at least 11 of the skeletons of the estimated
graphs.

Our selected graphs show good agreement with regu-
latory relationships described in [26], e.g., the inter-
play PLCG-PIP2-PIP3 (in at least 12 of the inferred
graphs); the connection PKC-P38-PJNK (all 14 graphs);
the connection P44/42 (named ERK in [26]) and PKA-
PAKTS473 (named AKT in [26], all 14 graphs). More-
over, three expected relationships that are well-reported
from the field-related literature emerge in our work that
were undetected in [26]. This is the case for the connec-
tions: PIP2 to PKC (dataset 14), PLCG to PKC (dataset
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Figure 3: Estimated graphs corresponding to the case of min-
imum number of edges (10 edges, dataset 1) and maximum
number of edges (13 edges, dataset 6).
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Figure 4: Edges appearing in at least 9 (a) and 13 (b) skeletons
from the estimated graphs.

14) and PIP3 to PAKTS473 (dataset 6, 7 and 12).

Finally, in order to illustrate the behavior of the greedy
search itself we focus again on datasets 1 and 6. Figure
5 shows the respective search paths in terms of the score
achieved at each iteration. While local optima are possi-
ble, we observe that most search paths end with a score
near the overall maximum.

7 CONCLUSION

We considered structure learning for linear causal mod-
els with Gaussian errors that may exhibit feedback loops
and correlation induced by latent variables. In order to
gain tractability in this difficult problem, we restricted
our attention to simple mixed graphs. Such graphs have
the favorable property of always inducing a model whose
dimension is as one expects from counting parameters.
This property allows one to form meaningful model se-
lection scores. While a search over simple mixed graphs
remains challenging, computationally and statistically,
our experiments suggest that useful information can be
learned from greedy search methods. This generalizes
similar conclusions for acyclic simple graphs [22].

0 1000 2000 3000

−
15

.5
−

15
.0

−
14

.5

Dataset 1 
Max Score: −14.28

0 1000 3000

−
15

.5
−

14
.5

−
13

.5
−

12
.5

Dataset 6 
Max Score: −12.62

Figure 5: Curves of scores versus the time (seconds) in 300
random restarts greedy search for dataset 1 and dataset 6.

We also showed that an existing sufficient condition for
distributional equivalence admits a natural generalization
from acyclic to cyclic simple mixed graphs. However,
the condition is very restrictive. It would be important to
find more broadly applicable conditions for distributional
equivalence.
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