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Abstract

Bipartite ranking is an important supervised
learning problem; however, unlike regression
or classification, it has a quadratic dependence
on the number of samples. To circumvent the
prohibitive sample cost, many recent works fo-
cus on stochastic gradient-based methods. In
this paper we consider an alternative approach,
which leverages the structure of the widely-
adopted pairwise squared loss, to obtain a
stochastic and low cost algorithm that does not
require stochastic gradients or learning rates.
Using a novel uniform risk bound based on
matrix and vector concentration inequalities,
we show that the sample size required for com-
petitive performance against the all-pairs batch
algorithm does not have a quadratic depen-
dence. Generalization bounds for both the
batch and low cost stochastic algorithms are
presented. Experimental results show signifi-
cant speed gain against the batch algorithm, as
well as competitive performance against state-
of-the-art bipartite ranking algorithms on real
datasets.

1 INTRODUCTION

Binary classification is among the most widely stud-
ied machine learning problems, with many applications.
Given a binary labeled dataset, the aim is to learn a map-
ping from the features to the labels. The performance
of a learning algorithm is typically gauged in terms of
classification error. However, in situations such as cost-
sensitive learning [1] and imbalanced learning [2, 3] this
choice may not be appropriate. For example, in online
advertising [1] one is typically concerned with separat-
ing the interesting ads from the rest. This problem is also
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known as bipartite ranking, where the aim is to rank the
“positive” inputs higher than the “negative” ones.

1.1 Problem Setup

Let X be a D-dimensional input domain and Y the la-
bel domain. The bipartite ranking problem is defined
for binary labeled samples, Y = {0, 1}. These sample
pairs are generated i.i.d. from an unknown distribution
D on X × Y . A ranking function f : X → R is a map-
ping from the inputs to a scalar-valued score. In this pa-
per we are interested in linear ranking functions of the
form f(x) = w>x with parameter vector w. The goal
in bipartite ranking is to assign higher scores to the in-
puts with label 1. Let x1 and x0 denote two samples
with corresponding labels of 1 and 0. Let x1 and x0

denote two samples with corresponding labels of 1 and
0. In many ranking settings we are given a set of fea-
tures that encodes the preference of one sample over an-
other [1], which can be represented by Ψ(x1,x0). It is
also possible that the individual features x0 and x1 are
not defined explicitly; for example when a single user
is shown two ads and prefers one over another. Given
this, a widely used performance metric is the Wilcoxon-
Mann-Whitney statistic

`WMW(w,Ψ(x1,x0)) = I
{
w>Ψ(x1,x0) > 0

}
+

1

2
I
{
w>Ψ(x1,x0) = 0

}
. (1)

Based on this we define the risks

RAUC(w) = Ex1∼D1

x0∼D0

[
`WMW(w,Ψ(x1,x0))

]
,

RAUC
N (w) =

1

N1N0

N1∑
i=1

N0∑
j=1

`WMW(w,Ψ(x1,x0)) ,

(2)

where RAUC(w) corresponds to the actual AUC risk
and is obtained by taking expectation over the class-
conditional distributions Di = D(x|y = i). Let the



Algorithm 1 BBR
Input: Sample set N

Regularization parameter (W∗)
Output: Linear ranker’s weight wN

1. Initialize µN ← 0, ΣN ← 0
2. //Accumulation
3. for i = 1, . . . , N1

4. for j = 1, . . . , N0

5. µN ← µN + 1
N1N0

(x1
i − x0

j )

6. ΣN ← ΣN + 1
N1N0

(x1
i − x0

j )(x
1
i − x0

j )
>

7. end for
8. end for
9. //Empirical Risk Minimization
10. wN ← arg min

w∈B2(W∗)

1
2w
>ΣNw − µ>Nw

Algorithm 2 LCBR
Input: Sample set N , subsample size (S)

Regularization parameter (W∗)
Output: Linear ranker’s weight wS

1. Initialize µS ← 0, ΣS ← 0
2. //Accumulation
3. for s = 1, . . . , S
4. Sample (is, js) uniformly with replacement
5. µS ← µS + 1

S (x1
is
− x0

js
)

