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Abstract

We propose a novel Gaussian process kernel
that takes advantage of a deep neural network
(DNN) structure but retains good interpretabil-
ity. The resulting kernel is capable of address-
ing four major issues of the previous works
of similar art, i.e., the optimality, explainabil-
ity, model complexity, and sample efficiency.
Our kernel design procedure comprises three
steps: (1) Derivation of an optimal kernel with
a non-stationary dot product structure that min-
imizes the prediction/test mean-squared-error
(MSE); (2) Decomposition of this optimal ker-
nel as a linear combination of shallow DNN
subnetworks with the aid of multi-way feature
interaction detection; (3) Updating the hyper-
parameters of the subnetworks via an alternat-
ing rationale until convergence. The designed
kernel does not sacrifice interpretability for op-
timality. On the contrary, each subnetwork ex-
plicitly demonstrates the interaction of a set of
features in a transformation function, leading
to a solid path toward explainable kernel learn-
ing. We test the proposed kernel with both syn-
thesized and real-world data sets, and the pro-
posed kernel is superior to its competitors in
terms of prediction performance in most cases.
Moreover, it tends to maintain the prediction
performance and be robust to data over-fitting
issue, when reducing the number of samples.

1 INTRODUCTION

Over the recent years, Bayesian deep learning techniques
are becoming popular due to the ever-increasing inter-
ests in learning with uncertainties, learning with small
(non-stationary) data, and continual learning, etc (Khan,
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2019; Salimbeni et al., 2019). As a representative, Gaus-
sian process (GP) models for machine learning consti-
tute a class of important Bayesian non-parametric mod-
els that are tightly linked with the support vector ma-
chines (SVM) and deep neural network (DNN) among
other salient machine learning models (Williams and
Rasmussen, 2006). Given a finite set of data samples
and a GP prior, the desired targets/outputs are then rep-
resented via Bayes rule in the form of posterior (multi-
variate) Gaussian distribution. In contrast to a single
point estimate given by a deterministic model such as
the widely used DNN, GP models also provide an uncer-
tainty bound that is valuable for critical decision-making.
GP models are also simple in terms of mathematical for-
mulation and tractable in terms of statistical inference,
therefore they have found a plethora of applications in
the past decades.

Two major technical issues prohibit the wider use of
GP models. The first issue is the scalability due to their
O(n3) computational complexity for the model training,
while the second issue lies in the optimal kernel design.
Scalable GP models can be obtained, for instance, by ex-
ploring: 1) the local structures of the kernel matrix (Am-
bikasaran et al., 2015); 2) the state-space model refor-
mulation and Kalman filter (Sarkka et al., 2013); 3) the
Bayesian committee machine (BCM) using a number of
distributed computing units (Deisenroth and Ng, 2015);
4) the variational Bayesian formulation (Titsias, 2009);
and 5) the iterative methods (Dong et al., 2017; Ubaru
et al., 2017; Gardner et al., 2018). A complete survey
of the existing scalable GP models can be found in (Liu
et al., 2020).

In this paper, we solely focus on the second technical is-
sue, namely the optimal kernel design. It is well known
that a good kernel function is capable of lifting raw fea-
tures to a high-dimensional space, where regression and
classification can be done more effectively. In order to
meet the challenges brought by kernel selection, there
has been a substantial body of literature exploring au-



tomatic or optimal kernel learning for GP models. Gen-
erally speaking, the existing optimal kernel learning ap-
proaches can be broadly divided into three categories, in-
cluding: (1) multiple kernel learning (Chen et al., 2012);
(2) spectral kernel learning (Quiñonero-Candela et al.,
2010; Wilson and Adams, 2013); (3) deep kernel learn-
ing (DKL) (Wilson et al., 2016a; Arora et al., 2019).

The idea behind the multiple kernel learning is to select a
linear or nonlinear combination of primitive kernels via
a specific optimization method with the goal to let data
determine the best kernel configuration. For instance, a
linear combination of the Matern kernel, the squared-
exponential (SE) kernel and the periodic kernel was ap-
plied to CO2 concentration prediction, as shown in the
eq. (5.19) of (Williams and Rasmussen, 2006). How-
ever, the main drawback lies in that the primitive kernels
are often selected subjectively and combined with ad-
hoc weights. The spectral kernel learning is built around
the idea of approximating the spectral density of a de-
sired stationary kernel by a mixture of basis functions,
such as Dirac functions in (Quiñonero-Candela et al.,
2010) or Gaussian basis functions in (Wilson and Adams,
2013). The DKL approaches received more attention due
to the outstanding prediction performance, and they can
be further divided into two classes. The first class of ap-
proaches proposed to embed neural network (NN) struc-
tures into the state-of-the-art GP kernels, representative
works include (Wilson et al., 2016a,b; Al-Shedivat et al.,
2017). This class of deep kernels is capable to learn un-
structured real data set and verified to be effective in var-
ious application sectors, including but not limited to in-
dustrial polymerization processes, crop yield prediction,
image annotation, and visible light communication. The
second class of deep kernels was designed while link-
ing the GP models with deep neural networks (DNNs)
for studying the learning dynamics of the latter. Repre-
sentative deep kernels include the arccosine kernel (Cho
and Saul, 2009), neural tangent kernel (NTK) (Jacot
et al., 2018), and the convolutional neural tangent ker-
nel (CNTK) (Arora et al., 2019). The major problems
with the most recent NTK and CNTK kernels lie in the
recursive evaluation of the kernel as well as the ideal
assumptions made on the DNNs that all together make
these kernels still less competent than the corresponding
DNNs with the best setup found so far.

