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Abstract

Maximal ancestral graphs (MAGs) have many
desirable properties; in particular they can
fully describe conditional independences from
directed acyclic graphs (DAGs) in the pres-
ence of latent and selection variables. How-
ever, different MAGs may encode the same
conditional independences, and are said to be
Markov equivalent. Thus identifying neces-
sary and sufficient conditions for equivalence
is essential for structure learning. Several cri-
teria for this already exist, but in this paper
we give a new non-parametric characteriza-
tion in terms of the heads and tails that arise
in the parameterization for discrete models.
We also provide a polynomial time algorithm
(O(ne2), where n and e are the number of ver-
tices and edges respectively) to verify equiv-
alence. Moreover, we extend our criterion to
ADMGs and summary graphs and propose an
algorithm that converts an ADMG or summary
graph to an equivalent MAG in polynomial
time (O(n2e)). Hence by combining both al-
gorithms, we can also verify equivalence be-
tween two summary graphs or ADMGs.

1 INTRODUCTION

DAG models, also known as Bayesian networks, are pop-
ular graphical models that associate a probability distri-
bution P (XV ) with a graph consisting of vertices repre-
senting random variables XV joined by directed edges.
In the context of causal inference, a directed edge a→ b
can be interpreted as ‘a has a direct causal effect on b’.
A DAG encodes conditional independence in P by a cri-
terion called d-separation (Pearl, 2009). For example,
1 → 2 ← 3 is a DAG with vertices 1, 2, 3 and implies
one independence: X1 ⊥⊥ X3. DAGs are also associated
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with an elegant factorization of probability distributions,
which allows fast statistical inference and fitting. With
some additional assumptions they can be used for causal
modelling, and thus they are used in many fields such as
expert systems, pattern recognition in machine learning,
or estimating causal effects in experimental science.

An interesting question is how to learn unknown DAGs
from a dataset. Spirtes et al. (2000) provide an algo-
rithm called the PC algorithm; this learns the underly-
ing DAG by testing conditional independences inherited
in the data. However, when latent variables are present,
conditional independence in the observed variables may
imply the wrong underlying causal structure, or even not
correspond to any DAGs at all. For example, in Fig-
ure 1(i) with latent variable h (this is an example from
Richardson and Spirtes (2002)), there is no DAG that de-
scribes precisely the independence on the marginal. We
say, then, that DAGs are not closed under marginaliza-
tion. Classes of supermodels have been developed to
tackle this problem, one of which is maximal ancestral
graphs (MAGs) introduced by Richardson and Spirtes
(2002). This includes graphs with additional types of
edges: bidirected edges (↔) and undirected edges. A
bidirected edge 1 ↔ 2 can be interpreted as saying that
there is a latent variable h such that 1 ← h → 2. An
undirected edge arises when there are some variables be-
ing conditioned upon. Graphical implications for con-
ditional independence are extended from d-separation to
m-separation, see definitions in Section 2. Moreover one
can project a DAG with latent and selection variables
to a Markov equivalent MAG on the observed margin.
The projection is described in Section 3.3. The result-
ing MAG not only captures the exact conditional inde-
pendence of observed variables in the original graph but
also preserves ancestral relations. In addition, Gaussian
variables associated with MAGs are curved exponential
families (Richardson and Spirtes, 2002), and hence have
some desirable statistical properties.

Graphs in this paper are directed and contain no undi-



rected edge. Extensions to summary graphs and MAGs
with undirected edges are straightforward and we have
placed them in the supplementary materials. Note that
summary graphs defined in Wermuth (2011) are actually
the same as ADMGs with undirected components at the
top. Graphically, one just needs to change the dashed
lines to bidirected edges and they encode the same con-
ditional independence. We include details of this discus-
sion in the supplementary materials.

Learning causal structures via testing only conditional
independence leads to another problem. Different MAGs
can imply the same set of constraints on variables, for
example Figures 3(i) and (ii) both only encode X1 ⊥⊥
X4 | X2, X3. We say such MAGs are Markov equiv-
alent, and are in the same Markov equivalence class.
Thus equivalent graphs represent the same set of distribu-
tions. Although each class can be uniquely described by
a partial ancestral graph (PAG) (Colombo et al., 2012),
non-experimental data cannot distinguish graphs in the
same class. Therefore identifying conditions for Markov
equivalence is important for modelling and estimating
causal effects from data.

