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Proof of Theorem 6.1

First, Theorem 6.1 can be obtained from the following two statements:

i) Algorithm 1 with oy =

T:o<(nnz + una(B) /(B log )(AA) )

iterations with high probability.

ii) Algorithm 1 with a; = O (%) for Categories a)-c) and e) will converge after
1
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iterations with high probability. If X is sufficiently close to ¢/ then the complexity holds for Category d) as well.

The reason follows. The first statement i) shows that the convergence is global because of high probability, and it is
globally sub-linear if diminishing step-sizes are used. The second ii) shows that the convergence is global and globally
linear (more precisely, here linear convergence refers to the logarithmic dependence on accuracy ) if constant step-
sizes are used for all Categories except for d). For Category d), linear convergence is local. Theorem 6.1 then can be
obtained by a two-stage process. The first stage follows i) until the iterate is sufficiently close to the solution space,
while the second follows ii). Since the first stage is not dependent on the final accuracy e, the overall complexity will
be dominated by the second one.

The two statements are proven in what follows. To analyze ¥(X,U), we focus on —2log Det(X " BUy~) and the
other is analogous. To start, we have from Algorithm 1 and Lemma 6.3 that

= =—~T =
—2log Det(X "BU}») = —2log Det ((Xt + atVft)TBUku) + log det (I + a2V f, BVft) : (1)

where Vf, = Vf, + (I— XfXTB)gf (Vft) Letting E; = (I- X, X/ B)¢, (ﬂt) we can write that X; +a;V f, =
Xt+1 + a;E;, where notation Xt+1 is defined in Lemma 6.2. Then

(%0 + aﬁ\ft) BU ULB (X, +aVf,) = 81 + 20485,

with
S, =X/, ,BU,UJ,BX,,; and S,=sym (XI HBUk,,UkT,,BEt) ,



where sym(M) = 1(M + MT). By the Taylor expansion, we can get for some ¢ € (0, 1) that

~21og Det (X, + aﬁ\ft)TBUku) < —2logDet (X[, BU ) — 205t ((S1 + 260482) 'S:)

2k2 || S|
Omin (S1 + 260:S3)”

IN

—21og Det (XI +1BU,CN> n )

To proceed, we bound singular values of S;, i = 1, 2, as follows.

o(S1) > ol ((xt + V1) BUku> o2 (XTBU) — 20 Hv ftH (Lemma 6.6)
k
> H o? (X;'—BUku) — 204\ = 1 — dist} (X, Upr) — 24 A1,  (using notations in Lemma 6.4)
i=1
and
o(Ss) < H)A(tTHBUkng,,BEtH < |X[BUWULBI- XX B)B HB2§t V5. H
<

(IxrBueulext |, + o9, ) |57, ,

where X;- represents the orthogonal complement of X in inner product {, )g, i.e., X; BX; = 0. Moreover, we have

X BU ULBXS|, < H(XtT BU, Ul BX,)"#X, BU,C,,U,CT,,BX#H
- \/)\max (I- X/ BU U], BX,) < \/1 02, (X7 BUy)
< diStb(Xt,Uk//).

Let disty (X, U ) = max{disty,(Xy, Up/), disty (X, Ugr )}, and assume that 0 < oy < %ﬁx"u) nd

‘ A 1 —disty (X, U)
B F 4kz 1+9(X,U)

&(V1)

disty (X, U).

1—dist? (X¢,U)

5 and

By Lemma 6.6 and noting that A+ < 2);, we get that o(S;) >

or(1+ o)Ay 1 dist? (Xy,U)

Umin(sl + 2<at82) Z Umin(sl) - 2at0max(82) 2 Umin(sl) - Zk% el 2

‘We thus have that

disty (X, U) + oy HWtHB,

1Szl » H =
2|le(¥ 1) 3
Omin (S1 + 2604S2) ~ &(V/1) B.F 1 — dist} (X, U) ©)
By the Taylor expansion, we also have for some ¢’ € (0, 1) that
—~T = —~T =~ \-1==T = —~T =
log det (I + a2V, BVft) = oltr ((1 +¢ a2V, BVft) v, BVft) < a2tr (wt BVft>
_ < 207 <HVft + e (97 ‘ > : 4)
B,F B,F B.F