In this paper, we follow the basic idea of the first class
of deep kernels to develop a new member. The reason
for choosing this class of kernels is primarily due to their
powerful kernel expressiveness and the resulting supe-
rior prediction performance reported from various dif-
ferent application sectors. However, some drawbacks are
prominent in the existing works (Wilson et al., 2016a,b;
Al-Shedivat et al., 2017). The first one is the loss of ker-

nel interpretability since the embedded DNN is lack of
interpretability. Secondly, the existing works require a
large number of data samples to efficiently train a fully-
connected over-parameterized DNN embedded in an ele-
mentary GP kernel, for instance the SE kernel; otherwise,
data-overfitting can be perceived for small data cases. To
maintain the good data-fitting performance, while allevi-
ating the aforementioned drawbacks, we propose to de-
sign an optimal kernel, in which the NN structure is de-
composed into a linear combination of shallow subnet-
works with the aid of feature interaction detection, which
is deemed as a research frontier towards explainable AI.
Our contributions of this work include:

• Derivation of a non-stationary optimal kernel func-
tion that minimizes the test mean-squared-error
(MSE). With the given theorem on the optimality,
we argue that an extra elementary GP kernel may
be redundant, and by avoiding it, improved numeri-
cal stability can be obtained and the data-overfitting
problem alleviated.

• Implementation of the derived optimal kernel
through decomposing a fully-connected over-
parameterized DNN into a linear combination of
shallow subnetworks, forming a generative additive
model with significantly reduced (more than 85 per-
cent) total number of model parameters. A small
batch of model parameters for each subnetwork can
potentially be tuned alternatively, allowing for bet-
ter usage of the computation resources.

• Enhanced prediction accuracy and robustness can
be harvested for small data cases due to the im-
proved kernel interpretability and well reduced
model parameters.

The remainder of this paper is organized as follows. In
section 2, we firstly introduce some representative re-
lated works. In section 3, we briefly go through the back-
ground of Gaussian process regression (GPR) and the
first class of DKL approaches. In section 4, we first intro-
duce an optimal kernel and further implement it to be a
better interpretable and sample efficient deep kernel with
the aid of feature interaction detection. Section 5 presents
some experimental results, which confirm that our pro-
posed kernels outperform various competing kernels on
a variety of data sets. Finally, conclusions are made in
Section 6.

2 RELATED WORK

As our optimal yet interpretable kernel is a deep kernel
with the aid of feature interaction detection, the most re-
lated DKL approaches and interaction detection methods
are surveyed in this section.



Deep kernel learning: The idea of the DKL is to place
a DNN as the front end of a basic kernel to extract
low dimensional embeddings (Wilson et al., 2016a,b). A
modified kernel with more expressive embeddings and a
more efficient learning structure has been proposed re-
cently, which uses the finite rank Mercer kernel function
with mutually orthogonal embeddings (Dasgupta et al.,
2018). However, such kind of kernel learning with em-
beddings from NN structures requires supervised learn-
ing with a large number of labeled data for accurate pre-
diction. As the labeled data are always insufficient in
many real cases, a semi-supervised DKL has been pro-
posed, which incorporates information from unlabeled
data and learning by simultaneously minimizing the neg-
ative log marginal likelihood of labeled data and the pos-
terior variance of unlabeled data. However, by directly
incorporating the non-transparent DNN into GP models
loses the model’s explainability totally. Thus more atten-
tion should be paid to designing interpretable DKL.

Interaction Detection: Interaction detection has at-
tracted a lot of attention these years, owing to its abil-
ity to enhance the model interpretability. In (Lou et al.,
2013), the authors proposed to test all interaction pairs
in a greedy manner to build Generalized Additive Mod-
els plus Interactions (GA2M). Although GA2M is trans-
parent and interpretable, it is time consuming. There are
other works that try to extract interactions from a trained
model. For instance, for a tree-based model, there are
works such as iterative Random Forest (iRF), Disentan-
gled Attribution Curves (DAC), etc; for neural networks
(NNs), (Tsang et al., 2017) proposed an algorithm called
Neural Interaction Detection (NID) by training a sparse
ReLU network with L1 regularization and extracted the
interactions by analyzing the weights in the hidden lay-
ers. Since NID can produce comparably better quality
outcomes, in this paper, we will use it to obtain feature
interactions.

3 PRELIMINARIES

In this section, we briefly review the GPR and the DKL,
which incorporates NN structures into the state-of-the-
art GP kernels. This section serves as the foundation of
section 4 for our proposed kernels.