There have been three graphical characterizations that
give necessary and sufficient conditions for when two
MAGs are equivalent. Among those three criteria, only
Ali et al. (2009) provide a polynomial time algorithm to
verify Markov equivalence. Zhao et al. (2005) charac-
terize MAGs by minimal collider paths (MCPs). The
criterion of Spirtes and Richardson (1997) uses discrim-
inating paths, which we will define in Section 3 (we will
employ them in our proofs). This paper gives a new
characterization and it lead to a faster algorithm to test
equivalence compared to existing ones. Also we show a
similar equivalence criterion for wider classes of acyclic
graphs, ADMGs.
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Figure 1: (i) A DAG with latent variable h. (ii) A Markov
equivalent MAG of (i) on the margin {1, 2, 3, 4}.

In Section 2, we give basic definitions and terminology
for graphical models. In Section 3 we present the main
results, including theorems on the Markov equivalence
of MAGs and ADMGs. Algorithms to verify Markov
equivalence and their complexities are shown in Section

4. Missing proofs are found in the Supplementary Mate-
rial.

2 DEFINITIONS

2.1 Graphs

A graph G consists of a vertex set V and an edge set E
of distinct pairs of vertices. For an edge in E connecting
vertices a and b, we say these two vertices are the end-
points of the edge and the two vertices are adjacent (if
there is no edge between a and b, they are nonadjacent).

A path is a set of distinct vertices vi, 1 ≤ i ≤ k such
that vi and vi+1 is connected by some edge for all i ≤
k − 1. A path is directed if its edges are all directed
and point in the same direction. A graph G is acyclic
if there is no directed cycle (any directed path such that
v1 → v2 → ...→ vk and vk → v1). A graph G is called
an acyclic directed mixed graph (ADMG) if it is acyclic
and contains only directed and bidirected edges.

For a vertex v in an ADMG G, we define the following
sets:

paG(v) = {w : w → v in G}
sibG(v) = {w : w ↔ v in G}
anG(v) = {w : w → ...→ v in G or w = v}
deG(v) = {w : v → ...→ w in G or w = v}
disG(v) = {w : w ↔ ...↔ v in G or w = v}.

They are known as the parents, siblings, ancestors, de-
scendants and district of v, respectively. These sets are
also defined disjunctively for a set of vertices W ⊆ V .
For example paG(W ) =

⋃
w∈W paG(w). Vertices in the

same district are connected by a bidirected path and this
is an equivalence relation, so we can partition V and de-
note the districts of a graph G by D(G). We sometimes
ignore the subscript if the graph we refer to is clear, for
example an(v) instead of anG(v).

2.2 Separation Criterion

For a path π with vertices vi, 1 ≤ i ≤ k we call v1 and
vk the endpoints of π and any other vertices the nonend-
points of π. For a nonendpoint w in π, it is a collider
if ?→ w ←? on π and a noncollider otherwise (an edge
?→ is either → or ↔). For two vertices a, b and a dis-
joint set of vertices C in G (C might be empty), a path π
is m-connecting a, b given C if (i) a, b are endpoints of
π, (ii) every noncollider is not in C and (iii) every col-
lider is in anG(C). A collider path is a path where all the
nonendpoints vertices are colliders.
Definition 2.1. For three disjoint sets A,B and set C
(A,B are non-empty), A and B are m-separated by C in



G if there is no m-connecting path between any a ∈ A
and any b ∈ B given C. We denote the m-separation by
A ⊥m B | C.

For a triple (a, b, c) in a graph G, we call this an un-
shielded triple if {a, b} and {b, c} are adjacent but {a, c}
are not. If b is a also collider in the path 〈a, b, c〉 then
we also call the triple an unshielded collider, and an un-
shielded noncollider otherwise.

Definition 2.2. A distribution P (XV ) is said to be in the
Markov model of an ADMG G if whenever A ⊥m B | C
in G, XA ⊥⊥ XB | XC in P .

This definition, known as the global Markov property,
associates distributions with a given ADMG via m-
separations. There are also other equivalent definitions in
terms of the local Markov property or moralization (see
Richardson, 2003), but the global Markov property has
the advantage of being ‘complete’: that is, if there is no
m-separation then almost every distribution in the model
does not satisfy the associated conditional independence.

Remark 1. The model in Definition 2.2 defined by con-
ditional independences is sometimes referred as the or-
dinary Markov model. There is a model called the nested
Markov model defined by generalized conditional inde-
pendences which captures all the equality constraints that
arise from latent variable model (see Richardson et al.,
2017; Evans, 2018).

For an ADMG G, given a subset W ⊆ V , the induced
subgraph GW is defined as the graph with vertex set W
and edges in G whose endpoints are both in W . Also for
the district of a vertex v in an induced subgraph GW , we
may denote it by disW (v).

