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We now show that the proposed slice sampler defines a
valid Markov chain Monte Carlo algorithm (Theorem[0.2)).
In particular, (1) the exact posterior 7 is the invariant dis-
tribution of the Markov chain, and (2) that a law of large
numbers holds: for any measurable function ¢ and initial
state Sy, the sequence of states S1, Ss, ... produced by
the slice sampler satisfies

1 T
=3 0(S) 4 Be [5(5)).

We start with some basic notation. Let S be a set endowed
with a o-algebra 3, and let 7 be a target probability distri-
bution on S. A Markov kernel k : S x B — [0, 1] satisfies
two properties: (1) for each B € B, (-, B) : S — [0, 1]
is a measurable function, and (2) for each s € S, k(s, -)
is a probability measure. (s, B) can be thought of as
the probability of transitioning to any state s’ € B C S
in a single jump starting from a particular state s € S.
Given two Markov kernels k1, ko, define the composition
K1 © Ko of the kernels—another Markov kernel—via

(k10 ko) (s, B) = /&1(5’,B)/€2(s7ds').

As with a single kernel, the composition (k1 o k2)(s, B)
can be thought of as the probability of transitioning to any
state s’ € B C § after two jumps—first via ko, then via
k1—starting from a particular state s € S.

One of the key conditions for a kernel « to create a Markov
chain Monte Carlo scheme for a target distribution 7 is
mw-invariance: if one samples s ~ 7, and then simulates
a transition s’ ~ £(s, -), we require that s’ ~ 7. In other
words, for any measurable set B,

//{(S,B)w(ds) = 7(B).

We use the following results in Lemma [0.1] to analyze
the m-invariance of the proposed slice sampler for the
posterior distribution 7.

Lemma 0.1. Let (r;)52, be Markov kernels, and sup-
pose S can be written as a countable partition S =
U; Bj. i # j = BiN Bj = 0 of sets of nonzero
measure T(Bj) > 0.

1. Ifthe x; are all w-invariant, and

k(s,B) = lim (kjo---0k1)(s,B)

o J—o00

exists pointwise for s € S and B € B, then k is a
m-invariant Markov kernel.

2. Ifeach k; is m;-invariant, where

] o W(BOB])
mj(B) = 7#(33') )

then
K(s,B) = > 1[s € Bj|r;(s, B)
j=1

Is m-invariant.

Proof. For 1,

/K(S,B)ﬂ'(ds)
:/ lim (koo k1) (s, B)r(ds)

J—00
:JILII;O/(HJO"~OH1) (s, B)m(ds)
= lim 7(B) = n(B),

J—o00
where we use the fact that the finite composition of 7-

invariant kernels is m-invariant e.g. by [lL, p. 49], and
Lebesgue dominated convergence to swap the limit and



integral. For 2,

/KZ(S, B)w(ds)
:Z/]l [s € Bj| k;(s, B)m(ds)

1[s € Bj|m(ds)
(B;)
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~(B)w;(B) = Y (B, N B) = n(B),

where we again use Lebesgue dominated convergence to
swap the infinite series and integral. O

Each iteration of the slice sampler can be written as the
kernel composition

— SXP
KR = HF,V ORI,V ORX ORy OKRU.

The kernels kx, ky, <y are the full conditional (i.e.,
Gibbs) kernels for variables X, 1, U; the kernel sr v
(substep 1 in the main text) is the composition of the full
conditional of I'y, V. for all k € N; standard results [}
p- 79] guarantee that each of these is m-invariant, and
so their composition is 7-invariant by Lemmal[0.1I] Note
that although all of these kernels involve theoretically
simulating infinitely many values, in practice this is un-
necessary: truncation by U makes simulating X,,; and
Yy, for k > K unnecessary, and we will see that the final
kernel Iir k% overwrites changes to I'y, Vi, for k > Ky,
implying that the full conditional step only needs to be
run for k < Kprey.

The only remaining kernel is <7.%,, which corresponds
to substep 2 in the main text. This kernel samples
(T, Vi) K., from their full conditional. Denote HCXP
o be the kernel that samples (I'y, Vi) 22
conditional; then

from their full

')
exp
§ prev - .]

7=0

By Lemma we just need to show that each &5 is
m;-invariant, where 7; is the posterior conditioned on
Kprey = 7, which follows from the fact that 7; is a Gibbs
kernel.

We have now shown that the Markov kernel created by
the slice sampler in the main text is 7-invariant. We now
complete the final result in Theorem 0.2}

Theorem 0.2. If f > 0 and h > 0, then for any mea-
surable function ® and any initial random state Sy, the

sequence of states S1, S, . .. produced by k satisfies

=0 0(5) S L [B(S)

t=1

Proof. We first establish p-irreducibility: let us set ¢ to
the posterior distribution, let s = (v,~, z, %, u) denote
an initial state, and B, a target set of configurations with
positive posterior probability. It may not be possible to
go from s to B in one application of « as the current
configuration of the matrix = constrains what values u
can take. However this obstacle disappears by considering
paths obtained by two applications of « and visiting an
intermediate state where every entry in the matrix x is
set to zero. To formalize this, let By = {(v,7, z, ¥, u) :
Tk = 0Vn, k}. Then

x%(s,B) = /KJ(S,dS/)KJ(S/,B)
> / u(ds') (s, B)

where (1(A) = k(s, AN By). Using the fact that ¢ is
monotonically decreasing, our assumption that f and h
are strictly positive, we obtain from the full conditional of
X derived in the paper that y is a strictly positive measure
on By. Moreover, using again the same assumptions,
straightforward checks on each full conditional derived
in the paper shows that provided s € By, the function
k(s’, B) is positive.

Having established -irreducibility, Harris recurrence fol-
lows from [2, Cor. 13] since « is a deterministic alterna-
tion of Gibbs kernels. Therefore the law of large number
follows by [3, Thm. 17.0.1, 17.1.6]. O
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