3.1 GAUSSIAN PROCESSES REGRESSION

A GP is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution (Williams
and Rasmussen, 2006). In this paper, we focus on ran-
dom vectors and real-valued Gaussian processes (GPs),
which can be completely specified by a mean function
m(x) and a kernel function κ(x,x′;γ) as

f(x) ∼ GP(m(x), κ(x,x′;γ)), (1)

where γ comprises the kernel hyper-parameters that need
to be optimized. Given a real data setD , {X,y}, where
X = [x1,x2, · · · ,xN ]T is a matrix of N input vectors
of dimension d, and y = [y1, y2, · · · , yN ]T is a vector of
N outputs of the following GPR model:

yi = f(xi) + εi, i = 1, 2, . . . , N, (2)

where yi ∈ R is a continuous-valued scalar output; the
additive terms εi, i = 1, 2, . . . , N are assumed to be
i.i.d white Gaussian noise with variance σ2; the un-
derlying unknown function f(xi) : Rd 7→ R is de-
sired and modeled as a GP. By definition, the collection
f(X) = [f(x1), f(x2), · · · , f(xN )]T follows a joint
Gaussian distribution, i.e.,

f(X) ∼ N (µX ,K(X,X)), (3)

where the matrix K(X,X) is short for K(X,X;γ), and
µX is the mean vector evaluated for X .

GP inference. Established by popular usage, we can di-
vide the original data set into a training set and a test
set, namely D = [Dt,D∗]. We denote Dt , {Xt,yt}
and D∗ , {X∗,y∗} as the training and test data set re-
spectively, where Xt = [xt1,xt2, · · · ,xtn]T and X∗ =
[x∗1,x∗2, · · · ,x∗m]T . According to the Bayes rule and
the Gaussian assumptions, it is easy to see that the poste-
rior distribution p(y∗|Dt, X∗,γ, σ

2) also follows a mul-
tivariate Gaussian distribution as follows:

p(y∗|Dt, X∗,γ, σ
2) ∼ N

(
f̄∗, cov(f∗)

)
, (4)

where

f̄∗ = µX∗
+K(X∗, Xt)C(yt − µXt), (5a)

cov(f∗)=K(X∗,X∗)−K(X∗,Xt)CK(Xt,X∗). (5b)

The term K(X∗, Xt) represents the m × n covariance
matrix of kernel functions evaluated forX∗ andXt, C ,
(K(Xt, Xt) + σ2In)−1 for short, and K(Xt, Xt) is the
n×n covariance matrix evaluated forXt. Then, by maxi-
mizing the posterior probability p(y∗|Dt, X∗,γ, σ

2), we
can obtain the maximum a posterior (MAP) estimator f̄∗
for the desired targets y∗.

Kernel learning. The most widely used kernel hyper-
parameter learning method is to maximize the log-
marginal likelihood logL = log p(yt|Xt), with respect
to the kernel hyper-parameters γ. Concretely,

logL ∝ −yT
t (Kγ +σ2In)−1yt− log |Kγ +σ2In|, (6)

where Kγ is a shorthand notation for K(Xt, Xt;γ). As
we can see, both the inversion (Kγ+σ2In)−1 and the log
determinant log |Kγ +σ2In| are computationally expen-
sive. In the process of the kernel learning and the DKL in
section 3.2, the following chain rule is required to com-
pute the derivatives of Lwith respect to the kernel hyper-
parameters

∂L
∂γ

=
∂L
∂Kγ

∂Kγ

∂γ
. (7)



3.2 DEEP KERNEL LEARNING

The expressive power of a GP model is mainly de-
termined by the kernel function. A representative deep
kernel function is proposed as follows (Wilson et al.,
2016a):

κdkl(x,x
′;γ)→ κ(h(x,w), h(x′,w);θ,w), (8)

where h(·) : Rd 7→ Rl represents an embedded DNN
that maps an input x to a low-dimensional embedding,
which breaks the curse of dimensionality of the base ker-
nel functions κ(·, ·). There are some popular base kernel
functions, e.g., the following squared-exponential (SE)
kernel and the spectral mixture (SM) kernel (Wilson and
Adams, 2013). The SE kernel is given by

κSE(x,x′) = exp(−‖τ‖2/2`2), (9)

where τ , x − x′, and θ = ` is the length-scale hyper-
parameter; and the SM kernel is given by

κSM(x,x′) =

Q∑
q=1

wq
|Σq|

1
2

(2π)
d
2

exp(−1

2
‖Σ

1
2
q τ‖2) cos〈τ , 2πµq〉, (10)

where the hyper-parameters θ include the mixture
weightswq , bandwidth parameters Σq , and frequency pa-
rameters µq . The hyper-parameters γ=(θ,w) in eq. (8)
are learnt jointly, where θ represents the GP kernel pa-
rameters and w represents the NN weights. It is note-
worthy that the number of parameters in w is way larger
than that of θ.