6. ΣS ← ΣS + 1
S (x1

is
− x0

js
)(x1

is
− x0

js
)>

7. end for
8.
9. //Empirical Risk Minimization
10. wS ← arg min

w∈B2(W∗)

1
2w
>ΣSw − µ>Sw

sample set N = {x0
1, . . . ,x

0
N0
,x1

1, . . . ,x
1
N1
}, contain-

ing N0 and N1 samples with labels 0 and 1, respectively,
and define N := N0 +N1. This gives the empirical risk
RAUC
N (w) to be minimized in practice. The main draw-

back of this approach is that the objective function is
now a sum of indicator functions, an NP-hard problem.
A widely-used approach to handle this problem is to re-
place the intrinsic loss function `WMW with a convex one,
often written as `φ [4, 5].

In this paper we are interested in the pairwise squared
loss as it is a consistent estimator of AUC [6], and widely
preferred by recent work [7, 8, 9]:

`φ(w,Ψ(x1,x0)) =
1

2

[
1−w>Ψ(x1,x0)

]2
, (3)

which produces its own corresponding actual and empir-
ical φ-risks that parallels Eq. (2). Let

ΣN =
1

N1N0

N1∑
i=1

N0∑
j=1

Ψ(x1,x0) Ψ(x1,x0)>

and

µN =
1

N1N0

N1∑
i=1

N0∑
j=1

Ψ(x1,x0).

The empirical risk for this problem can then also writ-
ten as the optimization of RφN (w) = (1/2)w>ΣNw −
µ>Nw. For what follows we will drop the φ symbol and
refer to `φ, Rφ, and RφN simply as `, R, and RN .

The focus of this paper is on two algorithms: The first
one is a Batch Bipartite Ranking (BBR) algorithm (Al-
gorithm 1), which aims at minimizing RN based on all
pairs available in N . We provide a new theoretical anal-
ysis of BBR in Section 2. Due to the quadratic growth of
sample size, O(N1N0), the sample cost of BBR quickly

becomes prohibitive. Therefore we also propose a new
Low Cost Bipartite Ranking (LCBR) algorithm (Algo-
rithm 2), which, given the same sample set N , subsam-
ples S pairs uniformly at random with replacement. The
main goal of this paper is to analyze the subsample size
S required for LCBR to be competitive with BBR. As
we show in Section 3, S does not have such quadratic
dependence, where the proof utilizes matrix and vector
concentration inequalities. Section 4 discusses related
work. We show experiments in Section 5 and conclude
in Section 6.

Comment: For easier presentation we focus on the
case Ψ(x1

i ,x
0
j ) = x1

i − x0
j (which is reflected in Al-

gorithms 1 and 2). However, all the theory developed in
this paper is valid for the most general case of Ψ(x1

i ,x
0
j ).

In particular, imposing a norm bound on the individual
features x1

i ,x
0
j is equivalent to imposing a scaled norm

bound on Ψ(x1
i ,x

0
j ).

Additional assumptions: We assume the input do-
main is compact, X ⊆ B2(X∗) which implies ‖x‖2 ≤
X∗, and that the domain of ranking functions is com-
pact, takingW = B2(W∗) such that ‖w‖2 ≤ W∗. Here
Bp(r) := {x ∈ X : ‖x‖p ≤ r} is the `p-ball of ra-
dius r. The first assumption is related to data preprocess-
ing where the features are scaled appropriately; the sec-
ond assumption corresponds to regularization. For both
cases we chose the `2-norm as it provides a dimension-
independent upper bound; however it is still possible
to derive bounds using other norms. Let wN and wS

be the minimizer of the empirical risk objectives (Al-
gorithms 1 and 2, Line 10). Also for clarity we focus
on the case where Σ,ΣN ,ΣS � 0, where we define
Σ = Ex1∼P1,x0∼P0

[(x1−x0)(x1−x0)>]. This means
w?,wN , andwS have unique values. Note that, this last



assumption is only for presentation purposes and the re-
sults derived in this paper apply to the most general case
where Σ,ΣN ,ΣS � 0.

2 BATCH BIPARTITE RANKING (BBR)

In order to analyze the more efficient LCBR, we first de-
rive a risk bound for the corresponding BBR. The risk
bounds derived in this paper are with respect to the best-
in-class ranking function. For the sample set N we de-
fine ρ := N1/(N0 +N1) as the label skew. Also, for the
unit sphere SD−1 let CS(ε) denote the covering num-
ber based on `2-balls of radius ε. The main result of this
section is the following risk bound based on the metric
entropy ofW .

