
Ordering Variables for Weighted Model Integration

Vincent Derkinderen1,2, Evert Heylen1, Pedro Zuidberg Dos Martires1,2, Samuel Kolb1,2, Luc De Raedt1,2,3
1Dept. of Computer Science, KU Leuven, B-3000 Leuven, Belgium
2Leuven.AI - KU Leuven Institute for AI, B-3000 Leuven, Belgium

3Center for Applied Autonomous Systems, Örebro University, Sweden

Abstract

State-of-the-art probabilistic inference algo-
rithms, such as variable elimination and
search-based approaches, rely heavily on the
order in which variables are marginalized.
Finding the optimal ordering is an NP-
complete problem. This computational hard-
ness has led to heuristics to find adequate
variable orderings. However, these heuristics
have mostly been targeting discrete random
variables. We show how variable ordering
heuristics from the discrete domain can be
ported to the discrete-continuous domain. We
equip the state-of-the-art F-XSDD(BR) solver
for discrete-continuous problems with such
heuristics. Additionally, we propose a novel
heuristic called bottom-up min-fill (BU-MiF),
yielding a solver capable of determining good
variable orderings without having to rely on
the user to provide such an ordering. We em-
pirically demonstrate its performance on a set
of benchmark problems.

1 INTRODUCTION

Probabilistic graphical models are used to model com-
plex probability distributions over discrete and con-
tinuous random variables. The expressiveness and el-
egance of these models have enabled their deploy-
ment in a variety of applications. One only needs
to model the problem and perform probabilistic in-
ference using specialized algorithms such as the
sum-product algorithm [Pearl, 1982], variable elimina-
tion (VE) [Zhang and Poole, 1994], or bucket elimina-
tion [Dechter, 1999]. These algorithms heavily rely on
finding variable orderings that minimise the cost of com-
putation, i.e., on finding a variable ordering in which to

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

marginalize out single random variables. Finding the op-
timal variable ordering is NP-complete [Arnborg, 1985],
which has led to the development of several heuris-
tics for finding such orderings, e.g. [Kjærulff, 1990,
Darwiche, 2009, Dechter, 2013].

Probabilistic inference in discrete graphical mod-
els is reducible to weighted model counting
(WMC) [Darwiche, 2009]. WMC is the problem of
calculating the probability of a Boolean formula be-
ing satisfied given that the literals are only true with
a certain probability, which is in general a #P-hard
problem [Chavira and Darwiche, 2008].

Weighted model integration (WMI) [Belle et al., 2015]
is a recent extension of WMC from discrete to discrete-
continuous domains. This introduces an additional
major complication, namely integrating out continuous
variables: in the case of integrating polynomials over
convex polytopes, for instance, this problem is also
#P-hard [Valiant, 1979]. WMI consists thus of two com-
putationally hard problems 1) a combinatorial problem
(also present in WMC) and 2) integrating out continuous
variables. In practice, for many WMI problems the
integration of continuous variables is the main bottle-
neck. Several works have studied inference for WMI
through repeated integration (e.g. [Kolb et al., 2018,
Kolb et al., 2019b, Zeng and Van den Broeck, 2019]).
Such approaches, like the discrete-only variable elim-
ination algorithms, are very sensitive to the variable
ordering, i.e., the ordering in which integrations are
performed. However, in the WMI literature it is typically
assumed that a (good) ordering is provided by the user,
which is unrealistic. Therefore, we study the problem of
automatically determining a good variable ordering in
the context of WMI.

Specifically, we show, as a first contribution, how es-
tablished variable ordering techniques in the discrete
setting can be extended to the discrete-continuous (hy-
brid) setting (Section 3). Extending these techniques to

the hybrid setting is not straightforward as problems
with continuous variables exhibit additional dependen-
cies that impact the difficulty of the integration steps.
Additionally, we also map the concept of variable trees
(vtree) [Pipatsrisawat and Darwiche, 2008], which gen-
eralizes the concept of variable orderings, to the con-
tinuous setting (Section 4). This allows us to develop
(tree-based) ordering techniques for the state-of-the-art
WMI solver F-XSDD(BR) [Kolb et al., 2019b]. Our sec-
ond contribution is BU-MiF, a novel heuristic that pro-
duces a variable tree for the discrete-continuous domain,
and which has no direct analog in the discrete domain.
Thirdly, we extend F-XSDD(BR) with our new heuris-
tic and experimentally show its benefits. We demonstrate
our approach on a set of benchmark problems using Py-
WMI [Kolb et al., 2019a] and show that it provides better
performance than currently available orderings. Further-
more, the BU-MiF heuristic allows the F-XSDD(BR) al-
gorithm to perform well on a set of benchmark problems
from a tractable subset of WMI, outperforming the spe-
cialized SMI solver [Zeng and Van den Broeck, 2019]
introduced to tackle this class of problems.

2 PRELIMINARIES

2.1 Weighted Model Integration

Encoding a probabilistic inference problem as a
weighted model counting problem has emerged as the
canonical technique when dealing with discrete ran-
dom variables. Probabilistic inference is reduced to de-
termining the probability of a propositional logic for-
mula being satisfied given that the literals present in
the formula are themselves satisfied only probabilisti-
cally. Weighted model integration extends WMC from
the setting of propositional logic formulas to so-called
satisfiability modulo theory (SMT) formulas. Follow-
ing [Morettin et al., 2017], we define SMT formulas over
linear real arithmetics.
Definition 1 (SMT(LRA)). Let b be a set of M
Boolean and x a set of N real variables. An atomic for-
mula is an expression of the form

∑
i ci ·xi./c, where the

xi∈x and ci, c∈Q, and ./∈{=, 6=,≥,≤, >,<}. We then
define SMT(LRA) theories as Boolean combinations
(by means of the standard Boolean operators {¬,∧,∨})
of Boolean variables bi∈b and of atomic formulas in x.