On the basis of the traditional kernel learning mentioned
in section 3.1, the derivatives with respect to the NN
weight variables also need to be computed with the aid
of eq. (7) for DKL, namely,

∂L
∂w

=
∂L
∂Kγ

∂Kγ

∂h(x,w)

∂h(x,w)

∂w
, (11)

where ∂h(x,w)
∂w is computed through the standard back-

propagation. Overall, a GP with deep kernel is believed
to produce a probabilistic mapping with infinite adaptive
basis functions and effectively capture data covariances
in high dimensions (Mallick et al., 2019). However, the
embedded DNN will unfortunately degrade the inter-
pretability of the base GP kernels. Meanwhile, the em-
bedded fully-connected, over-parameterized NN struc-
ture needs a large number of labeled data samples to
train efficiently. Moreover, training such a large DNN
may suffer lots of difficulties, e.g., gradients vanishing,
data-overfitting, trapping in a local minima, and so on.
One way to alleviate all these problems is to decom-
pose a large DNN into a batch of shallow subnetworks
with higher interpretability. Meanwhile, the fitting per-
formance can be retained or even enhanced. We will
elaborate on this new idea in section 4.

4 OPTIMAL KERNEL DESIGN
In this section, we first design a novel optimal kernel
function based on the minimum test MSE criterion. On
the basis of this optimal kernel, we further propose an in-
terpretable deep kernel with the aid of feature interaction
detection. The benefits of the proposed kernels will also
be discussed.

4.1 OPTIMAL KERNEL FUNCTION

For a given data setD, we want to find the optimal kernel
function that gives the minimum test MSE

MSE(f̄∗) = E[(f̄∗ − f(X∗))(f̄∗ − f(X∗))
T ], (12)

where MSE(f̄∗) is the MSE matrix of f̄∗ with respect
to the true function value f(X∗) for the test inputs, we
commonly consider the corresponding MSE value (i.e.,
the trace of the MSE matrix), and f̄∗ is the MAP estima-
tor of p(f(X∗)|D∗;γ). In practice, especially when the
prior knowledge about the data distribution is not avail-
able, it is common to set the mean function of the GP
equal to zero, i.e., m(x) = 0,∀x. So f̄∗ in eq. (5a) under
the zero mean assumption boils down to

f̄∗ = KX∗X∗

[
KX∗X∗ + σ2Im

]−1
y∗, (13)

whereKX∗X∗ denotesK(X∗, X∗) for short. Since y∗ ∼
N (f(X∗), σ

2Im) derived from eq. (2), the expectation
of f̄∗ can be derived as

E[f̄∗] = (Im +G)−1f(X∗), (14)

where G = σ2K−1X∗X∗
. We further define

f bias , E[f̄∗]−f(X∗)=−(Im+G)−1Gf(X∗), (15)

f̃ , f̄∗ − E[f̄∗]=(Im+G)−1(y∗ − f(X∗)), (16)

then, the test MSE matrix in eq. (12) with a feasible co-
variance matrix KX∗X∗ can be formulated as

MSE(f̄∗)(KX∗X∗)

= E[f̃ f̃
T

] + f biasf
T
bias

= (Im+G)−1(σ2Im+Gf(X∗)f(X∗)
TGT )(Im+G)−1

= A−1(σ2Im + σ4K−1X∗X∗
f(X∗)f(X∗)

TK−1X∗X∗
)A−1

= B(σ2KX∗X∗KX∗X∗ + σ4f(X∗)f(X∗)
T )B,

(17)

where A = (Im + σ2K−1X∗X∗
) and B = (KX∗X∗ +

σ2Im)−1 are two symmetric matrices. Based on the
above derivations, we give the optimal kernel matrix the-
orem as below.

Theorem 4.1. Let f̄∗ be the MAP estimator of a
GPR with the underlying function f(X∗) evaluated for
the test inputs X∗. Let MSE(f̄∗)(KX∗X∗) be the mean-
squared-error between the estimator f̄∗ of the GPR with



any feasible covariance matrix KX∗X∗ and the clean
test labels. The following matrix inequality holds for any
KX∗X∗ ≥ 0 :

MSE(f̄∗)(KX∗X∗) ≥MSE(f̄∗)(f(X∗)f(X∗)
T). (18)

The relevant proof is introduced in Appendix A, and a
similar proof mechanism can be found in Theorem 1 of
(Chen et al., 2012) for regularized least-squares estima-
tion. As a consequence of the Theorem 4.1, if we know
the underlying function f(x), the optimal kernel function
based on the minimum test MSE criterion is

κopt(x,x
′) = f(x) · f(x′). (19)

Lemma 4.1. In general, for a given mean function
m(x) 6= 0, we can prove that the optimal kernel func-
tion κopt(x,x′) = (f(x) −m(x)) · (f(x′) −m(x′)) in
a similar way.

Lemma 4.2. Clearly, the optimal kernel defined by eq.
(19) is a valid kernel function with non-stationary prop-
erty.