2.3 MAGs

Definition 2.3. An ADMG G is maximal if for every pair
of nonadjacent vertices a and b, there exists some set C
such that a, b are m-separated given C in G.

Definition 2.4. An ADMG G is ancestral if for every
v ∈ V , sibG(v) ∩ anG(v) = ∅.
Definition 2.5. An ADMG G is called a maximal ances-
tral graph (MAG) if it is maximal and ancestral.

Note that in an ancestral graph, there is at most one edge
between each pair of vertices.

For example, the graph in Figure 2(i) is not maximal be-
cause 1 and 2 are not adjacent, but no subset of {3, 4}
will m-separate them. (ii) is not ancestral as 1 is a sib-
ling of 3, which is also one of its descendants. (iii) is
a MAG in which the only conditional independence is
X1 ⊥⊥ X3 | X4.
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Figure 2: (i) An ancestral graph that is not maximal. (ii)
A maximal graph that is not ancestral. (iii) A maximal
ancestral graph.

Definition 2.6. Two graphs G1 and G2 with the same
vertex sets, are said to be Markov equivalent if any m-
separation holds in G1 if and only if it holds in G2.

2.4 Heads and Tails

For a vertex set W ⊆ V , we define the barren subset of
W as:

barrenG(W ) = {w ∈W : deG(w) ∩W = {w}}.

A vertex set H is called a head if (i) barrenG(H) =
H and (ii) H is contained in a single district in Gan(H).
For an ADMG G, we denote the set of all heads in G by
H(G). A tail of a head is defined as:

tail(H) = (disan(H)(H) \H) ∪ paG(disan(H)(H)).

Distributions associated with an Markov model can be
factorized in terms of heads and tails (Richardson, 2009).

Definition 2.7. The parametrizing set of G, denoted by
S(G) is defined as:

S(G) = {H ∪A : H ∈ H(G) and ∅ ⊆ A ⊆ tail(H)}.

Note that it is called the parametrizing set because it is
closely related to the discrete parameterization (Evans
and Richardson, 2014). However the theorem developed
in this paper is entirely non-parametric. We also define
Sk(G) for k ≥ 2 as:

Sk(G) = {S ∈ S(G) : 2 ≤ |S| ≤ k}.

In particular, we are interested in:

S̃3(G) = {S ∈ S3(G) | there are 1 or 2 adjacencies
among the vertices in S}.

We write S,Sk, S̃3 if the graph G we are referring to is
clear. Note that we are not considering any singleton sets
in Sk(G) or S̃3(G); these are just all vertices because {v}
is trivially a head. For a MAG G, a pair of vertices are
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Figure 3: Three MAGs where (i) and (ii) are Markov
equivalent but (iii) is not.

in S(G) if and only if they are adjacent (This is easy to
prove).

We give an example to illustrate what the sets defined
above are. Consider the three MAGs in Figure 3, Table 1
lists their heads and tails, Table 2 lists their parametrizing
sets S and Table 3 lists their S3 and S̃3.

Table 1: Heads and tails of graphs in Figure 3

Figure heads tails Figure heads tails

3(i)

1 3

3(iii)

1 ∅
2 ∅ 2 ∅
3 ∅ 3 ∅
4 2,3 4 2

1,2 3 1,2 ∅
2,3 ∅ 1,3 ∅

3(ii)

1 2,3 2,3 ∅
2 4 3,4 2
3 2,4 1,2,3 ∅
4 ∅ 1,3,4 2

Table 2: Parametrizing set of graphs in Figure 3

Figure parametrizing sets missing sets

3(i)(ii)

{1}, {2}, {3}, {4} {1, 4}
{1, 2}, {1, 3}, {2, 3} {1, 2, 4}
{2, 4}, {3, 4} {1, 3, 4}
{1, 2, 3}, {2, 3, 4} {1, 2, 3, 4}

3(iii)

{1}, {2}, {3}, {4} {1, 4}
{1, 2}, {1, 3}, {2, 3} {1, 2, 4}
{2, 4}, {3, 4}

{1, 2, 3}, {1, 3, 4}, {2, 3, 4}
{1, 2, 3, 4}

In Figure 3, (i) is Markov equivalent to (ii) and they also
have the same parametrizing sets; however, (iii) has a
different parametrizing set and is not Markov equivalent
to either (i) or (ii). In Figure 3(i) and (ii), 1 ⊥m 4 |
2, 3 is the only m-separation while Figure 3(iii) encodes
1 ⊥m 4 | 2. Note that these conditional independences