We define weighted model integration in terms of
an indicator function over an SMT(LRA) formula,
cf. [Kolb et al., 2019b].
Definition 2 (WMI). Given a set b of M Boolean
variables, x of N real variables, a weight function
w:BM×RN→R≥0, and a support φ, in the form of an
SMT formula, over b and x, the weighted model integral

5

C D ¬C⊥

3

¬B C ⊤

1

¬A B A ⊥

1

A B ¬A⊥

1

A
0

B
2

3

5

C
4

D
6

Figure 1: An SDD representing (A∧B)∨ (C ∧D)∨ (B ∧C)
(left) and the vtree used for its construction (right).

is given by:

WMI(φ,w|x,b) =
∑

b

∫
Jφ(x,b)Kw(x,b)dx (1)

where we use the Iverson bracket notation in Jφ(x,b)K
to denote the indicator function of φ(x,b). If the set of
real variables x is empty the WMI task reduces to WMC.

2.2 Sentential Decision Diagrams

Knowledge compilation [Darwiche and Marquis, 2002]
is the process of compiling a propositional logic formula
into a particular form that allows to execute certain op-
erations, such as WMC, efficiently. A popular target lan-
guage to compile propositional formulas into are Senten-
tial Decision Diagrams (SDDs) [Darwiche, 2011]. The
knowledge compilation step constitutes the #P-complete
part of probabilistic inference via WMC.

An SDD α is a structure that represents a propositional
logic theory 〈α〉. Each SDD node α represents either a
terminal (> or⊥), a literal (e.g.X or ¬X) or a decompo-
sition ({(p1, s1), . . . , (pn, sn)}). The latter can be con-
sidered an OR-node, 〈α〉 =

∨n
i=1〈pi〉 ∧ 〈si〉 with pi and

si both also SDDs. Each decomposition node is graph-
ically represented as a circular node connecting to each
of its pairs. A pair (pi, si) is a conjunction of a prime pi
and a sub si, represented as a paired box with pi on the
left and si on the right (Figure 1). From a top-down per-
spective, the theory 〈α〉 of a decomposition node, is par-
titioned into several branches such that 〈si〉 is 〈α〉 condi-
tioned on 〈pi〉.

To determine what variables to condition on (the vari-
ables in the prime), a vtree is used to recursively guide
the SDD construction process. Each decomposition node
respects a node in the vtree v such that the variables in
the prime are all variables in vl (left branch) and all vari-
ables in the subs are in vr (right branch).

Definition 3 (Vtree). A vtree for variables X is a full bi-
nary tree whose leaves are in one-to-one correspondence
with the variables in X.

Example 1. Figure 1 (left) illustrates an SDD of the the-
ory 〈α〉 = (A∧B)∨(C∧D)∨(B∧C) as a decomposition
of three elements. Notice that each sub indeed represents

the theory of the parent node conditioned on the prime
(e.g. 〈s1〉 = C ∧ D = 〈α〉|¬B). The vtree guiding the
SDD construction is given in Figure 1 (right).

Vtrees generalise the concept of variable ordering, which
is, for instance, present in ordered binary decision di-
agrams (OBDD) [Bryant, 1986]. A variable ordering d
can be converted into a corresponding vtree by creating a
right-linear vtree where each left subvtree is a leaf node
with variables respecting d. As every variable ordering
is a vtree but not every vtree is a variable ordering and
as vtrees underlie SDDs and variable orderings underlie
OBDDs, SDDs constitute a richer compilation language
than OBDDs. As a consequence, SDDs are strictly more
succinct than OBDDs (every OBDD is an SDD but not
vice-versa). The formal definition of an SDD with re-
spect to a given vtree can be found in [Darwiche, 2011].

2.3 WMI with SDDs

When an SDD is used to represent a propositional the-
ory T , the weighted model count of T can be computed
in time linear to the size of the SDD. This is used by
state-of-the-art approaches to obtain efficient probabilis-
tic inference for the discrete domain.

Similar to knowledge compilation approaches for WMC,
WMI has also received attention from this direc-
tion in order to build solvers. Such solvers have ei-
ther been based on extended algebraic decision di-
agrams1 [Kolb et al., 2018] or extended SDDs (XS-
DDs) [Zuidberg Dos Martires et al., 2019]. These ex-
tended representation allow, in addition to Boolean lit-
erals, also the use of SMT atoms.

A state-of-the-art solver based on XSDDs is F-
XSDD(BR) [Kolb et al., 2019b]. Currently, a major
problem of using XSDDs for solving WMI problems is
that the vtree underlying the XSDD construction does not
take into account which continuous variables are present
in which SMT atomic literals, i.e. the compilation step
of an XSDD is agnostic towards the extra information
present in atomic SMT literals that might be helpful
when integrating out the continuous random variables
and only sees Boolean abstractions of these SMT liter-
als. We now show how we repair this problem.

3 VARIABLE ORDERINGS

3.1 How to Exploit Structure

Probabilistic inference is a computationally hard prob-
lem and exploiting the structure that is present in any

1Algebraic decision diagrams are an extension of OBDDs.

given problem is crucial in order to manage this hard-
ness. We start this subsection by showing what it means
to exploit structure in the discrete setting (WMC) and
continue with the discrete-continuous setting (WMI).