The proof of Lemma 4.2 is also provided in Appendix
A. Obviously, the remaining question is that how can we
approach the unknown underlying f(x)? Inspired by the
Universal Approximation Theorem (Hornik, 1991), we
choose to approximate the f(x) by a NN with multi-layer
feed-forward architecture, like the procedure in (Wilson
et al., 2016a). Accordingly, our optimal deep kernel is
derived as follows:

κok(x,x′;w) = g(x,w) · g(x′,w), (20)

where g(·) : Rd 7→ R represents an universal estimator
of f(·), the comprehensive structure of the optimal deep
kernel κok is shown on the left hand side in Figure 1. As
we can see, the optimal deep kernel is only parameterized
by the network weights w. In contrast to the DKL in sec-
tion 3.2, the designed optimal base kernel function in the-
orem 4.1 gives a simpler and potentially more efficient
kernel learning rationale. Besides the optimal kernel de-
sign, in section 4.2, we also make efforts on making the
DKL more interpretable, with detailed model structure
and analyses. Furthermore, in the case of the mean func-
tion m(x) 6= 0, we can estimate m(x) by the same pre-
trained NN that used to detect the feature interactions,
for which the applied interaction detection method will
be also introduced at the beginning of the section 4.2.

Remark. Comparing our proposed kernel function
κok(x,x′;w) in eq. (20) with the existing deep kernel
k(x,x′;γ) in eq. (8), we notice that there is essentially
no need to further embed h(x,w) into a base kernel.
Such embedding may cause an overfitted model and nu-
merical instability.

4.2 INTERPRETABLE OPTIMAL DEEP
KERNEL

In practice, we care not only about the performance of
the model, but also the interpretability of the model.
However, the outputs g(x,w) learned from NNs are
non-transparent and untraceable. There are many works
showing that generalized additive models (GAMs) can
achieve a good trade-off between functional approxima-
tion accuracy and model interpretability, in both machine
learning and statistics (Hastie, 2017). We then choose to
design an interpretable optimal deep kernel based on a
generalized additive model (GAM) taking advantage of
feature interaction outcomes obtained by the powerful
neural interaction detection (NID) algorithm proposed
in (Tsang et al., 2017). The NID directly interpret the
learned weights of a feed-forward multi-layer NN. In
other words, the NID provides pairwise and multi-way
statistical interactions among features inherent in data.

Therefore, the underlying function f(x) can be reshaped
as the following GAM based on the detected multi-way
interactions:

f(x) = f1(x[s1]) + f2(x[s2]) + · · ·+ fk(x[sk]), (21)

where the sj , j = 1, 2, . . . , k represent the detected k
feature interaction sets whose cardinality is kept small
preferably for better interpretability, e.g., if s1 = {1, 2},
then x[s1] = (x1, x2), the fj(·), j = 1, 2, . . . , k are
unspecified transformation functions depending on the
corresponding input sets. For different input dimensions,
the number of the detected interaction sets, k, may be
chosen differently. For example, if x ∈ R3, f(x) =
2 cos(x1 + x2) + 3x23, and the detected interaction sets
are s1 = {1, 2}, s2 = {3}, the corresponding GAM is

f(x) = f1(x1, x2) + f2(x3), (22)

where f1(x1, x2) = 2 cos(x1 + x2) and f2(x3) = 3x23.
As a result, the optimal kernel function becomes

κopt(x,x
′) (23a)

= f(x) · f(x′) (23b)
=(f1(x1, x2)+f2(x3)) · (f1(x′1, x

′
2)+f2(x′3)). (23c)

In light of the above GAM, the DNN embedded in the
κok defined in eq. (20) can now be decomposed as

κiok(x,x′) = (g1(x[s1],w1)+ · · ·+gk(x[sk],wk))

· (g1(x′[s1],w1) + · · ·+ gk(x′[sk],wk)),
(24)

where gj(x[sj ],wj), j = 1, 2, . . . , k are shallow and ex-
pressive subnetworks corresponding to different interac-
tion sets.

In other words, the originally embedded large net-
work g(·) in eq. (20) is decomposed into a GAM con-
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Figure 1: Left: The structure of the optimal deep kernel κok, A multi-layer fully-connected feed-forward NN is applied to be the
universal approximator of the underlying function f(x). Right: The structure of the interpretable optimal deep kernel κiok by
reconstruct κok to a interpretable GAM model. All deep kernels are learning in a DKL procedure and parametrized by w.

structed by k shallow subnetworks, each transparent sub-
network has neural interaction transparency and high in-
terpretability. The structure of the interpretable optimal
deep kernel κiok is shown on the right hand side of Fig-
ure 1. By contrast, the traditional DKL in section 3.2 in-
volves both a base kernel and a DNN, which are paramet-
ric mapping functions. Our kiok only involves a batch of
shallow subnetworks with much reduced model param-
eters compared with the traditional deep kernel. With
improved model interpretability and reduced parameter
space of our GP regression model, overfitting can be al-
leviated even using a small batch of data. The detailed
analyses and experimental results are presented in sec-
tion 5. Furthermore, we can alternatively train the piv-
otal subnetworks, using adaptive optimization methods
to update the weights, such as the coordinate descent
with bandit sampling proposed in (Salehi et al., 2017). In
this way, we can dramatically speed up the kernel learn-
ing procedure as the subnetworks can be parallel trained
on different local GPUs and exploit the SPARK tools.

