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Appendix A Further experimental evaluations

On semantics. Consider table 2. While GS’ recommendations tend to have low costs, they often take on ambiguous
values. We have marked the critical values in red. AR’s recommendations tend to make sense, if one inspects them
input value by input value. However, often they run into logical inconsistencies, which we highlighted in blue in table 2.
So does it make sense to tell someone to be more often on time for the 30-59 days range while demanding that the
person should be paying more often 60-89 days late? Probably not. The data support counterfactual recommendations
from OURS, in contrast, appear to make sense and seem consistent. There exist multiple of these examples in the
generated explanations and many of them follow a similar pattern. Most importantly, this demonstrates that end users
could find it troublesome to comprehend what causes a classifier to behave a certain way, versus what causes the world
to behave in a certain way.

set of mutable inputs

Model

revautil.  #30-59 d. late  debtratio income #credit >90d.late #r. est. loans # 60-89 d. I.
T € HJ? 1.00 3.00 0.19 2700.00 3.00 4.00 0.00 0.00
GS 1.12 2.77 024 2699.92 3.03 4.08 -0.13 0.25
AR 1.00 2.00 0.19 2700.00 3.00 4.00 0.00 2.00
OURS 0.97 0.00 0.18 2753.82 3.00 0.00 0.00 0.00

Table 2: Illustrative example, comparing semantics of recommendations from GS, OURS and AR. The instance
T ~ Pdate Was negatively classified by the prediction model f. For this individual, the immutable inputs are fixed at
age = 36 and # dependents = 3. red: ambiguous values. blue: inconsistent values.

More on robustness. Recall that we wish to find recommendations for the negative predicted individuals, H, . As
opposed to the other methods, the OURS method pushes the negative predicted individuals towards data points from
the correctly classified individuals, H]T N DT . To show this for all explanations, we compute the first two principal

components of Eq,(x; f), Egs(x; f) and Eoyps(; f) and compare them to Hp, H;{ N D (see figure 6).

Appendix B Data and Implementations

B.1 Real world example: “Give Me Some Credit”

In the following, we list the specified pretrained classification models as well as the parameter specification used for the
experiments. We use 80 percent of the data as our training set and the remaining part is used as the holdout test set.
Additionally, we allow f and g access to all features, i.e.. to the mutable and immutable ones. The state of features can
be found in table 3.

AR (Ustun et al., 2019). The AR algorithm requires to choose both an action set and free and immutable features. The
implementation can be found here: https://github.com/ustunb/actionable-recourse. We specify
that the DebtRatio feature can only move downward (Ustun et al., 2019). The AR implementation has a default
decision boundary at 0 and therefore one needs to shift the boundary. We choose p4r = 0.50, adjusting the boundary
appropriately. Finally, we set the linear programming optimizer to chc, which is based on an open-access python
implementation.


https://github.com/ustunb/actionable-recourse
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Figure 6: First and second principal components of H ;[ N DT (cyan), H™~ (magenta) and counterfactual recom-
mendations F(x; f), where f denotes the pretrained regularized linear regression classifier (in this case). Recall
that f(F(x; f)) = +1. AR’s (red) and GS’ (yellow) latent space representation of the generated counterfactual
recommendations remain very close to the incorrectly classified representation (purple). OURS (blue, right most)
rotates and pushes the latent space closer to the one of the correctly classified observations H ;r N D (cyan).

GS (Laugel et al., 2017). GS is based on a version of the YPHL algorithm. As such we have to choose appropriate
step sizes in our implementation to generate new observations from the sphere around . We choose a step size of 0.1.

OURS (Pawelczyk et al., 2020). We used the (H)VAE implemention as described here: https://github.com/
probabilistic-learning/HI-VAE (Nazabal et al., 2018). Random search in the latent space was conducted
to find counterfactual recommendations, using the YPHL algorithm (Laugel et al., 2017). We made the following
choices. We set the latent space dimension of both s and z to 3 and 6, respectively. For training, we used 15 epochs.


https://github.com/probabilistic-learning/HI-VAE
https://github.com/probabilistic-learning/HI-VAE
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Figure 7: Schematic figure for counterfactual search from the OURS model (Pawelczyk et al., 2020). The latent
representation ideally learns independent concepts denoted by x4, ..., ki (e.g. timeliness, overall financial situation,
etc.).