Weighted Model Counting We explain the discrete
setting in the context of conditional probabilities, also
called factors. Consider the problem of computing the
probability P (C) using the factors P (A), P (B|A) and
P (C|B). This can be done as follows:

P (C) =
∑

A

∑
B P (A,B,C) (2)

=
∑

A

∑
B P (C|B)P (B|A)P (A) (3)

In variable elimination approaches, evaluating this trans-
lates to first computing

∑
B P (C|B)P (B|A)P (A), re-

sulting in a new factor f(A,C). The size of an interme-
diate factor is exponential in the number of its variables
causing both the time and space complexity to be ex-
ponential. Fortunately, distributivity, commutativity and
associativity can be used to reduce the number of opera-
tions that have to be performed. We can for example push
inside the summation over A

P (C) =
∑

B P (C|B)
∑

A P (A)P (B|A) (4)

This leads to an intermediate factor
f(B)=

∑
A P (A)P (B|A) depending on only one

variable. The complexity is now no longer necessarily
exponential in the number of variables but is instead
determined by the problem structure and the variable or-
dering d — here d=(B,A). The importance of the latter
becomes apparent if we consider d=(A,B) instead:

P (C) =
∑

A P (A)
∑

B P (B|A)P (C|B) (5)

We obtain the factor f(A,C)=
∑

B P (B|A)P (C|B),
depending on two variables.

Unfortunately, finding a variable ordering that leads to
intermediate factors with the lowest maximum number
of variables is in general NP-complete [Dechter, 2013].

Weighted Model Integration Pushing the sum opera-
tion inside, as done in the discrete case, has recently also
been studied for the continuous case [Kolb et al., 2019b],
the key difference being that integrations are pushed in-
side instead of summations.

Reconsider the definition of a weighted model integral
(cf. Equation 1). Let us assume, for the sake of simplicity,
that the weight function w does not depend on Boolean
variables and fully factorizes, i.e. it is separable into fac-
tors depending only on single continuous variables:

WMI(φ,w|x,b) =
∑

b

∫
Jφ(x,b)K

[=wi(x)︷ ︸︸ ︷∏
xi
wi(xi)

]
)dx

Such separable weight functions allow us to push inside
integrations over specific variables in an integrand. For
instance, consider the function p(z):

p(z) =
∫
(J0<z<1KJy≤zKJx≤yKxyz) dxdy (6)

Due to the separable weight function xyz we can push
the integrations over x and y inside the integrand, similar
to pushing inside summations in the discrete case.

p(z) = J0<z<1K
(∫

Jy≤zK
(∫

Jx≤yKxdx
)
ydy
)
z (7)

Similarly again to the discrete setting, choosing different
orders in which to push inside the integrations can have
tremendous effects on the space and time requirements
of running an inference algorithm.

Example 2. Given the weight functionw=1 and support

φ=(
∧

i={1,...,4}(x0≤xi))∧
∧

i={0,...,4}(0≤xi≤1) (8)

where x1, x2, x3 and x4 all interact with x0. Using bnds0
to denote

∏
i={1,2,3,4}J0 ≤ xi ≤ 1K and bnds1 for∏

i={0,2,3,4}J0 ≤ xi ≤ 1K. If we first integrate out x0
we obtain:∫

JφKwdx0=x1Jx1<x2KJx1<x3KJx1<x4Kbnds0+
x2Jx1≥x2KJx2<x3KJx2<x4Kbnds0+
x3Jx1≥x2KJx2≥x3KJx3<x4Kbnds0+
x3Jx1<x2KJx1≥x3KJx3<x4Kbnds0+
x4Jx1≥x2KJx2≥x3KJx3≥x4Kbnds0+
x4Jx1≥x2KJx2<x3KJx2≥x4Kbnds0+
x4Jx1<x2KJx1<x3KJx1≥x4Kbnds0+
x4Jx1<x2KJx1≥x3KJx3≥x4Kbnds0 (9)

However, first integrating out x1 instead, yields the more
compact intermediate result, resulting in more efficient
subsequent computations (the symbolic expression tree
representing the integrand is much smaller).∫

JφKwdx1=(1−x0)(
∏

i={2,3,4}Jx0<xiK)bnds1 (10)

Even though [Kolb et al., 2019b] studied pushing inside
integrations, they did not develop any heuristics to do so.
Their approach relied on hand-crafting specific integra-
tion orders for specific problems. In the following two
sections we delineate how variable ordering strategies in
the discrete setting can be adapted for the hybrid domain.

3.2 How to Order Variables

Since finding the best variable ordering (i.e. smallest
intermediate size) is in general NP-complete, we in-
stead use heuristics. We first introduce additional con-
cepts used to analyse and find good variable orderings.

C

A

B

C

A

C

B
∑
B

∑
A

x3 x4

Figure 2: The interaction graph for factors f(A), f(A,B) and
f(B,C) (middle), the graph when B is summed out (left) and
the graph when A is summed out (right).

Then, we explain three simple and common variable or-
dering heuristics that use these concepts. While this ex-
planation is based on existing work for discrete problems
[Darwiche, 2009, Dechter, 2013], we show how to apply
it to the hybrid problem setting, a problem that, to the
best of our knowledge, has not yet received much atten-
tion.

3.2.1 Interaction Graphs

An important structure used to analyse a discrete prob-
lem is the interaction graph of factors [Darwiche, 2009].

Definition 4 (Interaction graph). Let V be a set of ver-
tices and E a set of edges. A factor interaction graph
G=(V,E) of a set of factors {f1, . . . , fn} is an undi-
rected graph with a vertex vi ∈ V for each variable xi
and an edge between two nodes, vj and vk when the cor-
responding variables xj and xk appear together in at least
one factor (we say that xj and xk co-appear or interact).