By Equations (1)-(4) and Lemma 6.2, we get that
dist?, (Xy41, Upr) < dist? (Xy, Upr) — 2aqdist p (Xy, Ugr) + 32k adni,

dlStb (XhU) + oy Vft B
‘ .2 B.F +20[? <HVft
B,F 1 — dist (X4, U)

2|(¢:(V 1)

+[&(V1)

b



By Lemma 6.5,
dist f(Xy, Upr) > Apndist? (Xy, Ugnr).

— log(1—x)

ToTog(1=z)* W€ can write that

Further, by Lemma 6.4 and using inequality >

dist? (X, Upr) - dist? (X, Upr)
1+ dlbt (X, Upn) — 14+ 9(X,U)

dist? (Xo, Upr) > disty (Xy, Upr) >

and
disty (X, Upr) < disty (Xe,U) < 92 (Xe,U) < 002 (Xo,U).

Simple algebraic manipulations then yield that

. QO(tAT .2 O(tA-I-
dist?, (Xo 1, Upr) < (11— —2220 ) Qist? (X, Upr) + ——2t (X, U
15 m( t+1, k) = ( 1+w(xt,u)) 15 m( ty Yk )+1+¢(Xt,u)w( ts )
~ 2
Vi
16k ‘ B,F
FanZa? | ——0 (X, U) + B
e (1—dist§(X0))2w( o) A2

Analogously, we also have that

IN

20 A+ A
dlStfn (Xt+17 Uk/) (1 at )) dlSt (:)(157 Uk/) + i 1

1+¢(Xt7 1+,(/)(Xt7u)

- 2
Vf
16k H tHBF
N2 | ———— (X, U) + —— 2
104 (1—diSt12)(X()))2w( t ) )\%

w(Xtvu)

1+1/)(Xf

Ifo<ay < ) , taking the maximum over Uy, and Uy gives us

2atA'|‘ OétAT
P(Xpp1,U) < (1 - H-w(Xt,Z/l)) (X, U) + Wiﬂ(xt,u)

Vf

16k H ¢ B,F

402 X, U) + —— 2L
10ét (1 — distg(Xo,U))z 1!]( t ) /\%

~ 2
22
< (1—‘”*)w<xt, )+ 422 10k w<xt7u>+H e 5)

1+ 9 (Xo,U) (1 — dist}(Xo,U))2 A2

Next, two different settings of step-sizes are considered.

e Consider oy = /. By Lemma 6.6, we have HV I < k)\% and then can write
B,F

B Ay p phr 16¢(Xo,U) )
WX”I’“K(l o) Y+ (55) (1 i)

Let p = O (i) such that a = Wﬁzu) > 1 and v is sufficiently large. By Lemma 6.7, we get that

2
(X, U) = O ((glr) 1) and thus 7' = O (( 1_) i) such that 1)(X7,U) < e. For t < T, we can assume
that ¢)(Xy,U) > e. Using inequality 13 < log(1 + x) for z > —1, we have that

dist} (X4, U)

_ESBARLE) X, U) > e
1_dist§(xt,u>*¢(t Jze



Thus,

’@f* B.F kA2
log ;B = log ;
— Ay ist ts
ft(vft) ‘B,F (Tk% Wdlstb(xt,U))

kA2

Ay 1—dist? (X, U) 2 )
(41:% TRk (1 — dist; (X4, U)) e)

= O/ log

A1 1 A1 1
O(logAT—H/J( O,Z/l)—l—loge) O(ogA +log - )
where we have used that
nyVk(B)
log (1 + ¥ (Xo,U)) < P(Xo,U) < —2klog —————= < +©

with probability at least 1 — 7 for any n > 0, by Lemma 6.9. By Lemma 6.3, the complexity for the subproblem
then is

1

O | nnz(A) + nnz(B)/k(B) log ——B__
kGl

_0 (nnz(A) + 1m2(B)+/m(B) (log 2 +log 1)) .