Table 3: S3 and S̃3 graphs in Figure 3

Figure S3 S̃3

3(i)(ii)
{1, 2}, {1, 3}, {2, 3} {1, 2}, {1, 3}
{2, 4}, {3, 4} {2, 3}, {2, 4}
{1, 2, 3}, {2, 3, 4} {3, 4}

3(iii)

{1, 2}, {1, 3}, {2, 3} {1, 2}, {1, 3}
{2, 4}, {3, 4} {2, 3}, {2, 4}
{1, 2, 3}, {2, 3, 4} {3, 4}
{1, 3, 4} {1, 3, 4}

correspond precisely to these missing sets which are in
the form {a, b} ∪ C ′ where a ⊥m b | C and C ′ ⊆ C.
Thus it is reasonable to conjecture that equivalent graphs
should have the same parametrizing sets. It turns out that
not only is this true, but in fact equivalence conditions
can be refined even further and it is sufficient to consider
S3 or S̃3.

3 MARKOV EQUIVALENCE

3.1 Previous Work

The first theorem on Markov equivalence of MAGs is
from Spirtes and Richardson (1997).

Theorem 3.1. Two MAGs G1 and G2 are Markov equiv-
alent if and only if (i) G1 and G2 have the same adjacen-
cies, (ii) G1 and G2 have the same unshielded colliders
and (iii) if π forms a discriminating path for b in G1 and
G2, then b is a collider on the path π in G1 if and only it
is a collider on the path π in G2.

For x and y nonadjacent, a discriminating path π =
〈x, q1, . . . , qm, b, y〉, m ≥ 1 for b, is a subgraph com-
prised of a collection of paths:

x ?→ q1 ↔ · · · ↔ qi → y, 1 ≤ i ≤ m;

x ?→ q1 ↔ · · · ↔ qm←? b ?→ y.

For example, 〈1, 2, 3, 4〉 forms a discriminating path for
3 in both Figure 3(i) and (iii), but not (ii). The vertex 3
is a collider on the path in (iii) but not (i), so (i) and (iii)
are not equivalent; however (i) and (ii) are equivalent.
In general, the cost of identifying all the discriminating
paths is not polynomial in the number of vertices and
edges. However, we will make use of Theorem 3.1 in
later proofs.

3.2 Markov Equivalence Of MAGs

We now present the main result of this paper.



Theorem 3.2. Let G1 and G2 be two MAGs. Then G1 and
G2 are Markov equivalent if and only if S(G1) = S(G2).

Theorem 3.2 already provides a method to find equiva-
lence between two MAGs by searching all the heads and
corresponding tails, however, the number of heads is not
polynomial in the size of the graph.
Corollary 3.2.1. Let G1 and G2 be two MAGs. Then G1
and G2 are Markov equivalent if and only if S3(G1) =
S3(G2). This in turn occurs if and only if S̃3(G1) =
S̃3(G2).

The motivation for defining S̃3(G) is that we cannot ob-
tain the same complexity if we allow triangles to be in-
cluded, as in S3. To see this, consider a complete bidi-
rected graph with e edges: this will require O(e3) oper-
ations to list all the triangles (which are all heads). Note
we do not care about triples with three or zero adjacen-
cies. Theorem 3.1 tells us that apart from adjacencies
between pairs of vertices, and unshielded triples which
lack one adjacency, we only need to find that for a dis-
criminating path π = 〈x, q1, . . . , qm, b, y〉, whether b is
a collider on the path or not. Later we will show that
{x, b, y} ∈ S(G) if and only if b is a collider on π, and
note that b, y are adjacent but x, y are not.

Corollary 3.2.1 is particularly important for identifying
Markov equivalence. It not only allows the algorithm to
run in polynomial time as we only need to check heads
with size at most 3, but also accelerates it further as we
do not need to find triples with full adjacencies or no
adjacencies, nor to store lots of triangles from the dense
part of the graph.

To prove Theorem 3.2 and Corollary 3.2.1, we first prove
the following propositions.
Proposition 3.3. Let G be a MAG with vertex set V . For
a set W ⊆ V , W /∈ S(G) if and only if there are two
vertices a, b in W such that we can m-separate them by
a set C such that a, b /∈ C with W ⊆ C ∪ {a, b}.

Proof. We prove an equivalent statement of this proposi-
tion, that is: W ∈ S(G) if and only if for any two vertices
a, b inW we cannot m-separate them by a setC such that
a, b /∈ C with W ⊆ C ∪ {a, b}.