Table 3 gives details about the chosen likelihood model for each input. For count inputs, we use the Poisson likelihood
model, while for inputs with a support on the positive part of the real line we choose log normal distributions.

Inputs Mutable Model
Revolving Utilization Of Unsecured Lines Y log Normal
Age N Poisson
Number Of Times 30-59 Days Past Due Not Worse Y Poisson
Debt Ratio Y log Normal
Monthly Income Y log Normal
Number Open Credit Lines And Loans Y Poisson
Number Of Times 90 days Late Y Poisson
Number Real Estate Loans Or Lines Y Poisson
Number Of Times 60-89 Days Past Due Not Worse Y Poisson
Number Of Dependents N Poisson

Table 3: “Give Me Some Credit”: State of inputs and likelihood models.

B.2 Real world example: HELOC

The Home Equity Line of Credit (HELOC) data set consists of credit applications made by homeowners in the US,
which can be obtained from the FICO community.! The task is to use the applicant’s information within the credit
report to predict whether they will repay the HELOC account within 2 years. Table 4 gives an overview of the available
inputs and the corresponding assumed likelihood models.

AR and GS As before. Additionally, we do not specify how features have to move.

OURS We set the latent space dimension of both s and z to 12 and 10, respectively. For training, we used 60 epochs.
Table 4 gives details about the chosen likelihood model for each feature. The rest remains as before.

Appendix C Proof of proposition 1

Proof. Let us consider an x; € Hf+, ie. f(x1) = +1 = f(h(2)). By the assumption of the generative model in the
main text, we know that h(z) = &. Wehave cp(2) = [[z—h(2)|| = ||(x—21)+(21—h(2))| < |le—21||+]|]Z1—R(2)],
where we used the triangle inequality. By (1), we have that |1 — h(2)|| < |J&1 — h(2)||. Hence, we can write

'nttps://community.fico.com/s/explainable-machine-learning-challenge?tabset-3158a=2.


https://community.fico.com/s/explainable-machine-learning-challenge?tabset-3158a=2

Input Mutable  Model

MSinceOldestTradeOpen N Poisson
AverageMInFile N Poisson
NumSatisfactoryTrades Y Poisson
NumTrades60Ever/DerogPubRec Y Poisson
NumTrades90Ever/DerogPubRec Y Poisson
NumTotalTrades Y Poisson
PercentInstallTrades Y Poisson
MSinceMostRecentIngexcl7days Y Poisson
NumlIngLastoM Y Poisson
NetFractionRevolvingBurden Y Poisson
NumRevolvingTradesWBalance Y Poisson
NumBank/NatlTradesWHighUtilization Y Poisson
ExternalRiskEstimate N Poisson
MPercentTradesNeverDelg Y Poisson
MaxDelg2PublicRecLast12M Y Poisson
MaxDelgEver Y Poisson
NumTradesOpeninLast12M Y Poisson
NumlIngLast6Mexcl7days Y Poisson
NetFractionRevolvingBurden Y Poisson
NumlnstallTradesWBalance Y Poisson
NumBank2NatlTradesWHighU'tilization Y Poisson
PercentTradesWBalance Y Poisson

Table 4: HELOC: State of inputs and likelihood models.

cp(Z) < 2|z — h(2)| = 2|1 — z||. Now, minimizing x over Eg (recall definition 1 from the main text) gives the
desired result. O

Appendix D Proof of proposition 2

From now on, we suppress the dependence of f(z) := f and g(x) := g on @ := x. For brevity, we sometimes say
A=H; UH and7_=1-m. 7= PT’H;QH; (y=1);mp = P’I‘H; (y=1)my = PTH;(y =1)