Theorem 1. For a given sample set N , define wN :=
arg minw∈W RN (w) and w? = arg minw∈W R(w).
Also define the constants C1 := 8X2

∗W∗ + 4X∗ and
C2 := 3X2

∗W
2
∗ + 2X∗W∗. Then

P
N∼DN

(
R(wN )−R(w?) ≥ ε

)
≤ 2 CS

(
ε

4C1

)
exp

{
− ε2

8C2
2

ρ(1− ρ)N

}
. (4)

Here we used the shorthand DN to denote the prod-
uct measure over the samples, [D1]N1 ⊗ [D0]N0 where
[Di]Ni = ⊗Ni

i=1Di. This result is comparable to the
bound given for linear regression based on covering
numbers [10]. One distinction, however, is the depen-
dence on skew ρ(1 − ρ); when ρ is close to 0 or 1, the
learner requires significantly more samples to achieve the
same bound. The exponential term in Eq. (4) is com-
parable to the one obtained for AUC loss in Theorem
5 of [11]. On the other hand, when ρ(1 − ρ) = O(1)
and N is large enough to bound the covering number by
the exponential term in Eq. (4) we get the typical rate
O(
√

log(1/δ)/N).

As the rate in Eq. (4) depends onN1+N0 and notN1·N0,
it is natural to only consider pairs of independent sam-
ples instead of their Cartesian product, which reduces the
analysis to that of linear regression. However, this is not
done in practice as it would discard information [7]. In-
deed, for this reason, a number of works consider the all-
pair problem, e.g. [7, 4, 5]; we do so similarly. Below,
we prove Theorem 1 using the following Lemma.

Lemma 1. For a given sample set N and constants
C1 := 8X2

∗W∗ + 4X∗, C2 := 3X2
∗W

2
∗ + 2X∗W∗,

P
N∼DN

(
sup
w∈W

|R(w)−RN (w)| ≥ ε
)

≤ 2 CS

(
ε

2C1

)
exp

{
− ε2

2C2
2

ρ(1− ρ)N

}
. (5)

Proof. Recall that pairwise squared loss is defined
as `(w,x1,x0) = (1/2)(1 − hw(x1,x0))2 for
hw(x1,x0) = w>(x1 − x0). Also define ΦN (w) :=
R(w)−RN (w). For w1,w2 ∈ W ,∣∣∣∣`(w1,x

1,x0)− `(w2,x
1,x0)

∣∣∣∣
=

∣∣∣∣12(1− hw1
(x1,x0))2 − 1

2
(1− hw2

(x1,x0))2
∣∣∣∣

≤ 1

2

∣∣2− hw1(x1,x0)− hw2(x1,x0)
∣∣ ×∣∣hw2(x1,x0)− hw1(x1,x0)
∣∣

≤ (2X∗W∗ + 1)
∣∣(w2 −w1)>(x1 − x0)

∣∣
≤ (4X2

∗W∗ + 2X∗) ‖w1 −w2‖2 . (6)

Using this bound we have

|ΦN (w1)− ΦN (w2)|
= |R(w1)−RN (w1)−R(w2) +RN (w2)|

≤
∣∣∣∣Ex1∼D1

x0∼D0

[
`(w1,x

1,x0)− `(w2,x
1,x0)

] ∣∣∣∣
+

1

N1N0

N1∑
i=1

N0∑
j=1

∣∣∣∣`(w1,x
1
i ,x

0
j )− `(w2,x

1
i ,x

0
j )

∣∣∣∣
≤ (8X2

∗W∗ + 4X∗) ‖w1 −w2‖2 . (7)

We have shown that |ΦN (w1)− ΦN (w2)| ≤
C1 ‖w1 −w2‖2. Let {Bi}Ii=1 be a set of `2-balls
of radius ε coveringW . Then

PN ( sup
w∈W

|ΦN (w)| ≥ ε) ≤
I∑
i=1

PN ( sup
w∈Bi

|ΦN (w)| ≥ ε)