To prove ⇒: if W ∈ S(G), then there is a nonempty
subset W ′ ⊆ W such that W ′ is a head and W ⊆
W ′ ∪ tail(W ′). Because tail(W ′) ⊆ an(W ′), we have
W ′ ∪ tail(W ′) ⊆ an(W ′). By definition of the heads
and tails, any two vertices a, b in W ⊆ W ′ ∪ tail(W ′)
are connected by a collider path where all the colliders
are in an(W ′) ⊆ an(C ∪ {a, b}). Let di, 1≤ i ≤ n be
intermediate vertices in the path. Now if all of di are an-
cestors of C then this path m-connects a and b. So some
of di are only ancestors of a, b.

Suppose there exists some di ∈ anG(a) \ anG(C), let
dj be the furthest one on path π from a, so there exists
a directed path π′ : a ← · · · ← dj such that none of
vertices in π′ after a is an ancestor of C and hence not
in C. If all dk after dj belong to anG(C) then we find a
m-connecting path between a and b: a ← · · · ← dj ↔
· · · ↔ dn ←? b. If not, let dm be the first one after dj
such that dm ∈ anG(b) \ anG(C) then again we find a
m-connecting path between a and b: a ← · · · ← dj ↔
· · · ↔ dm → · · · → b.

If all di /∈ anG(C) are ancestors of b then let dj be
the closest one to a in path π which also leads to a m-
connecting path between a and b: a ?→ d1 ↔ · · · ↔
dj → · · · → b. Hence in all cases any a, b in W are not
m-separated given any C ⊇W \ {a, b}.

To prove⇐: define W ′ = barren(W ). We claim that it
is a head. Suppose it is not a head, by the definitions of a
barren set and a head, W ′ does not lie in a single district
in Gan(W ′). Let Di ⊂ W ′ index bidirected-connected
components of W ′ in anG(W

′) where 1 ≤ i ≤ m.
Clearly by assumption m > 1, and now consider D1

and D2. For any edge in Gan(W ′) which has an end-
point a ∈ W ′, it is of the form a←? by definition of a
barren set, so if there is a collider path between D1 and
D2, it would be a bidirected path which is a contradic-
tion to the definition of D1 and D2. This means that any
path in anG(W

′) between D1 and D2 contains at least
one non-collider which is not in W ′ and hence it is in
anG(W

′) \W ′. Thus for any two vertices in D1 and D2,
given anG(W

′) \W ′, they are m-separated in anG(W
′).

Since anG(W
′) is ancestral, the m-separation also holds

in the whole graph. Thus W ′ is a head.

By Remark 4.14 in Evans and Richardson (2014), for
any head H we have H ⊥m anG(H) \ (H ∪ tail(H)) |
tail(H). Thus if (W \W ′) is not in tail(W ′), we can
m-separate a vertex in (W \W ′) \ tail(W ′) and a vertex
inW ′ given the remaining vertices in anG(W

′), which is
a contradiction.

Proposition 3.4. For a MAG G, we have (i) any two
vertices a and b are adjacent in G if and only if
{a, b} ∈ S(G); (ii) for any unshielded triple (a, b, c) in
G, {a, b, c} ∈ S(G) if and only if b is a collider on the
triple (a, b, c); (iii) if π forms a discriminating path for b
with two end vertices x and y in G then {x, b, y} ∈ S(G)
if and only if b is a collider on the path π.

Proof. For (i), by maximality, any two vertices a and
b are adjacent in a MAG if and only if we can not m-
separate them by a set C, hence by Proposition 3.3 if and
only if {a, b} ∈ S(G).

For (ii), the only nonadjacent pair of vertices are a, c, for



any set C that m-seperates them, b /∈ C if and only if b is
a collider on the triple (a, b, c), hence by Proposition 3.3
if and only if {a, b, c} ∈ S(G).

For (iii), if x, b are not adjacent, then for any set that m-
separates them, y is not in the set, as the path x ?→ q1 ↔
· · · ↔ qm ←? b would be m-connecting x and b. Since
x, y are not adjacent, there exists some set C such that
x ⊥m y | C. From page 11 in Ali et al. (2009), we know
that for any such C, qi ∈ C for all i ≤ n and b is a
collider if and only if b /∈ C, hence by Proposition 3.3 if
and only if {x, b, y} ∈ S(G).

Now we are able to prove Theorem 3.2 and Corollary
3.2.1

Proof of Theorem 3.2. (⇒) Proposition 3.3 ensures that
missing sets in S(G) are only due to m-separations in
graphs. But as Markov equivalence is characterized
by m-separations, S(G1) and S(G2) in two equivalent
MAGs G1 and G2 are the same. (⇐) Proposition 3.4
implies that any violation of conditions in Theorem 3.1
result in different S(G1) and S(G2). Hence if S(G1) =
S(G2), G1 is Markov equivalent to G2.