D.1 Main argument

Proof. We first expand the cost(f, g) Hy UH; -

@(fag)ijuH; :]EH;uH; [c*(f, g9, )]
=7 [EAQD+[C*|f S Oag S O}PAODJr(f S 0,9 S 0) +EAQD+ [C*‘f S ng > O]PAQD+(f S Oag > 0)
+Esnpt[e’|f > 0,9 > 0]Panp+(f > 0,9 > 0) +Eanp+[c*[f > 0,9 < 0]Psrp+(f > 0,9 <0)]
+ 71 [Egnp-[c"|f < 0,9 <O0]Panp-(f <0,9 <0) +Egnp-[c"[f <0,9 > 0]Panp-(f < 0,9 >0)
+EAF1D_ [C*|f > 0,9 > O}PAOD_ (f > 0,9 > O) + EAOD_[C*|f > ng S O]PAOD_ (f > ng S 0)]



Moreover, note that |]EHf_ﬂD+[f|f < 0] < 5%*(f), and |]EHf_mD_[f|f > 0] < 72%(f). Analogously for the
/ s

classifier g. And hence we can write for the classifier f:
7Py o (f S OBy [FIf <01 = 2Py (f S O)Epy- e [£1F < 0]
+ 7TfPHf*nD+(f < O)EH;OD+ [fIf <0],
< 2Py e (F SOMGC(f) + 7Py e (F < OB gy s [F1F < 0]
(6)
7TJ”PHf*an (f> O)EHf*an [fIf > 0] = 27TfPHf*an (f> 0)|EH;me[f‘f > 0]
- waHf_mD,(f > ())IEHf_mD,[f\f > 0].
< 2Py p- (f > Omey2(f) = 7 Pyp- (f > 0B p- [f1f > 0].
(7

By assumption 1 from the main text, fact 1 and fact 3 we have:

Esnp+/-[c|f £0,9 <0] < aEynp+/- [max(—f, —g)7|f < 0,9 <0]

= (55) anper-[(=F =g+ 1=F +g)"If 0,9 <0) < (55) Bap-[(=F =g+ =F +g)If 0,9 <O))".

Esnp+/-[c|f £0,9 > 0] < aE 4 p+/- [max(—f,+g)7|f < 0,9 > 0]

= (55) Eanper-[(=f + 9+ 1=F = g)"If <0,9> 0) < (55) Eape-[(=F + 9+ =F —gIf <0.9> 0))".

Analogously for the remaining 2 terms. Next, note that

IEHqu;mD+/, [f|f < 0,g < O] < EHfqu;nDHf [f|f < 0} = EH;OD*/* [f|f < 0}7 (8)
EHf_UHg_mDJr/* [g‘f <0,9< 0] < ]EHf—qu—mDJr/f[mg < 0] = EHg—mef[gLC] < 0]7 9
where the first equality follows by assuming that f and g do not assign widely different predictions to the same input
and the second equality follows since H " is not restricting /{; U H " and vice versa. Similarly, for the remaining

terms. Now, we go back to the expanded cost, use linearity of expectations, (8), (9), facts 2 (second inequality) and 4
(first inequality) and upper bound it by:

- «
o5t (£, Doy <7 (55) [Emm[(—f —g+|=f+gllf 0,9 <0 Panp+(f < 0,9 <0)

+Eanp+[(=f+9+|—f—gllf £0,9 <O0"Paqp+(f <0,9 > 0)7
+Eanp+[(f +g+1f —gllf £0,9 <O0"Paqp+(f >0,9>0)"

+Earpt[(f =g+ |f+9llf 0,9 <O"Parp+(f > 0,9 < 0)7}

+77 (5) [EAQD-K—f —g+|=f +gllf 0.9 <) Panp-(f < 0,9 <0)

+Eanp-[(=f+g+|-f—9llf £0,9 <O0]"Pynp-(f <0,9>0)7
+Eanp-[(f+9+|f—gllf £0,9 <0 Psrp-(f > 0,9 >0)7

+EAHD—[(f_g+f+g|f<079<0]WPAHD—(]£>079<0)W:|



<7 (55) | (B 115 < 0Py (7 < OBy e [-la < 0P, (9 < 0)