Before we are able to eliminate a variable v when ap-
plying variable elimination, we must first multiply all
factors in which v appears. After eliminating v, we ob-
tain a factor containing all the variables that were in the
multiplied factors. In the factor interaction graph, these
two steps correspond to connecting all the neighbors of
v with each other and removing v from the graph. The
additional edges are called fill-in edges. In this process,
the number of variables in the resulting factor is equal to
the number of neighbors of v while the size of a factor is
exponential in the number of variables.

Example 3. In the discrete example of factors
P (A), P (B|A) and P (C|B), A interacts with B and B
interacts with C (Figure 2, middle). Eliminating B re-
sults in new interaction between A and C (Figure 2, left)
while eliminating A does not result in any new interac-
tions (Figure 2, right). This shows that first eliminating
A is more beneficial as the intermediate factor f(A,B)
is smaller (fewer neighboring variables).

In order to utilize the concept of interaction graph for
hybrid domains, we introduce the concept of an interac-
tion graph of atomic SMT(LRA) literals. Such an in-
teraction graph is obtained by interpreting atomic SMT
literals as factors. The vertices in the interaction graph
then correspond to real variables appearing in the atomic

x0

x1

x4

x2

x3

x1

x4

x2

x3

x0

x4

x2

x3∫ 𝑑x0 ∫ 𝑑x1

Figure 3: The interaction graph of Example 2 (middle), the
graph when x0 is integrated out (left) and the graph when x1 is
integrated out (right).

SMT literals and they are connected to each other if they
jointly appear in at least one atomic SMT literal. This
elegant mapping of SMT literals to factors allows us to
deploy the plethora of concepts on variable ordering de-
veloped for the discrete setting in the hybrid setting.

Example 4. In Equation 8, x0 interacts with all other
continuous variables (Figure 3, middle). Integrating out
x0 results in new inequalities in which x1, x2, x3 and x4
interact with each other (Equation 9). In the interaction
graph this implies the removal of x0 and the addition of
new edges (dashed, Figure 3, left). When integrating out
x1 instead, no new edges are introduced in the interac-
tion graph (Figure 3, right), implying a more compact
intermediate result (Equation 10).

If a continuous variable v occurs in multiple inequali-
ties with other continuous variables X , integrating out v
will yield new inequalities between all the variables of
X . This process also exhibits an exponential relation for
the hybrid setting between the number of neighbors for
v and the size of the result after integrating out v. This is
related to the exponential complexity of Fourier-Motzkin
elimination [Imbert, 1990].

An interaction graph and a variable ordering together
form an ordered graph. The following two definitions are
from [Dechter, 2013].

Definition 5 (Ordered graph). Given an undirected
graph G = (V,E), the ordered graph (G, d) is obtained
by ordering the nodes along ordering d. The parents of a
node v are the nodes connected to v (see E) which occur
earlier in the ordering. The width of node v in (G, d) is
the number of parents v has. The width of ordered graph
(G, d) is the maximum width of all nodes in (G, d).

Definition 6 (Induced ordered graph). An induced or-
dered graph (G∗, d) of (G, d) is an ordered graph ob-
tained from (G, d) by processing the nodes in reverse
order of d (last to first, top to bottom). A node is pro-
cessed by adding edges between all its parents. The in-
duced width of ordered graph (G, d) is the maximum
number of parents any node has in (G∗, d). The induced
width of graph G is the minimal induced width over all
possible orderings d.

The process to construct (G∗, d) matches the behavior
of an interaction graph when eliminating variables in the

reverse order of d. Given a variable elimination approach
for a discrete setting with starting interaction graph G
and elimination ordering d, the number of variables in the
largest intermediate factor is equal to the induced width
of (G, d) plus one. The time and space complexity of
the variable elimination approach is exponential in the
induced width [Dechter, 2013].

3.2.2 Heuristic Variable Ordering

Given an interaction graph G, d should be chosen such
that the induced width of (G, d) is minimal. This min-
imises the size of the intermediate factors for the dis-
crete setting and the size of the resulting equation (sym-
bolic expression tree) for the hybrid setting. Unfortu-
nately, finding the minimum induced width of a graph
is NP-complete in general [Dechter, 2013]. Neverthe-
less, there are reasonable heuristics such as min-degree,
min-induced-width and min-fill. Min-degree constructs
the ordering d for interaction graph G in reverse or-
der by iteratively selecting the variable v with the low-
est degree in G and removing v and its edges from
G. This idea is also used in Linear Decision Dia-
grams [Chaki et al., 2009] to perform existential quan-
tification of continuous variables. Min-induced-width
and min-fill are similar but connect all neighbors of v
before removing it. Min-induced-width selects the node
with the lowest degree but, because of the modification,
also accounts for previously added edges. Min-fill selects
v based on the minimum number of edges required to
connect the neighbors (the fill-in edges). None of the
heuristics work best on all problems. In general, min-
fill has shown to be usually slightly better than min-
induced-width and min-degree has shown to be the worst
of the three [Koller and Friedman, 2009, Dechter, 2013,
Kask et al., 2011].

The three heuristics originate from the work in the dis-
crete setting. When we construct the interaction graph
for the hybrid case by treating atomic SMT(LRA) lit-
eral as factors, the interaction graph provides the same
kind of information as for the discrete case (minimise
the induced width). We can therefore also apply these
heuristics to the hybrid setting.