Proof of Corollary 3.2.1. (⇒) This follows from Theo-
rem 3.2 and the fact that Markov equivalent MAGs have
the same adjacencies. (⇐) This follows from the fact
that in the proof the ‘if’ part of Theorem 3.2, we only
consider sets in S̃3(G1) and S̃3(G2).

Frydenberg (1990) gives conditions for when two DAGs
are equivalent, i.e. if and only if they have the same ad-
jacencies and unshielded colliders. DAGs are a subclass
of MAGs so Corollary 3.2.1 also applies to them. When
G is just a DAG, S̃3(G) (and indeed S3(G)) contains the
exact information of G’s adjacencies and unshielded col-
liders. By Proposition 3.4, {a, b} ∈ S̃3(G) if and only if
a, b are adjacent. And a triple is in S̃3(G) if and only if it
is an unshielded collider; this is because in DAGs, heads
are precisely the individual vertices, and the correspond-
ing tails are their parent sets.

3.3 Projection From ADMGs To MAGs

Richardson and Spirtes (2002) give a projection that
projects a DAG G with latent variables L to a Markov
equivalent MAG Gm: (i) every pair of vertices a, b ∈ V
in G that are connected by an inducing path becomes
adjacent in Gm; (ii) an edge connecting a, b in Gm is
oriented as follows: if a ∈ anG(b) then a → b; if
b ∈ anG(a) then b → a; if neither is the case, then
a ↔ b. An inducing path between a, b is a path such
that every collider in the path is in an({a, b}), and every

noncollider is in L. Note if we already have an ADMG
G, we can apply the projection to G with no latent vari-
able to construct the corresponding Gm, so an inducing
path in this case is just a collider path with every col-
lider in an({a, b}). In addition, the projection preserves
ancestral relations from the original graph.

To extend previous theorems to G we need following
lemmas to link G and Gm.

Lemma 3.5. If v, w are connected by a collider path π1
in an ADMG G then they are connected by a collider path
π2 in Gm where π2 uses a subset of the internal vertices
of π1. Also, if π1 starts with v →, so does π2.

Lemma 3.5 is in analogue to Lemma 23 in Shpitser et al.
(2018). Now we show heads and tails are preserved
through the projection.

Proposition 3.6. If G is an ADMG,H(G) = H(Gm) and
for every H ∈ H(G), tailG(H) = tailGm(H).

Proof. Suppose H is a head in G. Then it is bidirected-
connected in Gan(H), so by Lemma 3.5 each bidirected
path connecting vertices in H is preserved as a collider
path in Gman(H). Further as the projection preserves an-
cestral relation and H = barren(an(H)), each path is
bidirected. Hence any head H in G is a head in Gm. By
similar argument, we can see that for a head H in G, any
w ∈ tailG(H) is in tailGm(H).

Suppose H is a head in Gm so it is bidirected-connected
in an(H) in Gm. But each bidirected edge in Gm corre-
sponds to a collider path in G with intermediate colliders
in ancestors of endpoints; hence as the projection pre-
serves ancestral relations, the path is bidirected. There-
foreH is also a head in G. Note in general for any v ↔ w
in Gm, there is a bidirected path between them in G.

Let z ∈ tailGm(H) so there is a collider path π between
z and h ∈ H in Gm ending · · · ↔ h. We know every
bidirected edge in the path π corresponds to a bidirected
path in an(H) in G. If the path π begins with z ↔ then z
is bidirected-connected to h in an(H) so z ∈ tailG(H).
If the path π begins with z → w1 then in G we have a
collider path between z and w1 in an(H), which ends
with↔ w1. Thus z is also in tailG(H).

Definitions of heads and tails are closely related to the
projection of ADMGs. The next lemma allows us to
project an ADMG to a Markov equivalent MAG in poly-
nomial time. The algorithm is shown in next section. Let
G be a ADMG and Gm be its projected MAG.

Lemma 3.7. Let v, w be two vertices then (i) v → w in
Gm if and only if v ∈ tailG(w) and (ii) v ↔ w in Gm if
and only if {v, w} ∈ H(G).



Since there is at most one edge between any two vertices
in a MAG, if we know the tails of every vertex in Gd and
every head of size 2, this is sufficient to construct Gm.

Consider Figure 2(i), this is an ADMG but not a MAG.
Tails of 1, 2, 3, 4 are {4}, {3}, ∅, ∅, respectively.
Heads of size 2 are {1, 2}, {1, 3}, {2, 4}, {3, 4}, hence a
Markov equivalent MAG of Figure 2(i) preserves all the
original edges and adds one edge 1↔ 2.