Therefore, the total complexity is

0<<nnz(A)+nnz(B) 1 (B) (logiTJrl )) (:) 6),

which completes the proof of the first statement.
Consider oy = o > 0 and note for Categories a)-c) and e) that by Lemma 6.8, it holds
(X, U) = min dist? (X,, U),

which holds for Category d) as well if ¢(X¢, ) is sufficiently close to /. Accordingly, by Lemma 6.6, we get
that

[vrexn], , < o

Plugging into Equation (5), we arrive at
aA 1 — dist?(Xo, U)\
B(Kppn,U) < (1 - 1+¢(x2u>) (X, U) + 16520 (1 " (;“”) ) BXU).

Ay
—d2(Xgu) )\ "2
32kX2 (141 (Xo.U)) (1+(%) >

fo<acx< , one can write that

CYAT OéAT T

Xr,UH)<|(l—-——-7— X, U) <o <(l—- ——-—"-—— Xo,U).
a0 < (1= gty ) Wt << (1= g ) vk

. QA.‘. T .

Settlng (1 — W) w(XO,u) = € yleldS that
.o 1 g £ ) _ (LK), o0X0i0)
oo (1 — alg € al; €
& ( 2(1+¢(X07U))>

of (3 wetet2).
: :



For the subproblem, we now have that

_2
Vfi 2
H B,F ~ 0| 10g 2kM (X, U)

Nk A 1-dist2(Xe,U) 4. 2
SISEp] (G T dist(X.0)

= O(logi )
T

Therefore, the total complexity is

0 ( (st + st s ) (%) ).

which completes the proof of the second statement.

=0 <log ilT —|—1/J(X0,Z/{)>

Proof of Lemma 6.2
Let j > k and denote Vf; £ V f(X,) and —2log Det ((XtH)TBUj) £ —logdet(S). Note that

S = X/ BU,U, BX,; + 2a;11sym (X BU;U/BVf,) £ H; + Hy.

Hence, we have that —log det(S) < —logdet(H; + Hy). By Taylor expansion, we can write for certain ¢ € (0,1)
that

2
— logdet(S) < —10g det(Hl) —tr (Hl_lHQ) + %tl‘ (((Hl + §H2)_1H2) ) s

where — log det(H;) = dist?,(X;, U;). Noting that X, BU; = P,;%; Q; (subscripts ¢ on the right-hand side are
omitted for brevity), we can write that

tr(H'Hz) = 20t ((X]BU,U/BX,) X/BU,UB (B~ - X;X]) AX,)
- 2 ( ((XTBUUTBX,&)”XZBUjUJTAXt) —tr (XtTAXt))
= 2a, (& ((X]BU,;U; BX,) "' X/BU;A; U/ BX,) — tr (X] AX,))
= 20, (tr (P AZP]) ' Py,Q] A Q,%,P] ) — tr (X[ AX,))
= 20 (1(Q] A;Qy) — tr(X[] AXy)) = 204 (f(U;Q;) — f(X4))-

On the other hand,

fr (((H1 + <H2)_1H2)2>

IN

2 2
o om o= (s )

2
( |H |l r )
Umin(Hl + §H2) ’

where we need to lower bound o,;, (H1 4+ ¢Hs) and upper bound ||Hs|| ¢. To this end, notice that

k
Omin(H1) = 02, (X[ BU)I > [[ 07 (X[ BU;) = 1 — dist} (X, U;).
=1



Letting 2 = X,/ BU;, we have that

Hy = 20sym(QU;BVf;) = 2qsym (QU,; B(B™! — X, X/ )AX,))

= 20QA; Q7 — 20,5ym(QQTQA;QT) - 204sym (22X BUS A (Uy) 'BXy)
= 2a4sym ((I — QQT)QAjQT) — 2q8ym (QQTX;BUJ*AJ-L(UJ-L)TBXQ .