27

Y
FEan -1+ 0l 0.9 < 0Psopi (F 0.9 <0))
+ (EHme+[f|f < O}PH;mDJr(f <0) +]EH;mD+ lglg > O]PH;OD+(9 >0)
FEanr (= ~allf £0.0> 0Panps (7 20,5 0))
4—(EH;OD+u1f><nPH;mD+cf>>m-+EH;ﬁD+mu:>(nPH;mD+@:>o>
F By o 0l > 0,95 0Paci (> 0.9>0))
(B U1F > 0Py s (7> 0+ By gl < 0Py (0 < 0)
+Bane 17 +0llf > 0. < 0Panps (7> 0,9 <0)) |
477 () | (B 115 < 0Pr e < 04 By 0l < 0Py (9 <O
FBanel|f 617 <0 < 0Pape (£ 0.9.0))
+ (EHf‘mD [—flf < O]PHf—me(f <0)+ EH;QD— l9lg > O]PHg—mD+ (g>0)
F a1 ~9llf < 0.0> 0Pae (£ < 0.9 >0))
(B - 17 > 0Py (2 0) + Ery - lals > 0P (9> 0
By 10l > 0.9> 0Paoo (7> 0.9 0))
(B U1 > 0P (> 0) 4 Buy [ < 0Py (9 < 0

Y
+Emm4u+mf>ag<MPMD4f>ag<m)]



Next we apply lemma 2 with n = 8, use (6) and (7) for the last equality and obtain:
(0%

1=y
<87 (5

) |7 ((Bay e (=117 < 0P s (7 £ 0+ By el < 0P (9 < 0)
+Eanp+[|=f +gllf 0,9 < 0]Panp+(f < 0,9 < 0))

+ (a1 < 0P e (F < 04 By el > 01Pi; (6> 0
+Eano =7~ 1] £ 0.9 > 0Pac (£ 0.5 0))

+ (Baor U1 > 0P e (> 04 By ol > 0P e (9> 0)
a1 0l > 0.9 > 01Pacps (> 0.9 > 0))

+ (Buems 16 > 0Ps e (7 > 0+ By gl < 0Py (0 <0
+Eanp [ +0llf > 0.9 < 0Paops (7> 0.9 <0)) )

1 ((Bag 117 < 00Prg e < 0) 4 By e [9l9 < 0Py s (0 < 0]
+Eanpe[-f 4 0llf 0.9 < 0Pscpe (7 0.9 20))

(B 115 < 0By (£ 0) + By - lolg > 0Py > 0)
+Eann -7 = 617 £0.9> 0Py (£ <0,5>0))

(a1 > 0Pa; (7> 0+ By - lalo > 0Py (9> 0
By [~ 9llf > 00> 0Pacp (7 > 0.9 0))

+ (B U0 > 0Py - (7> 0+ By [l < 0Py - (6 <0)

.
FEanp [+ 9l > 0,9 < 0)Panp (/> 0,g < o>)}

=5 (52) [ (2B o 1115 < 00Prg e < 0) 4 2B, sl < 0Py (9 0

+2IEH;|"|D+[f|f > O]PH;QD+(f > 0) +2EH;0D+ l9lg > O]PH;mD+(g > 0))
+ - <2EHme [—fIf < O]PH;OD*(f <0)+2Ey-p-[—9lg < 01Py-p-(9 < 0)]

~
JFQEHf—an[ﬂf > O]PHf—me (f>0)+ QEHg—me[qu > O]PHg—me(g > 0)) +EAllf 9]}

2[Ry~ (Ney® (f) + Ry~ (9)cg " (9)]
= a8l {2( ! g

s
2
WfEH;ﬁD+ 1+ ToBh ap+ lg] (- W.f)EH;an f1+@0- ﬂ-g)EHg’mD* [9]
+ 9 - 9 ) +EHf_UHg_[|f - SJH}

5
)



where

Eallf —gl] == w(EAmm[I—f +9lf 0,9 <0]Paqp+(f <0,9 <0))