3.4 Markov Equivalence Of ADMGs

We now show that Theorem 3.2 and Corollary 3.2.1
can be extended to ADMGs. Note that in general two
Markov equivalent ADMGs do not necessarily have the
same adjacencies defined with respect to edges; thus we
need to redefine adjacencies in terms of m-separations.

Definition 3.1. For a ADMG G and two vertices v, w in
G, v and w are adjacent if and only if there is no set C
such that v ⊥m w | C with v, w /∈ C.

Two vertices that are connected by an edge are clearly ad-
jacent, we are excluding pairs that do not share any edges
and yet have no conditional independence. In maximal
graphs, these two definitions are equivalent.

Theorem 3.8. For two ADMGs G1 and G2, they are
Markov equivalent if and only S(G1) = S(G2).

Corollary 3.8.1. Two ADMGs G1 and G2 are Markov
equivalent if and only if S3(G1) = S3(G2), and this oc-
curs if and only if S̃3(G1) = S̃3(G2).

4 ALGORITHM

In this section, n, e denote number of vertices and total
edges, respectively.

4.1 MAGs

We assume that n = O(e), since otherwise the graph
will be disconnected. Firstly, we propose an algorithm to
identify S̃3(G) of a given MAG G and show that it runs
in polynomial time (O(ne2)). To test equivalence of two
MAGs, it is sufficient to compare their S̃3, by Corollary
3.2.1. Vertices are assumed to be in topological order.
If not, this can be achieved with an O(n + e) sort. We
assume we have access to paG(v) and sibG(v) for each
v ∈ V .

Let A1(G) denote the output of Algorithm 1 when ap-
plied to a MAG, G.

Proposition 4.1. For a MAG G, A1(G) = S̃3(G).

4.2 Complexity Of Algorithm 1

The first loop from line 2 to line 7 runs at most O(e2)
times as the worst case is that one vertex have all others
as its parents. There are at most e bidirected edges so the
second loop from line 8 to line 17 repeats at most e times.
There are three esrial tasks inside the second loop. The
first one is line 10 which obtains the tails of {v, w}. The
computation of obtaining tails given parents is O(n+ e).
The second task, i.e. the first subloop from line 11 to line
12, is carried at most n− 2 times as the size of each tail
is at most n−2. For the third task from line 13 to line 17,
there are at most n− 2 potential candidates for the third
member, and obtaining the district costs O(n+ e). Thus
the overall complexity of Algorithm 1 is O(e2 + e((n+
e) + n+ n(n+ e))) = O(ne2).

Note that the number of potential candidates for third
member of heads of size 3 depends on sizes of districts.
If the number is high then it means districts are large so
there are at least as many bidirected edges as potential
candidates, so if the graph is sparse we can use e to rep-
resent the number of candidates instead of n when com-
puting complexity. There are most O(e2) sets in S̃3(G),
and some graphs achieve this bound, for example, a DAG
where one vertex have all others as its parents.

To test ordinary Markov equivalence of two MAGs, it is
sufficient to compare their output of Algorithm 1 after
a sort of order O(e2 log e2) = O(e2 log e). Note that
log e = O(log n), therefore the complexity of verifying
Markov equivalence between two MAGs is still O(ne2).
Thus our algorithm is faster than the one proposed by Ali
et al. (2009), which is only O(ne4).

4.3 ADMGs

Algorithm 2 converts an ADMG G to a Markov equiva-
lent MAG Gm, as proven by Lemma 3.7. To test Markov
equivalence between two ADMGs, it is sufficient to put
their equivalent MAGs in Algorithm 1 to obtain the cor-
responding sets S̃3 and compare the sets.

4.4 Complexity Of Algorithm 2

For the first loop from line 3 to 5, it costs O(n(n + e))
since there are n vertices and it takes O(n + e) to ob-
tain a district. The second loop from line 6 to 9 is at
O(n2(n + e)). Thus the overall complexity is O(n(n +
e) + n2(n + e)) = O(n3 + n2e) = O(n2e). The to-
tal cost for identifying Markov equivalence between two
ADMGs is therefore O(ne2).