4 VARIABLE TREES

Instead of performing computations on factors (cf. Sec-
tion 3), we investigate a search-based approach which
consists of recursively conditioning on variables. Con-
sider for example

∑
A P (B = 1|A)P (A), previously

solved by taking the product of both P (B = 1|A) and
P (A) before eliminating A. A search based approach
solves this problem by first conditioning on A = 0, com-

1* 2*
A

0

C

0 1

1

C

0 1

B

0

3* 4* 7* 8*

A

0

C

0 1

1

C

0 1

1

3* 4*

5* 6*

7* 8*

Nr. Factors

1* P (A=0)P (B=0|A=0)
2* P (A=1)P (B=0|A=1)
3* P (C=0|B=0)
4* P (C=1|B=0)
5* P (A=0)P (B=1|A=0)
6* P (A=1)P (B=1|A=1)
7* P (C=0|B=1)
8* P (C=1|B=1)

Figure 4: OR-tree with d = B,A,C and table of weights (x*).

puting the product, and summing it with the result of
conditioning on A = 1. The advantage of this approach,
when evaluated in a depth-first-manner, is that it requires
less memory compared to reasoning over complete fac-
tors (A = 0 and A = 1 at the same time). An extension
of this approach exploits independencies that result from
conditioning on variables. The order in which variables
are branched on, is in this extension a tree of variables
instead of a simple variable ordering.

4.1 AND/OR Graphs

An OR-tree is formed by repeatedly conditioning vari-
ables according to variable ordering d (Figure 4). Each
conditioning represents an OR-node (circle) branching
on the different possible values for the variable. A path
or trace in the tree represents an assignment to each vari-
able such that in a leaf node the variables in all factors
have been instantiated to a value. Instead of computing
the weight for each leaf as the product of instantiated fac-
tors, distributivity is used to push instantiated factors as
close to the root as possible. This means that as soon as
all variables of a factor have been instantiated, the value
of the factor can be taken into account (placed on the
edge), reducing computations [Dechter, 2013]. More for-
mally, each factor f(X) can be taken into account when
all values for variables X have been assigned a value.

Example 5. The two leaves on the left of Figure 4 only
differ in the assignment for C. Instead of computing
P (A = 0)P (B = 0|A = 0)P (C = 0|B = 0) for the
left leaf, P (A = 0)P (B = 0|A = 0)P (C = 1|B = 0)
for the right leaf and summing up the results, distributiv-
ity can be used to push the shared part, P (A = 0)P (B =
0|A = 0), higher in the tree.

An AND/OR tree is an extension that exploits more
independencies. For example, after conditioning on B,
P (C|B) becomes independent from P (A)P (B|A) (Fig-
ure 5). This is used to split the computations in multiple
parts (AND-node with a branch for A and one for C),
graphically represented by connections going to multi-
ple OR-nodes after a decision. When a subtree occurs

1* 2*

B

0

A C

0 1

3* 4*

1

A C

5* 6* 7* 8*

0 1 0 1 0 1

CA

B

Figure 5: AND/OR-tree (left) and its guiding variable tree
(right). B = 0 (and B = 1) splits into two OR-nodes, A and
C, indicating an AND-node.

multiple times, the parents can refer to the same subtree,
reusing the computations. This behavior can be obtained
through caching and results in graphs instead of trees.
The AND/OR structure is not guided by a simple vari-
able ordering but by a variable tree (Figure 5).

A guiding tree is only valid for a problem when vari-
ables that co-occur in a factor are not split over different
AND branches. Given a problem with interaction graph
G, any pseudo tree of G is a valid guiding tree for that
problem [Dechter, 2013].
Definition 7. A pseudo tree of interaction graph G =
(V,E) is a directed rooted tree T = (V,E′) with the
back-arc property. This property states that for each edge
e, if e ∈ E and e /∈ E′ then e is a back-arc edge,
i.e. an edge that connects a node with one of its ances-
tors [Dechter, 2013]. The back-arc property ensures that
variables that occur in the same factor are not split over
different AND branches.

For example, when A and C would have co-occurred,
an AND node cannot split the factors. In the guiding tree
there would be a connection betweenA andC (Figure 5),
violating the back-arc property.

So far, we conditioned on discrete variables, branching
over the values in their domains. This is more challeng-
ing for continuous variables. As a solution, we propose to
branch on the atomic SMT(LRA) literals instead, which
can be considered as branching over different value inter-
vals. This also implies that the guiding tree will contain
SMT literals instead of continuous variables.
Example 6. The AND/OR graph in Figure 6 represents
the following problem,∫ [

c1Jx0≤x1KJx0≤x2K(
∏

i=0,1,2J0≤xi≤1K)+ (11)

c2Jx0>x1KJx0≤x2K(
∏

i=0,1,2J0≤xi≤1K)
]
dx0dx1dx2

with Bi = J0 ≤ xi ≤ 1K and c1 and c2 as two constants.
The weight of all grey decisions is 0 and for all others,
it is equal to the decision itself (see table). The structure
allows parallel integration of x1 and x2 (Figure 7).

1

B0

0

B2 B1

0 1

𝑥0 ≤ 𝑥2

0 1

0 1

𝑥0 ≤ 𝑥1

0 1

2* 3*

4* 5* 6*

∫ 𝑑x2 ∫ 𝑑x1

∫ 𝑑x0
1*

Nr. Weights

1* J0 ≤ x0 ≤ 1K
2* J0 ≤ x2 ≤ 1K
3* J0 ≤ x1 ≤ 1K
4* Jx0 ≤ x2K
5* c2Jx0 > x1K
6* c1Jx0 ≤ x1K

Figure 6: AND/OR Graph and weight table (x*) for the contin-
uous setting.

To evaluate this structure, perform + and × bottom-up
for each OR- and AND-node and integrate out continu-
ous variables as soon as possible. For example, after ob-
taining Jx0 ≤ x2KB2, we can integrate out x2 as it does
not occur at any later point. The order in which continu-
ous variables can be integrated out forms an integration
tree (Figure 7, left).