≤
I∑
i=1

PN (|ΦN (wi)| ≥ ε/2) . (8)

Now that the weight vector and samples are decou-
pled, we can bound the deviation of ΦN (w) for a fixed
w. First note that E[ΦN (w)] = 0 by definition of
R(w) and RN (w). Now consider perturbation of a sin-
gle variable—define N ′ = (x1, . . . ,x′, . . . ,xN ) which
matches N everywhere except x′. We have two cases:



(i) When x′ has corresponding label 0, we have

|ΦN (w)− ΦN ′(w)|

=

∣∣∣∣ 1

2N0N1

N1∑
i=1

[1−w>(x1
i − x0

j )]
2−

1

2N0N1

N1∑
i=1

[1−w>(x1
i − x′)]2

∣∣∣∣
≤ 1

2N0N1
N16X2

∗W
2
∗ +

1

2N0N1
N14X∗W∗ (9)

From this last line it follows that
|ΦN (w)− ΦN ′(w)| ≤ C2/N0.

(ii) Similarly when x′ has corresponding label 1:
|ΦN (w)− ΦN ′(w)| ≤ C2/N1.

As the differences are bounded and the inputs are
independent, applying McDiarmid’s inequality yields
P (|ΦN (w)| ≥ ε/2) ≤ 2 exp{−(ε2/2C2

2 )ρ(1 − ρ)N}.
This, along with I = CS(ε/(2C1)), implies the bound
in Lemma 1. �

The rate in the exponent above is similar to Theorem 5
of [11], up to multiplicative constants.

Proof of Theorem 1. By definition of wN and w? we
have R(wN )−R(w?) ≥ 0. Also,

R(wN )−R(w?)

= [R(wN )−RN (wN ) +RN (w?)−R(w?)]

+ [RN (wN )−RN (w?)]

≤ |R(wN )−RN (wN )|+ |R(w?)−RN (w?)| .
(10)

where the second line follows from RN (wN ) −
RN (w?) ≤ 0 and the triangle inequality. We next
bound both terms by ε/2, and according to Lemma 1,
the bounds hold simultaneously with probability at least
1− CS(ε/4C1)2 exp{−(ε2/(8C2

2 ))ρ(1− ρ)N}. �

3 LOW COST BIPARTITE RANKING
(LCBR)

In this section we derive risk bounds for LCBR, a sub-
sampling strategy for approximately optimizing BBR.
Our main goal is to obtain a bound similar to that in Eq.
(4). We start with a brief comparison of LBCR and BBR:
In Section 1 we noted that the empirical risk objective of
BBR can be written as

RN (w) = (1/2)w>ΣNw − µ>Nw

where

ΣN = 1/(N1N0)

N1∑
i=1

N0∑
j=1

(x1
i − x0

j )(x
1
i − x0

j )
>

and

µN = 1/(N1N0)

N1∑
i=1

N0∑
j=1

(x1
i − x0

j ).

Here ΣN and µN are constructed using all N1N0 pairs
available. On the other hand, LBCR subsamples S pairs
from the fixed N1N0 total pairs uniformly at random
with replacement. The pairs obtained this way are de-
noted by the set S = {(x11, x01), . . . , (x1S , x

0
S)}. It can

be seen that the elements of S are random variables
sampled from a uniform distribution conditional on N .
Thus, while the elements of N are sampled from the
class-conditionals, i.e. Di, the elements of S are sam-
pled from the uniform distribution D(N ). With a slight
abuse of notation, we will denote this by (x1

i ,x
0
j ) ∼ N .

The corresponding objective of LCBR is RS(w) =
(1/2)w>ΣSw − µ>Sw with µS and ΣS the first and
second moments computed on the subsample.

In order to derive a risk bound for |R(wS)−R(w?)| we
first need to bound |RN (wN ) − RN (wS)|. However,
in the latter expression, the weight vectors and the sam-
ples are not independent. For this reason, we again use a
uniform convergence argument. Here we use matrix and
vector concentration to obtain the bounds necessary. In
particular, the following lemma provides concentration
inequalities for two key variables.