Input: A MAG G(V, E)
Output: S̃3(G)
1 S = ∅;
2 for each v ∈ V:
3 obtain anG(v) = {v} ∪ anG(paG(v))
4 for each w ∈ paG(v):
5 S = S ∪ {v, w};
6 for each z, w ∈ paG(v) with z 6= w and z is not adjacent to w:
7 S = S ∪ {v, w, z};
8 for each v ↔ w:
9 S = S ∪ {v, w};
10 tail({v, w}) = disan({v,w})(v) ∪ paG(disan({v,w})(v)) \ {v, w};
11 for each z ∈ tail({v, w}) with z not adjacent to both v and w:
12 S = S ∪ {v, w, z};
13 for each z ∈ sibG(anG({v, w})) ∩ disG(v) \ (anG({v, w}) ∪ deG({v, w})
14 and not adjacent to both v and w:
15 obtain disan({v,w,z})(v);
16 if z ∈ disan({v,w,z})(v):
17 S = S ∪ {v, w, z};
18 return S

Table 4: Algorithm 1: obtain S̃3(G) for a MAG G

Input: An ADMG G(V, E)
Output: A Markov equivalent MAG Gm(V, Em)
1 Start with Gm that have the same vertices as G but no adjacencies;
2 for each v ∈ V:
3 obtain anG(v) = {v} ∪ anG(paG(v))
4 tail(v) = disan(v)(v) ∪ paG(disan(v)(v)) \ {v}
5 add w → v ∈ Em for each w ∈ tail(v);
6 for each v, w ∈ V with no ancestral relation and in the same district:
7 obtain disan({v,w})(v);
8 if w ∈ disan({v,w})(v):
9 add v ↔ w ∈ Em;
10 return Gm

Table 5: Algorithm 2: obtain a MAG Gm for an ADMG G



Figure 4: Empirical complexity against n2

4.5 Comparison To Previous Algorithms

Among previous characterizations of MAGs, only Ali
et al. (2009) provide a polynomial time algorithm to ver-
ify Markov equivalence. They consider all triples in
a discriminating path; in order to do this, they iterate
through (up to) n − 2 levels; at each level they consider
all remaining colliders (O(e2)) and then check each set
of reachable edges (O(e2)). Conversely, we ignore any
triples for which all three adjacencies are present (since
they will trivially always be present).

In addition to the reduction in complexity, if we mod-
ify Algorithm 1 to compute S3(G), the output contains
more information. By Proposition 3.3, a set {a1, a2, a3}
is missing from S3 if and only if there is a correspond-
ing m-separation between (say) a1, a2 conditional on a
set that includes a3. Thus we can view the parametriz-
ing set as a summary of independence information in the
graph. This is a novel perspective compared to previ-
ous theorems, which characterize graphs by structures
like minimal collider paths or colliders with order, and
do not have a straightforward connection to conditional
independence.

4.6 Empirical Complexity

An experiment on random graphs shows that empirical
complexity of Algorithm 1 is at O(e2) for many sparse
graphs (e = O(n)). One random graph (ADMG) is gen-
erated in the following way. We first fix a topological
ordering and the total number of edges (e = 3n). Then
two vertices become adjacent with uniform probability.
Once skeleton is determined, an edge is independently
either directed or bidirected with p = 0.5. For each
n = 20, 40, 60, 80, 100, we generate N = 250 random
graphs then average the empirical complexity. Figure 4
is the empirical complexity against n2.

Suppose directed edges are added independently with
probability r/n according to a predetermined topologi-

cal order, where n is the number of vertices and r ∈ R+

is constant. The following proposition bounds the size of
the ancestor sets in our sparse random graphs. In partic-
ular, the largest average number of ancestors is at most
er.

Proposition 4.2. Let Ai be the number of ancestors of
the vertex i. Then

EAi =
(
1 +

r

n

)i−1
.

In particular,

EAn =
(
1 +

r

n

)n−1
−→ er.

Markov’s inequality gives us an easy corollary.

Corollary 4.2.1. P(Ai ≥ k) ≤ er/k for any 1 ≤ i ≤ n
and k ≥ 1.

Now it is straightforward to show that for sparse graphs,
the complexity will be O(e2). This is because the
main contribution of the complexity comes from count-
ing heads of size 3. By bounding the sizes of ancestor
sets, line 15 will run in constant time O(1) instead of
O(n+ e). Thus the overall complexity for sparse graphs
is at O(e2 + e((n+ e) + n+ n)) = O(e2).

Here is an example for which the upper bound of com-
plexity of Algorithm 1 is reached. Consider the graph in
Figure 5. For every i and j, {vi, w, zj} forms a head of
size 3. If N,M,L are at O(n) then the cost for identify-
ing all these heads is at O(ne2).

w

x1

...

xM

z1

...

zM

y1

...

y`

...

yL

v1

...

vN

Figure 5: A sequence of graphs in which the maximum
complexity is achieved by Algorithm 1. Note that y1 is
connected by a bidirected edge to every xi, and yL to
every zi.
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