Definition 8. An integration tree is a pseudo tree where
each node is associated with a continuous variable, ex-
cept for the root node where it is optional. When the
interaction graph contains disconnected subgraphs, the
root of the integration tree can be empty.

Previously the ordering to compute the induced-width
was the variable ordering d, now it is specified by the
ancestor relation in the integration tree.

Integrating out continuous variables yields new inequal-
ities, much like the intermediate factors created in
the discrete setting. However, our continuous approach
branches on SMT literals (corresponding to factors in
the discrete setting). Do note that newly introduced in-
equalities do not become part of the search structure,
only of the intermediate computations. The complexity
of evaluating the structure is influenced by the depth of
the guiding tree and the complexity of the partial integra-
tions and their intermediate results. The latter is related
to the induced-width of the integration tree. While the
guiding tree affects the size of the structure, we empiri-
cally found minimising the integration time to be more
important. Hence, we propose to first use heuristics to
find an integration tree and only then convert the tree
into a pseudo tree of SMT(LRA) literals that respects
this integration order (Figure 7).

Sentential Decision Diagrams We explained the role
of the variable ordering and how to analyse its influ-
ence, in the context of AND/OR graphs. We do stress
that our AND/OR graph in the context of continuous
variables is solely illustrative. F-XSDD(BR), the state-
of-the-art approach that we extend and evaluate in the
experiments, uses SDDs. Even though there are many

B1
x2

x0

x1

B0

B2

𝑥0 ≤ 𝑥2 𝑥0 ≤ 𝑥1

Figure 7: Integration tree and a guiding tree respecting it.

diferences between these two structures (e.g. condition-
ing on a variable versus a sentence in SDDs), the role of
the variable ordering and its influence on the computa-
tions remains the same. We illustrate the influence using
AND/OR graphs as its existing literature on orderings is
closer in focus to our approach. A pseudo tree of SMT lit-
erals used to guide the construction of an AND/OR graph
can easily be translated into a vtree to guide an SDD.
Boolean variables are not constrained by the integration
tree. In our implementation we use them to heuristically
balance the vtree.

4.2 Peudo-Tree Heuristics

The size (and complexity) of AND/OR graphs are con-
trolled by their guiding tree. Finding a minimal height
pseudo tree is, similar to minimum induced width, NP-
complete [Dechter, 2013]. We discuss three heuristics,
the first two minimise the induced width, the third one
the tree height. The second heuristic is novel, the first
and third were adapted to the continuous setting.

Top-Down Pseudo-Tree This heuristic constructs a
pseudo tree in two steps. First, obtain a variable ordering
d through, for example, the previously discussed min-fill
approach. Second, given the induced interaction graphG
along d, a pseudo tree can be constructed top-down by
traversing the induced-ordered G in a depth first manner
starting from the first variable in d and prioritising vari-
ables earlier in d to break ties [Dechter, 2013].

Bottom-Up Pseudo-Tree The first step in the previous
approach, obtaining d, does not have any information
on the second step, constructing the pseudo tree. When
breaking ties, it hence does not consider the effects on the
height of the resulting tree. We propose a new heuristic
which interleaves both steps and constructs the pseudo
tree bottom-up. By interleaving, the variable selection
heuristic can consider the effect on the tree height and
take decisions to minimise it. Our heuristic keeps track
of several tree roots (branches that are being extended in
parallel, bottom-up) which are iteratively extended with
new variables. When a variable v is added, it either 1) ex-
tends a root, 2) yields a new root or 3) combines multiple
roots, depending on whether any of the variables in the
current trees were previously neighbors (interacted with)
of v. The next variable to add to the trees is selected using

a min-fill metric, breaking ties by prioritising the vari-
able that results in the most shallow trees. We refer to
our heuristic as balanced bottom-up min-fill (BU-MiF).

Minimize Height To minimise the height of a pseudo
tree, a hypergraph decompositioning approach can be
used to create a (roughly) balanced tree. To convert the
problem into a hypergraph, create a vertex for each factor
and a hyperedge for each variable v, connecting all fac-
tors that contain v. A pseudo tree can be obtained from
the hypergraph by recursively partitioning the vertices
into two (roughly) balanced sets while minimising the
cut (hyperedges crossing the two sets) [Dechter, 2013].
When a variable is instantiated (cut), factors can become
independent and can be solved separately (AND-node).

Continuous Setting The first two heuristics can be ap-
plied for continuous variables by changing the variable
selection process to use interaction graphs adapted to the
continuous setting (Section 3). For the continuous set-
ting, these heuristics return an integration tree, providing
the order in which to integrate out continuous variables
(Figure 7, left). When employing an approach that condi-
tions on SMT(LRA) literals instead of continuous vari-
ables, the integration tree must first be converted into a
guiding tree of literals respecting that ordering (Figure 7,
right). When using SDDs, the integration tree should in-
stead be converted into a vtree. This two-step decompo-
sition is not present in the discrete case and is crucial to
apply these heuristics to the hybrid setting.

Using the hypergraph decompositioning approach, a
vtree can also be created directly by recursively partition-
ing the literals in two sets (minimising the cut), forming
the left and right subtrees of the vtree. When using SMT
literals as vertices and hyperedges as shared continuous
variables, the min-cut has an additional meaning com-
pared to the discrete setting. The min-cut is the set of
variables shared by the SMT literals in both sets, indicat-
ing the depth at which those variables can be integrated
out. By minimising this cut, we minimise the number of
variables that can only be integrated out high in the struc-
ture, maximising deeper and smaller integrations.