5 EXPERIMENTS
In this section, we experimentally evaluate the perfor-
mance of GPs with the proposed optimal deep kernels
κok and κiok based on a range of tests in section 5.2, in-
cluding a regression performance and interpretability test
on varied synthetic data sets (Test 1); diverse collection
of regression tasks from UCI and Kaggle repository (Test
2); stability and uncertainty test (Test 3); and the test of
regression accuracy versus decreasing training data (Test
4). The experimental results demonstrate that the DKL
with the proposed optimal kernels substantially outper-
form GPs with some state-of-the-art kernels, as well as
the stand-alone DNNs.

5.1 EXPERIMENTAL SETUP

Table 1 shows the embedded NN structures in the deep
kernel κdkl (Wilson et al., 2016a); the proposed optimal
deep kernel κok; and the proposed interpretable optimal
deep kernel κiok. Since we focus on the scalar output
GPR, for fair comparison, the NN structures of κok are
almost the same as the structure of κdkl used for the re-
gression tasks in (Wilson et al., 2016a). As we can see,
for n ≤ 6000, the required parameters (i.e., weights) of
the subnetworks embedded in κiok are reduced (1−ρ),
i.e., 85% (99% for n > 6000) total number of the com-
pared large DNN structures in κdkl. The activation func-
tions are chosen to be ReLU, the Xavier normal ini-
tialization is used to initialize the weights in each layer
and Gaussian initialization with zero mean and unit vari-
ance is used for initializing the bias terms, we use GPy-
torch (Gardner et al., 2018) for regression with Adam
optimizer. The commonly used root-mean-squared-error
(RMSE) metric are applied for all regression tasks in
section 5.2. The interaction sets sj , j = 1, 2, . . . , k are
obtained from the NID algorithm proposed in (Tsang
et al., 2017), more concretely with a standard multi-layer
perceptron (hidden layers size:“140-100-60-20”) and a
additional univariate networks (hidden layers size:“10-
10-10”) summed at the output. When training the above
NNs, L1 regularization is used and the regularizer is set
to 5e-5.

Furthermore, as the lottery ticket hypothesis (LTH) states
that there exist subnetworks (winning tickets) can reach
the same level or even better test accuracy, compared
to the original feed-forward dense DNN (Frankle and
Carbin, 2018). Therefore, we apply LTH to the DNN
that embedded in the proposed optimal deep kernel κok.



Table 1: The comparison of neural network structures embed-
ded in the deep kernels, (where sj , j = 1, 2, . . . , k are the de-
tected interaction sets, and ρ is the ratio of required NN param-
eters between κiok and κdkl, the following NN structures may
change slightly depending on varied input data sets.)

n ≤ 6000 n ≥ 6000
κdkl d-1000-500-50-2 d-1000-1000-500-50-2
κok d-1000-500-50-1 d-1000-1000-500-50-1
κiok [sj ]-500-300-50-1 [sj ]-1000-500-50-1
ρ ≈ 15% ≈ 1%

Concretely, we use the strategy of iterative pruning with
resetting given in Appendix B of (Frankle and Carbin,
2018), where the surviving weights are reset after 300
to 500 iterations, depending on the data sets. And we
prune 10% of the weights of all intermediate hidden lay-
ers, 5% of the last layer for each pruning. Thus, the κok
with embeddings obtained from the pruned sparse NNs
may require a comparable number of parameters as the
interpretable optimal deep kernel κiok.

5.1.1 Bechmark Approaches

The DKL with the proposed interpretable optimal deep
kernel κiok, denoted by D-IOK, is compared with several
state-of-the-art approaches including:

• D-RBF (Wilson et al., 2016a): Deep kernel Learn-
ing with ARD kernel incorporating DNN embed-
dings. The base kernel contains both a signal vari-
ance and a length-scale as the parameters.

• D-MAT: Deep kernel Learning with Matérn-5/2
kernel incorporating DNN embeddings.

• D-SM (Wilson et al., 2016a): Deep kernel Learn-
ing with the Spectral Mixture kernel incorporating
DNN embeddings.

• K-ARC (Cho and Saul, 2009): A GP with a kind of
positive-definite kernel that can mimic the learning
mechanism of multi-layer NNs.

• D-OK: Deep kernel Learning with the proposed op-
timal kernel function κok incorporating sparse DNN
embeddings.

• DNNs: The stand-alone deep neural networks with
the same structures and initialization as the embed-
ded DNN in the κok.

5.1.2 Datasets

For GPR tasks, we firstly conduct our experiments
with synthetic data sets generated by functions F1(x)-
F7(x) listed in Table 2. Secondly, several real data sets
including three benchmark UCI regression data sets,

namely Skillcraft, Elevators (Wilson et al., 2016a)
and Parkinsons (where the last column of label are
used), and the 4th index of two Kaggle regression data
sets applied in (Tsang et al., 2017), Bike sharing,
California housing data sets are tested. The input data
are standardized, and all randomly divided into three
non-overlapping segments with 80% for training, 10%
for validation, and 10% for test. The resulting RMSE val-
ues to be given in section 5.2 are averaged over 5 inde-
pendent experiments for all data sets.