+Esnp+{|=f —9gllf £0,9 > 0]Psnp+(f < 0,9 >0))
+Eanp+[|f —gllf > 0,9 > 0]Panp+(f > 0,9 >0))

Eanps If +9llf > 0, < 01Panps (f > 0,9 < o>>)

+m <]EAnD[|—f+9|f <0,9 <0|Psnp-(f <0,9<0))

+Earp-[I=f —9llf £0,9 > 0]Psnp-(f <0,9>0))
+Eanp-[If = 9llf >0,9 > 0]Psnp-(f >0,9>0))

FEanp [f +llf > 0,9 < 01Panp (f > 0.9 < o>>).

and (using (6) and (7)) to rewrite the first line and fact 5 to establish the inequality.

28| By s 1S < 0Py e (71F < 0) + By i 117 > 0P e (115 > 0)|

#21 By (U1 SOy o (U1 0+ By 117 > 0Py (715> 0)

<220 Pyy 1] S OGE) = 7Py e < OBry U1 > 047y s U1 > 0Py > 0
~ (= 0 m)2P i (1> O + (1= )P - U1 > Oy (717 >0

(= 57) Py (11 < Oy o (117 <01

= Q[QRHf (f)cgfr(f) +mEy FND+ f]— (1~ Wf)]EanD[f]]-

and

Rugy (1) i= |76y e (1 <004 (L= 1) Py (717 > 0|

Appendix E  Proof of proposition 3

In essence, we wish to identify the conditions under which 3(f, g)s § 5(f,9)p-
We first note that the following result is immediate from proposition 1.

Corollary 1.

EH; [C*(f)]S < EH; [C*(f)]D



Using lemma 1, we can lower bound (3) from the main text as follows:

(B, s+ Euy @)l

+ By 1@ - 9@l ) (8:0)
< EH;UH; " (f,9)]nm-

For simplicity of the statement we assume that v = 1. We can now find an upper bound for the expected inverse cost of
negative surprise under method M = {S, D}:

Byl (Pl _ Epr- e (/)]
Ep-on; [e*(f, )l — Ep- [ (D + Epy[e*(9)]ar + B, (1f(2) — g(x)]ne
For simplicity, by corollary 1 we can set:

By [e"(Dls +65 = Ey_[¢" ()],

Ey[¢(9)]s + 85 = Epy-[c"(9)]p,

g(fa g)M =

for some d7, 04 > 0.

Proposition. Suppose 3(f,g)s > 3(f,g)p and EHqu;[|f(x) —g(@)|]s = IEH;UH; [|f(z) = g(z)|]p := k hold,
then we must have: '

14 IEHQ— [c*(9)]s +5g n ak 14 EHg— [c*(9)]s n ak
EH;[C*(JC)]S‘F(SJ’ EH;[C*(f)}S‘F(Sf ]EH;[C*(f)]S ]EH;[C*(JC)]S
b1 ai bo as

Note that a; < ap for ; > 0. So the terms that remain to be checked are b; and b,. Hence, we obtain

By @l _ By (0)s
EH; [e*(f)]p EH; [e*(f)]s’

as desired.

Appendix F  Other Prerequisites

Fact 1. maz(a,b) = 3(a+b+|a —b|).

Fact2. P(ANB) < P(A); P(ANB) < P(B).

Fact 3. F[X"] < E[X]" for 0 <« < 1 (by Jensen’s inequality).
Fact4. P(X) < P(X)Vfor0 <~ <1.

Fact 5. Note that m < wy and m < .

We state the following lemmata without proof.

Lemma 1 (Ustun et al. (2019)). For v = 1, the expected cost of counterfactual explanations under model f,
E Hy [¢*(f,x)], is bounded from above such that:

Oty (1) < (7o () = (1= 7)o (1) 42+ Ry (1)),



Lemma 2 (Fawzi et al. (2018)). Let 21, ..., 2, be non-negative real numbers, and let 0 < v < 1. Then

n n Y
¥ 1—

E z] <n 77 E zi | .

i—1 i=1