Thus, we have that

[Hal|2

ININ A

20, ([|(1 - 227)QAQT |, + 207X BUFAF(UF) TBX,, )

20 (|1 - QQ" 2]l A2 + I, BUj 3] A5 )

20001 (T = QQT 2 + [|X/ BUS|13) = 4\ [T - Q27|
Aoy [T = P33P |2 = day A [T — 532 < dagAidist} (Xy, Uj),

where we have used for the first equality that

1X/ BUS (13 = Amax (X{ BUj (U;) 'BX;) = Anax(I - X/ BU; U, BX,).

Hence,if 0 < oy <

Jmin(Hl + CHQ)

and

We thus get that

and consequently,

—21og Det (X;lBUj) < dist?, (X, U;j) — 200 (f(U;Q;) — F(Xy)) + 32kA2a2 (

-1 2 2 2
tr <((H1 +¢H,) H2) ) < 64kA\io; (

1—dist} (X, U;)
Shidist? (X;,U;) then

> Omin(H1) — 0max(H2) > (1 — disty (Xy, Uj)) — 4oy M disty (X¢, Uj)

1 — dist{ (X4, Uj)
- 2 b

IHa||lp < k2 ||Hyl2 < 4k% aphdist? (X, U;).

dist; (X;, Uj)

2

The case that j < k is similar and thus omitted.

Proof of Lemma 6.3

1:(X) reaches its minimum at

1(X7)

Thus, we have that

€¢ (X)

1
— St ((X7)TBX;).

1

L= diStg(Xtij))

dist; (X;, Uj)

1 — dist; (X, Uj)

I(X) = 1,(X}) = §tr(XTBX) —tr(XTAX,) + %tr ((X7)"BX;)

1 1
§tr(XTBX) —tr(X"BBT'AX;) + Str ((X7)"BX;)

%(tr(XTBX) —2tr(X"BX}) + tr (X}) "'BX}))

Sor (X - X)) TBX = X7)) = 1 (X))

2
B,F-

)

%tr ((X7)"BX;) — tr((X}) TAX,) = %tr ((X7)"BX;) — tr ((X;) ' BB™'AX,)

2



In particular,

Xy = x{ -B'AX; = X;(X; BX;)'X] AX, - B'AX,
= X, X/AX; -B7!'AX; = -Vf(Xy).

The complexity of Nesterov’s accelerated gradient descent for the least squares subproblem can be found in Nesterov
(2014); Bubeck (2015); Ge et al. (2016), given that [;(X) is Amin(B)-strongly convex and Apax(B)-smooth, where
Amax(B) and A\p,i, (B) represent the largest and smallest eigenvalue of B, respectively. O

Proof of Lemma 6.4

Let z = dist?(X,Y). We then have that dist}(X,Y) = z < —log(1 — x) = dist? (X,Y). We next prove by
induction that dist(X,Y) < dist.(X,Y). Let r = min{k, !} and 6; be the i-th principal angle between X and Y,
i=1,---,r. Thatis, cosf; = 0;(X"BY), where o;(-) represents the i-th largest singular value of a matrix. First,
we have for » = 1 that

dist} (X, Y) =1 - H cos?0; =1 — Z cos? 0; = dist?(X,Y).

i=1 =1

Assuming that it holds for 7, one then has for  + 1 that

r+1
distg = r—&—l—Zcos 0; —T’—ZCOb 0; + 1 — cos? 0r+1
=1 =1
r r+1 r+1
> 1—HCOS29¢+1—COS297«+1—(1—HCOS292')+1—HCOS29¢
i=1 i i
r+1 r+1
= (1-cos?6,41) 1—HCOb 0;) —l—l—HCOb 0; >1—Hcos 0; —dlbtb,
=1 =1 =1

which completes the proof. The last inequality can be shown by the generalized mean inequality as follows:

29,
ZCOS20 *TZ =108 )% >r Hcos0 >rHcost9
i=1 =1

-
It then holds that dist? < r — 7(]]}_, cos 6;)% = (1 — [}, cos® 6;) = rdist;. O

Proof of Lemma 6.5

Suppose that j < k, A; = diag(A1, -+, A;) and Aj- = diag(Aj41,- -+ , An). We have that

dist;(X,U;) = f(U;)— f(XP;) =tr(A;) — tr (P, XTAXP;)
= tr(A;) —tr (P X"BU;A; U BXP;) — tr (P, X' BU A} (Uj)'BXP;)
= tr(A;) — tr(2;Q) A;Q;%;) — tr(P] X 'BUS A (U;) 'BXP;)

tr(A;Q;(I— =2)Q; ) — tr(P; X"BUS A} (Uj) ' BXP))
t

> nr(Q (- 32)Q)) - A1 tx(P] XTBUS(UF) TBXP))
= (- A)(Q (- 22)Q)) = A, (j - IXTBU|}) = Adist?(X, U))
> Audist}(X,U)),

where the last inequality is by Lemma 6.4. The case that j > k is similar and thus omitted. ]



Proof of Lemma 6.6
Note that X’s orthogonal complement X | € gStg(n,n — k) and X | BX = 0. Thus,
|B2vsx)|, = [(1-BY2XX"BY2) B/2AB 2B X |
2 2

HBl/QXLXIBl/QB_1/2AB‘1/2B1/2XH2 < HB—WAB—%H2 — A

. 2 . 2
Accordingly, ’ Vf(X)H - HB1/2Vf(X)H < kA2,
B,F F
Let (j1,--- ,Jjk) be an arbitrary k-combination chosen from {1,2,--- ,n}. Then for any V = (u,,,--- ,u;,) and
corresponding A = (A, -+, Aj, ), we have that

B Y2AB V2 =BY2(VAV' + V, A, V])BY2

Plugging in this equation to the above derivation and using Lemma 6.4, we can write that

[ore0]|,, = IXIB(VAVT +ViALVT)BX];
< (IXIBVIIzl|All2 + AL o[ VIBX] r)*
< N (IXIBV|r+|VIBX]||)’
= R (k= IXTBVIR)Y2 + (b~ [VTBX[3)?)
= 4X3dist?(X, V) < 4kA2dist} (X, V) < 4kA2dist? (X, V).
The proof completes by noting that any U € I/ is such a V up to an orthogonal matrix. ]

Proof of Lemma 6.9

For any U € U, by the above Lemma 6.8 we have that

k
dist?,(Xo, U;) < dist?, (X0, U) = =2 logoi(Xj BU) < —2klog omin (X BU),

i=1
and
O-min(X(TBU) =  Omin ((WTBW)_%WTBU> 2 Omin ((WTBW)_%) Umin(WTBU)

Umin(WTBU) O'min(WTBU)

1 > 1 bl
Omax(B2> W) UmaX(BE)HW”Q

where |[W|| ~ O(n? + k2) with high probability. Let U € R™** be the left singular vectors of BU. One then can

A~

write WTBU = WTUUTBU and thus
Omin(W T BU) > 0in (W U)0min (UTBU) = 03min (W U)omin(BU) > 0imin(W ! U)opmin(B?),
where the last inequality is because that
02, (BU) = /\min(UTBQU):H)ﬁigleUTB%BB%UX

Amin (B) min XTUTB%B%UX:)\min(B)UQ (B%U)

min
[Ix|l2=1

= Anin(B) min x"x = A\pin(B) = opmin(B).

[Ix[[2=1



We thus get that

v/ k(B ~
rin(X§BU) = LB WD),
nz +kz

Since W are entry-wise i.i.d. standard normal and U is orthonormal, W' U are entry-wise i.i.d._standard normal
as well. By Equation (3.2) in Rudelson and Vershynin (2010), we have that for > 0, o (W U) > nk’% with

probability at least 1 — 7. The proof completes. ]
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