5 EXPERIMENTS

PyWMI is a software package designed to solve WMI
problems. It includes the state-of-the-art solver F-
XSDD(BR) which compiles WMI problems to XSDDs
heuristically minimising the height by balancing the
vtree. This heuristic is agnostic to which continuous
variables occur in a literal and how these continuous
variables interact. We extend this solver with the vtree
heuristics discussed in Section 4.2, yielding a more ro-
bust solver that no longer has to rely on a user-provided

orderings. This process consists of constructing 1) the
interaction graph of the problem, 2) the integration tree
using the discussed heuristics, 3) a vtree that respects the
ordering of the integration tree, 4) the XSDD using that
vtree and 5) evaluating the XSDD to obtain the result.

We consider seven problem templates whose size is
controlled by parameter n: dual(n), xor(n), mutex(n),
click(n), star(n), 3ary(n) and path(n) [Kolb et al., 2019b,
Zeng and Van den Broeck, 2019]. The last three prob-
lem classes belong to a subset of tractable WMI prob-
lems. The SMI solver [Zeng and Van den Broeck, 2019]
is specialized to exploit this type of problem structure
and has outperformed F-XSDD(BR) on these problems.
We evaluate three sets of heuristics: 1) hypergraph de-
compositioning (HG-MC) and top-down min-fill (TD-
MiF), both of which we adapted from the discrete set-
ting; 2) our new bottom-up min-fill heuristic (BU-MiF);
and 3) F-XSDD(BR)’s current heuristic (balanced) and
a right-linear heuristic (corresponding to a chain variable
ordering). For the first four problems we also compare to
the Manual approach (balanced heuristic + manual vari-
able input order), for the last three we compare to SMI.

For every problem, each heuristic is ran 10 times with
randomized orderings for increasing n. The maximum,
minimum, and average run times are recorded. For the
first four problems we run up to n = 35 with time-out
t = 30s, for the last three up to n = 40 with t = 60s. If,
in one iteration, an heuristic times out for a given value
of n, its run-time is set to the time-out, and larger values
of n are skipped. All results are shown in Figure 8. Code
is available at https://github.com/VincentDerk/BU-MiF.

Q1: How does top-down min-fill (TD-MiF) compare
to the newly introduced balanced bottom-up min-fill
(BU-MiF) heuristic? Both heuristics are very similar.
However, the bottom-up approach is a lot more consis-
tent, breaking ties by focusing on the balance of the inte-
gration tree. This is especially apparent on xor(n).

Q2: Do the contributed heuristics improve the prob-
lem agnostic heuristics (balanced and right-linear)?
By analysing the problem, we perform significantly bet-
ter than the previous, problem agnostic heuristics. The
results also indicate that the proposed BU-MiF heuris-
tic is less susceptible to unfavorable input orders from
the user, yielding a faster and more robust solver. In
addition, we also improve over SMI. We found that
SMI spends a lot of time finding the integration inter-
vals. The complexity of SMI can be super exponential
in the worst case [Zeng and Van den Broeck, 2019], for
instance, with a path primal graph such as in path(n).
BU-MiF does not always recover the best ordering. In
click(n), the difference in run time is caused by a large
difference in SDD sizes (for Manual, the SDD size was

0 5 10 15 20 25 30 35
Problem size (n)

0

10

20

30

Ti
m

e
(s

)

dual(n)

0 5 10 15 20 25 30 35
Problem size (n)

xor(n)

0 5 10 15 20 25 30 35
Problem size (n)

mutex(n)

0 2 4 6 8 10
Problem size (n)

click(n)

0 5 10 15 20 25 30 35 40
Problem size (n)

0

20

40

60

Ti
m

e
(s

)

star(n)

0 5 10 15 20 25 30 35 40
Problem size (n)

3ary(n)

0 5 10 15 20 25 30 35 40
Problem size (n)

path(n)

Balanced
Right-linear
HG-MC
TD-MiF
BU-MiF
Manual
SMI

Figure 8: Comparison of run times for different variable ordering heuristics. For the F-XSDD(BR) solver, the run times include
time spent on the variable ordering heuristics (negligible), the compilation step and the evaluation step.

5 for both n = 6 and 7 while for BU-MiF it was 6145
and 1537). We currently convert the integration tree into
a vtree that respects the integration order and balances
the literals (including Boolean variables) to minimise the
depth of the SDD. In future work we can optimize this
conversion by analyzing the logical theory to obtain more
succinct SDDs that still respect the integration order.

Q3: Should we minimise the induced-width or the
depth of the integration tree? We compared the hy-
pergraph decomposition heuristic (HG-MC) with BU-
MiF (min-fill metric to minimise the induced-width).
In general, they seem to perform similar. We computed
the induced-width of the solutions returned by both ap-
proaches and found that, except for path(n), they had the
same induced-width. The path(n) problem, where depth
was prioritised over induced-width, suggests that opti-
mising the induced-width is more important.

6 CONCLUSION

A crucial element of performing efficient probabilistic
inference over discrete random variables is the order in
which variables are marginalized out. In this paper we
have shown that the importance of variable ordering also
extends to problems in the discrete-continuous domain.
We analyzed the influence of the variable ordering in
the continuous setting by identifying parallels between
probabilistic inference over discrete and continuous ran-
dom variables and mapping concepts from the discrete
setting, such as interaction graphs, to the continuous set-

ting. This allowed us to adapt variable ordering heuris-
tics developed for discrete random variables to perform
probabilistic inference over continuous ones.