Table 2: Test suite of data generating functions

F1(x) 2 cos(x1 + x2) + 3x3x4 + x35
F2(x) exp |x1 − x2|+ |x3x4|+ log(x25 + x26)

F3(x) sin(x1)− x22 + πx3x4
√

2|x5|
F4(x)

√
exp(x1 + x2) + x3x4x5 + 2x6+x7

F5(x) sin(x1) + (x2 + 1)2|x3| + πx4x5
√

2|x6|

F6(x)
log(2x1 + x2 + 3)+arccos(0.9x3)+

sin(x4+x5−x6)+3x7x8+exp(|x9x10|+1)

F7(x)
√

exp(x21 + 1) + (x2x3x4)3 + sin(x5 + x6)

Table 3: The test RMSE for different approaches applied to syn-
thetic datasets, with n training points and dimensions d.

n d DNN D-RBF D-OK D-IOK
F1(x) 0.8k 5 0.183 0.153 0.101 0.081

F2(x) 1.6k 6 0.281 0.226 0.228 0.127

F3(x) 2.4k 5 0.149 0.114 0.115 0.101

F4(x) 3.2k 7 0.098 0.095 0.092 0.092

F5(x) 2.4k 6 0.201 0.144 0.113 0.093

F6(x) 4.8k 10 0.198 0.165 0.182 0.097

F7(x) 5.6k 6 0.099 0.053 0.035 0.027

5.2 EXPERIMENTAL RESULTS

Test 1: We now consider a range of synthetic regression
tasks. Table 3 reports the test RMSE for 1) the stand-
alone DNNs; 2) the D-RBF; and 3) our proposed D-OK
and D-IOK.

Table 3 shows that for most data sets, the D-RBF consis-
tently outperforms the stand-alone DNNs, meaning that
incorporating DNN into GP can not only provide uncer-
tainty estimation but also improve the regression perfor-
mance. We see that D-OK performs much better than the
D-RBF in most cases, benefiting from the optimal kernel
function. Taking advantage of the feature interactions,
the proposed D-IOK outperforms all other competitors
by far, showing that the GAM with shallow subnetworks
can achieve the best performance in all cases.



Table 4: The test RMSE for different approaches with real regression data sets

Datasets n d K-ARC DNN D-MAT D-SM D-OK D-IOK
Skillcraft 3338 19 0.211±0.01 0.194±0.01 0.202±0.01 0.206±0.01 0.188±0.00 0.189±0.00

Parkinsons 5875 20 11.53±0.18 10.13±3.04 10.17±1.35 17.38±2.21 9.59±1.88 8.53±1.92
Elevators 16599 18 0.199±0.00 0.080±0.01 0.071±0.01 0.079±0.01 0.069±0.00 0.069±0.00

Bike sharing 17379 15 0.375±0.01 0.342±0.06 0.214±0.02 0.283±0.04 0.183±0.01 0.281±0.01
Cal housing 20640 8 0.344±0.01 0.390±0.01 0.342±0.01 0.342±0.01 0.338±0.01 0.339±0.01

We further test the interpretability of D-IOK by compar-
ing the outputs g1(xs1 ,w1) and g2(xs2 ,w2) in F3(x)
to the noisy samples generated from the correspond-
ing ground truth transformation functions f1(x[s1]) =
sin(x1) and f2(x[s2]) = x22 respectively. Figure 2 shows
that the subnetworks can fit the transformation func-
tions well. Since D-IOK is developed by an interpretable
GAM of shallow subnetworks based on the detected fea-
ture interaction sets. Each detected interaction set con-
tains 2-3 features, thus it can be conveniently visual-
ized and analyzed by domain experts thereafter. Take the
real California housing data set for instance, we can ob-
serve strong and meaningful interactions for sets x[s1]

= (x1: longitude, x2: latitude), x[s2] = (x4: total rooms,
x7: households) from Table 5. This makes sense, as x[s1]

may indicate the location, x[s2] may indicate average
living area per household. The experimental results ex-
plicitly demonstrate the excellent performance and inter-
pretability of the D-IOK on simulated data, the tests with
more complicated real data sets are presented in Test 2.

Test 2: We now consider the regression tasks of a large
set of real data with varying size and properties, the
test RMSE results are compared for 1) the stand-alone
DNNs; 2) the D-MAT and the D-SM; 3) the K-ARC; and
4) our proposed D-OK and D-IOK.