Lemma 2. Forw1,w2 ∈ W , define ∆Σ := w>1 (ΣS−
ΣN )w1 and ∆σ := (w1 − w2)>(µN − µS). The fol-
lowing hold:

(i)

P
(

sup
w1∈W

|∆Σ| ≥ ε
)
≤

2D exp
{
−Sε2/(8 ‖ΣN‖2X

2
∗W

4
∗ + (16/3)εX2

∗W
2
∗ )
}

(ii)

P
(

sup
w1,w2∈W

|∆σ| ≥ ε
)
≤

2 exp
{
−1/2(ε

√
S/(2X∗W∗)− 1)2

}
The proof is given in the appendix. We can now bound
the difference of the empirical risks with high probabil-
ity.



Theorem 2. For a given sample set N and its subsam-
ple set S let wN = arg minw∈W RN (w) and wS =
arg minw∈W RS(w). If the subsample size satisfies

S ≥ max

{
log(4D/δ)

‖ΣN‖2X2
∗W

4
∗ + (1/3)εX2

∗W
2
∗

ε2/32
,

X2
∗W

2
∗

ε2/4

[√
2 log(4/δ) + 1

]2}
(11)

then

P
S∼N

(
|RN (wS)−RN (wN )| ≥ ε

)
≤ 1− δ . (12)

Proof. We define the following pointwise difference

∆(w) := RS(w)−RN (w)

=
1

2
w>(ΣS −ΣN )w +w>(µN − µS) .

(13)

Our first task is to show that the following inequality
holds,

0 ≤ RN (wS)−RN (wN ) ≤ ∆(wN )−∆(wS) .
(14)

The LHS of this inequality holds by the definition ofwN

and wS . For the RHS we have

RN (wS)−RN (wN )

= ∆(wN )−∆(wS)− [RS(wN )−RS(wS)]

≤ ∆(wN )−∆(wS) (15)

since RS(wN )−RS(wS) ≥ 0. It is therefore sufficient
prove a high probability bound for |∆(wN )−∆(wS)|.
Next,

|∆(wN )−∆(wS)|

=

∣∣∣∣12w>
N (ΣS −ΣN )wN − 1

2
w>

S (ΣS −ΣN )wS

+ (wS −wN )>(µN − µS)

∣∣∣∣
≤
∣∣∣∣12w>

N (ΣS −ΣN )wN − 1

2
w>

S (ΣS −ΣN )wS

∣∣∣∣
+

∣∣∣∣(wS −wN )>(µN − µS)

∣∣∣∣ . (16)

We bound each of these terms by ε/2 with proba-
bility at least 1 − δ/2. Note that both terms have
weight vectors coupled with samples so we cannot
apply concentration inequalities directly. However,
they can be upper bounded by the expressions in

Lemma 2. In particular, for the quadratic term∣∣ 1
2w
>
N (ΣS −ΣN )wN − 1

2w
>
S (ΣS −ΣN )wS

∣∣ ≤
supw1,w2∈W |∆Σ|. We then apply Lemma 5(i) with
threshold ε/2 and probability δ/2 which yields
the first term in Eq. (11). For the linear term,∣∣(wS −wN )>(µN − µS)

∣∣ ≤ supw1,w2∈W |∆σ|.
Applying Lemma 5(ii) with threshold ε/2 and probabil-
ity δ/2 yields the second term. �

Theorem 2 shows that the subsample size S required to
decrease the difference |RN (wS)−RN (wN )| does not
depend on the number of total pairs. Instead, the de-
pendence is on the spectral norm of the empirical sec-
ond moment matrix ‖ΣN‖2, and polynomial in X∗, W∗,
log(1/δ), and 1/ε. This is favorable, as in many settings
the total number of pairs can be prohibitively large. The
tightness of our result follows from the matrix and vec-
tor concentration arguments of [12, 13]. The following
is the main result of this section, regarding the actual risk
of LCBR solution.

Theorem 3. For a probability target p? let the sample
size be chosen such that

S ≥ max

{
log(

4D

p?
)
‖ΣN‖2X2

∗W
4
∗ + (1/15)εX2

∗W
2
∗

ε2/800
,

X2
∗W

2
∗

ε2/100

[√
2 log(4/p?) + 1

]2}
. (17)

Then the solution wS returned by LCBR satisfies

P
N∼DN

(
R(wS)−R(w?) ≥ ε

)
≤ 2 CS

(
ε

10C1

)
exp

{
− ε2

50C2
2

ρ(1− ρ)N

}
+ p? .