We introduced a new heuristic (BU-MiF), which signifi-
cantly outperforms previous heuristics (Balanced, Right-
linear) and is more robust than the heuristics adapted
from the discrete setting (HG-MC, TD-MiF). BU-MiF
also allows F-XSDD(BR) to outrun the specialized SMI
solver on a set of benchmark problems from the tractable
WMI subclass it addresses.

In future work we aim to exploit additional information
about the logical structure of the WMI support. This
could lead to smaller (more succinct) compiled repre-
sentations for problems such as the click(n) problem. An
adaptation of our heuristic to an iterative anytime scheme
can also be considered [Kask et al., 2011].

Acknowledgements

This work has received support from the Research Foun-
dation - Flanders (1SA5520N), the Special Research
Fund of the KU Leuven, the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No.
694980), the Flemish Government (AI Research Pro-
gram) and the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. The authors thank Adnan Dar-
wiche and YooJung Choi for discussions on variable or-
dering for the discrete case.

References

[Arnborg, 1985] Arnborg, S. (1985). Efficient al-
gorithms for combinatorial problems on graphs
with bounded, decomposability—a survey. BIT,
25(1):2–23.

[Belle et al., 2015] Belle, V., Passerini, A., and Van den
Broeck, G. (2015). Probabilistic Inference in Hybrid
Domains by Weighted Model Integration. In IJCAI.

[Bryant, 1986] Bryant, R. E. (1986). Graph-based algo-
rithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691.

[Chaki et al., 2009] Chaki, S., Gurfinkel, A., and Strich-
man, O. (2009). Decision diagrams for linear arith-
metic. In FMCAD, pages 53–60. IEEE.

[Chavira and Darwiche, 2008] Chavira, M. and Dar-
wiche, A. (2008). On probabilistic inference by
weighted model counting. Artificial Intelligence,
172(6-7):772–799.

[Darwiche, 2009] Darwiche, A. (2009). Modeling and
Reasoning with Bayesian Networks. Cambridge Uni-
versity Press.

[Darwiche, 2011] Darwiche, A. (2011). Sdd: A new
canonical representation of propositional knowledge
bases. In IJCAI.

[Darwiche and Marquis, 2002] Darwiche, A. and Mar-
quis, P. (2002). A Knowledge Compilation Map. J.
Artif. Int. Res., 17(1):229–264.

[Dechter, 1999] Dechter, R. (1999). Bucket elimination:
A unifying framework for reasoning. Artificial Intel-
ligence, 113(1-2):41–85.

[Dechter, 2013] Dechter, R. (2013). Reasoning with
Probabilistic and Deterministic Graphical Models:
Exact Algorithms. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Clay-
pool Publishers.

[Imbert, 1990] Imbert, J.-L. (1990). About redundant
inequalities generated by Fourier’s algorithm. In Ar-
tificial Intelligence. Elsevier.

[Kask et al., 2011] Kask, K., Gelfand, A., Otten, L., and
Dechter, R. (2011). Pushing the power of stochas-
tic greedy ordering schemes for inference in graphical
models. In AAAI.

[Kjærulff, 1990] Kjærulff, U. (1990). Triangulation
of graphs–algorithms giving small total state space.
Technical report.

[Kolb et al., 2018] Kolb, S., Mladenov, M., Sanner, S.,
Belle, V., and Kersting, K. (2018). Efficient Symbolic
Integration for Probabilistic Inference. In IJCAI.

[Kolb et al., 2019a] Kolb, S., Morettin, P., Martires, P.
Z. D., Sommavilla, F., Passerini, A., Sebastiani, R.,
and Raedt, L. D. (2019a). The pywmi framework
and toolbox for probabilistic inference using weighted
model integration. In IJCAI.

[Kolb et al., 2019b] Kolb, S., Zuidberg Dos Martires, P.,
and De Raedt, L. (2019b). How to exploit structure
while solving weighted model integration problems.
In UAI.

[Koller and Friedman, 2009] Koller, D. and Friedman,
N. (2009). Probabilistic Graphical Models - Princi-
ples and Techniques. MIT Press.

[Morettin et al., 2017] Morettin, P., Passerini, A., and
Sebastiani, R. (2017). Efficient Weighted Model In-
tegration via SMT-Based Predicate Abstraction. In
IJCAI.

[Pearl, 1982] Pearl, J. (1982). Reverend bayes on infer-
ence engines: a distributed hierarchical approach. In
AAAI, pages 133–136.

[Pipatsrisawat and Darwiche, 2008] Pipatsrisawat,
K. and Darwiche, A. (2008). New compilation
languages based on structured decomposability. In
AAAI, volume 8, pages 517–522.

[Valiant, 1979] Valiant, L. G. (1979). The complexity
of computing the permanent. Theoretical Computer
Science, 8(2).

[Zeng and Van den Broeck, 2019] Zeng, Z. and Van den
Broeck, G. (2019). Efficient search-based weighted
model integration. In UAI.

[Zhang and Poole, 1994] Zhang, N. L. and Poole, D.
(1994). A simple approach to bayesian network com-
putations. In CSCSI, pages 171–178.

[Zuidberg Dos Martires et al., 2019] Zuidberg
Dos Martires, P., Dries, A., and De Raedt, L.
(2019). Exact and Approximate Weighted Model
Integration with Probability Density Functions Using
Knowledge Compilation. In AAAI.

	INTRODUCTION
	PRELIMINARIES
	Weighted Model Integration
	Sentential Decision Diagrams
	WMI with SDDs

	VARIABLE ORDERINGS
	How to Exploit Structure
	How to Order Variables
	Interaction Graphs
	Heuristic Variable Ordering

	VARIABLE TREES
	AND/OR Graphs
	Peudo-Tree Heuristics

	EXPERIMENTS
	CONCLUSION