Table 4 shows that there is no significant performance
gap among all results achieved by the kernel based ap-
proaches on the California housing data set, as the
data set have enough training data and small input di-
mension. But the stand-alone DNNs are uncompetitive in
most cases. The kernel function in K-ARC is defined as
κarccos(x,y)=φ(x)·φ(y), where we use ramp activation
function with two successive applications of the nonlin-
ear mapping φ(·) for comparison. Although the learn-
ing mechanism of the NNs with infinite hidden neurons
is approximated, the K-ARC can hardly achieve effec-
tive performance improvements in GPR tasks. The two
compared DKL approaches, D-MAT and D-SM, with el-
ementary base kernel function have relatively poor per-
formance. Comparing to the nonparametric kernel learn-
ing methods, such as the latest functional kernel learning
(FKL) introduced by (Benton et al., 2019), and others
(Tobar et al., 2015; Oliva et al., 2016). The performance
of the FKL is comparable to the D-SM, while other meth-

ods are slightly inferior due to the unstable performance
of the non-stationary and high dimensional real data sets.
By contrast, the D-OK and D-IOK applied the optimal
kernel functions κok and κiok can bring substantial addi-
tional performance gains for all data sets. The computa-
tion time for the D-OK is around three-fifths of a second
per epoch, while this has been reduced to around a fifth
of a second for the D-IOK.

We observed that the D-OK performs similar results to
the D-IOK for the real data sets. The reason might be due
to the more severe influence of the falsely detected inter-
action sets brought by the NID algorithm. We can refer
to the detected outcomes reported in Table 5. A modi-
fied model that can potentially alleviate this problem is:
f(x) = a1f1(x[s1])+a2f2(x[s2])+· · ·+akfk(x[sk]), and
we regularize the weights a = [a1, a2, . . . , ak]T in the
cost function for training the kernel hyper-parameters.
In this way, those subnetworks with the right interaction
sets will be retained, while the subnetworks with falsely
detected interaction sets will be deactivated. Another rea-
son might be that the LTH applied to the D-OK can lead
to a sparse DNN (constituted by winning tickets), which
brings additional performance gain (Frankle and Carbin,
2018). But we need to iteratively prune the large DNN
for many times in order to obtain the winning tickets.
While the D-IOK with the subnetworks based on feature
interactions can also be seen as the outcomes after spar-
sifying the original large DNN in some sense.

Test 3 : The top two figures in Figure 3 show that D-OK
is more robust than D-RBF. We conduct the regression
tasks of F1(x) and F2(x) for twenty times independent
experiments, as we all know, the GP with an appropriate
kernel function will have less prediction uncertainty and
the extra kernel parameters of D-RBF may incur data-
overfitting. A comparison on the prediction uncertainty
can be found in Appendix B. Note that the D-SM have
more kernel parameters than D-RBF, worse test results
can be imaged.

Test 4: The trend of the test RMSE versus decreasing
percent of training data generated from F1(x) and F5(x)
are depicted at the bottom of Figure 3, showing that the
sample efficiency of the optimal deep kernels is superior
to the basic RBF kernel in the case of insufficient input



data. The D-SM is uncompetitive in the case of insuffi-
cient input data, since more kernel parameters need to be
trained.

All tests have shown that the DKL with our proposed
non-stationary optimal deep kernel functions outperform
all other competitors considerably. As a conclusion, the
well structured κiok with the aid of feature interaction
detection definitely improves the performance of GP re-
gression and the interpretability of the DKL. Further-
more, our work is also applicable to GP classification.
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Figure 2: Left : The comparison between g1(x[s1],w1) con-
structed with the training data and the ground truth sub-
function f1(x[s1]) = sin(x1) in F3(x); Right : The compar-
ison between g2(x[s2],w2) constructed with the training data
and the ground truth sub-function f2(x[s2]) = x22 in F3(x).
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Figure 3: From left to right. Top: The stability test between D-
OK and D-RBF for synthetic data set generated from F1(x)
and F2(x) respectively; Bottom: The test RMSE versus de-
creasing percent of training data generated from F1(x) and
F5(x) respectively.

6 CONCLUSION

In view of the prominent superiority of the deep kernel
learning, we make efforts to the derivation of the optimal
kernel function and the interpretable deep kernel learn-
ing structures. Specifically, we firstly derived an elegant

Table 5: Some detected Interaction sets with decreasing inter-
action strength for functions F1(x) to F4(x). Note Cal refers
to the real data California housing.

Functions F1(x) F2(x) F3(x) F4(x) Cal

Sets {3, 4} {5, 6} {3, 4} {3, 4, 5} {1, 2}
Strengths 13.15 14.34 7.35 4.09 29.21

Sets {1, 2} {1, 2} {1, 2} {6, 7} {4, 7}
Strengths 10.43 10.49 1.89 1.43 20.36

Sets {1, 4} {2, 6} {3, 4, 5} {1, 6, 7} {2, 4, 6}
Strengths 5.16 2.51 1.73 0.776 10.97

Sets {1, 2, 3, 4} {1, 2, 3} {1, 3, 4} {1, 2} {6, 7}
Strengths 3.12 1.51 1.73 0.54 6.29

optimal kernel function under certain assumptions. With
the proposed interpretable deep kernel learning structure
and detected feature interactions, we then proposed an
optimal yet explainable and efficient deep kernel. Ex-
perimental results verified that this non-stationary valid
kernel outperforms other state-of-the-art relevant kernels
and offers highly interpretability and stability, making it
promising to be applied to deep kernel design.
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