(18)

Proof. We start with the inequality

R(wS)−R(w?) = |R(wS)−R(w?)|
≤ |R(wS)−R(wN )|+ |R(wN )−R(w?)| . (19)

The first term can be bounded as

|R(wS)−R(wN )|
= |R(wS)−RN (wS) +RN (wS)−RN (wN )

+RN (wN )−R(wN )|
≤ |R(wS)−RN (wS)|+ |R(wN )−RN (wN )|

+ |RN (wS)−RN (wN )| . (20)

Note that the empirical risk trick in the proof Theorem 1
no longer applies as it not known which one ofR(wN ) or
R(wS) is smaller, and all three terms have to be retained.



On the other hand, for the second term, from the proof of
Theorem 1 we know that

|R(wN )−R(w?)|
≤ |R(wN )−RN (wN )|+ |R(w?)−RN (w?)| .

(21)

Combining Eqs. (20) and (21) we get

R(wS)−R(w?) ≤
[ ∑
w∈W4

|R(w)−RN (w)|
]

+ |RN (wS)−RN (wN )| . (22)

where we defined the sequence W4 =
[w?,wN ,wN ,wS ]. We now consider bounding
each term by ε/5. For the summation on the right hand
side this yields

P

( ∑
w∈W4

|R(w)−RN (w)| ≤ 4ε/5

)

≤ P
(

sup
w∈W

|R(w)−RN (w)| ≤ ε/5
)

≤ 2 CS

(
ε

10C1

)
exp

{
− ε2

50C2
2

ρ(1− ρ)N

}
(23)

where the last inequality follows from Lemma 1. For
the last term we would like to bound the deviation
by ε/5 with probability p?. Plugging these terms into
the sample complexity bound of Theorem 2 yields the
bound of Eq. (17). �

Theorem 3 shows that the number of samples S required
to make LCBR competitive with BBR does not depend
on N1 · N0. Firstly, for a fixed probability target p?, S
depends on N only through ΣN . In practice we set p?

such that it is relatively smaller than the exponential term
in Eq. (18). In this case S will have an implicit depen-
dence on N1 + N0 and ρ. The important difference is,
while BBR requiresN1·N0 samples to achieve the bound
in Eq. (4), LCBR can achieve the comparable bound in
Eq. (18) with S � N1 · N0. We demonstrate this with
experiments in Section 5. Finally, note that we focused
on the linear case due to space limitations. Clearly, for
any fixed nonlinear feature map, our results hold where
D is replaced with the dimensionality of the new feature
space. Another direction is to consider random feature
transforms and provide bounds based to the best ranker
in the corresponding function space [13]; we leave this
for a longer version of the paper.

4 RELATED WORK

Our proof of the uniform risk bound in Lemma 1 is
based on covering numbers, which is also used for an-

alyzing linear regression problems [10]. The covering
number-based argument is later extended to online learn-
ing with pairwise loss functions [14]; however, their
analysis is for sequential updates. Bounds based on
Rademacher complexity and U-processes are considered
in [9, 15, 16, 17]. These bounds can be tighter, how-
ever they are based on the assumption that all samples
are drawn i.i.d. from D, which is different from our
setup. Bounds based on algorithmic stability [18, 19]
and VC dimension [11] have also been considered. Re-
placing the discrete AUC loss with a convex one has
been investigated in a number of work. In particular
[4, 5, 9, 8, 7] consider online algorithms. Online learning
based on stochastic saddle point problems is considered
in [20, 21]. It is also worthwhile to note that the majority
of the aforementioned papers are based on the pairwise
squared loss. In [6], the consistency of surrogate loss
functions with respect to AUC loss has been considered,
extending the results of [22]. On the other hand [23, 24]
provide bounds for the AUC loss in terms of the surro-
gate loss of the learner. Kernel based methods for bi-
partite ranking was considered in [3, 25, 26]. (For more
related work see also [27, 28, 29].) In terms of low sam-
ple complexity, the stochastic gradient descent (SGD)
based online learning algorithms also provide bounds in
terms of the samples used; however these algorithms re-
quire a step size to tune, whereas LCBR in Algorithm 2
does not need this parameter, which can be an important
practical advantage. As we will show in experiments,
LCBR can achieve better performance with fewer sam-
ples, compared to the SGD-based methods.

5 EXPERIMENTS

5.1 Mixture of Gaussians

We first consider experiments where the generating dis-
tribution is a K-component Gaussian mixture. Thus, for
i ∈ {0, 1} we can write

Di(x) =

K∑
k=1

ck√
2πσ2

exp{−
∥∥x− µik∥∥22 /(2σ2)}

(24)

where ck’s are mixture weights. We consider the case
where the covariance matrix is isotropic and controlled
with a single scale parameter σ (non-isotropic covariance
matrices can also be used, which typically results in 1%
drop in AUC for these experiments). We consider three
cases where K = 1, 2, 3 and σ = 2, 3, 4 where the in-
creasing value of K and σ makes the problem gradually
more difficult. The mean values for class one are sam-
pled from the unit cube in positive orthant and class zero
from unit cube in negative orthant. The curves are ob-
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Figure 1: Results of experiments with Gaussian Mixture distributions.
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Figure 2: Results of experiments with LIBSVM datasets.



tained by averaging 50 experiments. For any given pair
of conditional distributions the optimal ranking function
minimizing the φ-risk is found by calculating µ and Σ
and solving the φ-risk minimization problem. On the
other hand, the optimal ranking function maximizing the
AUC is the likelihood ratio of class-conditionals, which
is a consequence of the Neyman-Pearson lemma [30].

Figure 1 shows the results of our experiments. For panels
(a)-(f) we have ρ = 0.5 with 103 positive and negative
samples. So BBR uses 106 pairs whereas LCBR uses
the number shown on the x-axis. In panels (a)-(c) we
show the φ-risk and in (d)-(f) we show the AUC. As the
number of components increase the problem becomes
more difficult, resulting in higher φ-risk and lower AUC
for optimal ranking functions. In all cases BBR is very
close to the optimal ranker; but it has high sample cost.
LCBR, on the other hand, catches on with S = 3000
at most. This is also reflected in wall clock times; as
shown in panels (g)-(i) LCBR is roughly 100 times faster
than BBR when S = 5000 subsamples are used. Fi-
nally we illustrate the performance of BBR and LCBR
as a function of label skew ρ. In the proof of Lemma
1, we saw that applying McDiarmid’s inequality gives
the term ρ(1 − ρ) in the exponent. This suggests, as ρ
goes to 0 or 1 the generalization performance should de-
crease. Panel (j) shows that this is indeed the case: here
BBR uses 2000ρ positive and 2000(1−ρ) negative sam-
ples, whereas LCBR uses 5, 000 subsamples. The per-
formance of BBR and LCBR are once again close; but as
ρ deviates from 0.5 the generalization of both algorithms
get worse.

5.2 LIBSVM Datasets

We now compare LCBR against state-of-the art algo-
rithms on three datasets from LIBSVM. The algorithms
we implement, in addition to LCBR, are the following:
AdaOAM [8] uses adaptive stochastic gradient descent
with pairwise squared loss, whereas PGD is SGD based
approach [7]. SPAM is one of the most recent works
where AUC optimization is formulated as a stochastic
saddle point problem [20]. OAM is a relatively older al-
gorithm, but we include it as it is based in a different
objective, the pairwise hinge loss [4]. As widely done in
the literature, we use AUC on test set as the performance
measure. We use the train and test splits provided by
LIBSVM. Regularization parameters are determined by
cross-validation and step sizes are chosen based on the
references. The experiments are averaged over 50 runs
and error bars are not shown as they are small.

We show the results in Figure 2. The x-axis correspond
to the number of subsamples used as a percentage of total
number of samples available. For example, A9A dataset

contains approximately 33K data points. A subsample
ratio of 50% implies we use approximately 16.5K ran-
dom samples from this dataset. For the A9A dataset all
algorithms have good generalization, with an AUC of ap-
proximately 90%. For the GERMAN and SVMGUIDE3
datasets, on the other hand, there is a significant gap be-
tween LCBR and the SGD-based competitiors. Here the
SGD and learning rate free approach of LCBR proves
useful and it achieves better generalization for the given
number of samples. Therefore the sample complexity of
LCBR is favorable.

5.3 Algorithmic Complexity

For the algorithms presented in this paper, it can be seen
that the computational bottleneck is at the accumulation
phase (cf. Algorithms 1 and 2). For BBR the cost of
this step is O(N1N0D

2) and for LCBR this is O(SD2).
Typically S � N1N0 which can save significant compu-
tation. On the other hand, the storage for both BBR and
LCBR isO(D2) as it requires storing the covariance ma-
trix. This quadratic dependence on dimension can be an
issue when D is too large. In this case, a sparse approx-
imation of ΣS can be necessary. However, note that this
storage bottleneck is also present in the algorithms we
compared [4, 7, 8]. In contrast, SPAM [20] can be imple-
mented in O(D) space; however that algorithm requires
knowledge of expectations with respect to the true condi-
tionals, which is unknown in practice. Our experiments
show that LCBR can still achieve better performance.

6 CONCLUSION

We have considered the problem of bipartite ranking,
where the empirical AUC loss is replaced with the pair-
wise squared loss. Different from the previous work—
which was based on SGD—we proposed a low sample
cost bipartite ranking algorithm (LCBR), and showed
that the number of samples required for good perfor-
mance obeys S � N1N0. Experiments show that
LCBR quickly achieves similar performance with BBR
where the number of samples are several order of magni-
tudes lower. Experiments against state-of-the-art bipar-
tite ranking algorithms also show that LCBR can achieve
better generalization with a smaller subsample set. In a
longer version of the paper we will also consider extend-
ing these results to random feature spaces, which include
random kernel features and random neural networks.

7 APPENDIX

For the proofs we will use the shorthand xs = x1
is
−x0

js
.

(i) We recall the Matrix Bernstein Inequality for aD×D



symmetric, random matrix Z and threshold γ:

P (‖Z‖2 > γ) ≤ 2D exp

(
− γ2/2

V(Z) + Lγ/3

)
(25)

where L is a norm bound on summands.

First apply a spectral norm bound to the quadratic expres-
sion: supw1∈W |∆Σ| ≤ W 2

∗ ‖ΣS −ΣN‖2. We now
take Z = ΣS −ΣN . The spectral norm can be bounded
based on the argument in [12]. We can decompose Z
into a sum: Z =

∑S
s=1(1/S)[xsx

>
s −ΣN ]. We denote

each summand by Es = (1/S)[xsx
>
s − ΣN ]. It then

follows from triangle inequality that

‖Es‖2 ≤
1

S

[∥∥xsx>s ∥∥2 + ‖ΣN‖2
]
≤ 2

S
‖xs‖22 ≤

8X2
∗

S
(26)

where the second inequality follows from Jensen’s in-
equality. Since the subsampling is conditional onN , ΣN

is constant with respect to the subsampled pairs, and each
summand is centered and i.i.d. The variance of the sum
decomposes as V(Z) =

∥∥∑
s∈S E[E2

s]
∥∥
2
. For a single

summand the second moment can be bounded as

E[E2
s] =

1

S2
E
[[
xsx

>
s −ΣN

]2]
=

1

S2

[
E
[
‖xs‖22 xsx

>
s

]
−Σ2

N

]
� 4X2

∗
S2

ΣN

(27)

from which the variance inequality V(Z) ≤
(4X2

∗/S) ‖ΣN‖2 follows. Substituting these to
Eq. (25) with γ = ε/W 2

∗ yields the result.

(ii) We recall the following concentration inequality for
i.i.d. and bounded random vectors with mean x̄ [13]:

P

(∥∥∥∥∥ 1

S

S∑
s=1

xs − x̄

∥∥∥∥∥
2

≥ γ

)
≤

exp

−1

2

(
γ
√
S

L
− 1

)2
 . (28)

From the following inequalities

sup
w1,w2∈W

|∆σ(w1,w2)|

≤ sup
w1,w2

‖w1 −w2‖S ‖µN − µS‖2

≤ 2W∗

∥∥∥∥∥ 1

S

S∑
s=1

xs − µN

∥∥∥∥∥
2

(29)

the desired result is obtained by setting γ = ε/2W∗ and
L = X∗ in Eq. (28). �
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