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Comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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An example: two-sample tests

Have: Two collections of samples X;Y from unknown distributions
P and Q .
Goal: do P and Q differ?

MNIST samples Samples from a GAN

Significant difference in GAN and MNIST?
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016. 3/51



Testing goodness of fit

Given: A model P and samples and Q .
Goal: is P a good fit for Q?

Chicago crime data
Model is Gaussian mixture with two components.
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Testing independence

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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Outline: part 1

Two sample testing

Test statistic: Maximum Mean Discrepancy (MMD)...
� ...as a difference in feature means
� ...as an integral probability metric (not just a technicality!)

Statistical testing with the MMD

Troubleshooting GANs with MMD
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Outline: part 2

Goodness of fit testing

The kernel Stein discrepancy

Dependence testing

Dependence using the MMD

Depenence using feature covariances

Statistical testing

Additional topics

7/51



Outline: part 2

Goodness of fit testing

The kernel Stein discrepancy

Dependence testing

Dependence using the MMD

Depenence using feature covariances

Statistical testing

Additional topics

7/51



Maximum Mean Discrepancy
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Feature mean difference

Simple example: 2 Gaussians with different means

Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference
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Feature mean difference

Gaussian and Laplace distributions
Same mean and same variance
Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
�
� kx � x 0k2

�

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 12/51



Infinitely many features of distributions

Given P a Borel probability measure on X , define feature map of
probability P ,

�P = [: : :EP ['i (X )] : : :]

For positive definite k(x ; x 0),

h�P ; �QiF = EP ;Qk(x ; y)

for x � P and y � Q .

Fine print: feature map '(x) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2
F

= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)| {z }

(a)

+ EQk(Y ;Y 0)| {z }
(a)

� 2EP ;Qk(X ;Y )| {z }
(b)
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2
F

= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)| {z }

(a)

+ EQk(Y ;Y 0)| {z }
(a)

� 2EP ;Qk(X ;Y )| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )
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Illustration of MMD
The maximum mean discrepancy:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(dogi ;dogj ) +
1

n(n � 1)

X
i 6=j

k(fishi ;fishj )

�

2
n2

X
i ;j

k(dogi ;fishj )
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MMD as an integral probability metric

Are P and Q different?
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MMD as an integral probability metric
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q
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kf k�1

[EP f (X )�EQ f (Y )]
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Functions are linear combinations of features:
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations
of expected features

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF
f*
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF
= k�P � �Qk

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = fx1; : : : ;xng � P

Observe Y = fy1; : : : ;yng � Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness(v)| {z }

23/51



Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ hb�P � b�Q ; '(v)iF
=

1
n

nX
i=1

k(xi ; v)� 1
n

nX
i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
h

f �1 f �2 : : :
i
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Two-Sample Testing
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A statistical test using MMD
The empirical MMD:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj ) +
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

How does this help decide whether P = Q?

Perspective from statistical hypothesis testing:

Null hypothesis H0 when P = Q
� should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
� should see\MMD

2
“far from zero”

Want Threshold c� for \MMD
2
to get false positive rate �
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 i.i.d samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:2
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 new samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:5
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Behaviour of\MMD
2
when P 6= Q

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

-2 0 2

-10

-8

-6

-4

-2

0

2

4

6

8

10

P

Q

27/51



Behaviour of\MMD
2
when P 6= Q

Repeat this 150 times : : :
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Behaviour of\MMD
2
when P 6= Q

Repeat this 3000 times : : :
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Asymptotics of\MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

\MMD
2 �MMD(P ;Q)p
Vn(P ;Q)

D�! N (0; 1);

where variance Vn(P ;Q) = O
�
n�1� .
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Behaviour of\MMD
2
when P = Q

What happens when P and Q are the same?
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Behaviour of\MMD
2
when P = Q

Case of P = Q = N (0; 1)
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Asymptotics of\MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1X
l=1

�l

h
z 2
l � 2

i
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�i i (x 0) =
Z
X

~k(x ; x 0)| {z }
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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A statistical test

A summary of the asymptotics:
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

-2 -1 0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

33/51



How do we get test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj )

+
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

X
i 6=j

k(~yi ;~yj )

�

2
n2

X
i ;j

k(~xi ;~yj )

Permutation simulates
P = Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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Demonstration of permutation estimate of null

Null distribution estimated from 500 permutations
P = Q = N (0; 1)
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Demonstration of permutation estimate of null

Null distribution estimated from 500 permutations
P = Q = N (0; 1)
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How to choose the best kernel
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
! �

 
nMMD2(P ;Q)p

Vn(P ;Q)
� c�p

Vn(P ;Q)

!

where

� is the CDF of the standard normal distribution.

ĉ� is an estimate of c� test threshold.
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

! �

 
MMD2(P ;Q)p

Vn(P ;Q)| {z }
O(n1=2)

� c�
n
p

Vn(P ;Q)| {z }
O(n�1=2)

!

Variance under H1 decreases as
p

Vn(P ;Q) � O(n�1=2)

For large n , second term negligible!
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Optimizing kernel for test power
The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
! �

 
MMD2(P ;Q)p

Vn(P ;Q)
� c�

n
p

Vn(P ;Q)

!

To maximize test power, maximize

MMD2(P ;Q)p
Vn(P ;Q)

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland/opt-mmd
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Graphical illustration

Reminder: maximising test power same as minimizing false negatives
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN

ARD map

Power for optimzed ARD
kernel: 1.00 at � = 0:01

Power for optimized RBF
kernel: 0.57 at � = 0:01
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Troubleshooting generative adversarial networks
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
Can you train convolutional features as input to the MMD critic?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic: 2017 update
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MMD for GAN critic: 2017 update

“Energy	Distance Kernel”
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An adaptive, linear time distribution
metric
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Reminder: witness function for MMD

v

�̂P(v): mean embedding of P

�̂Q(v): mean embedding of Q

witness(v) = �̂P(v)� �̂Q(v)| {z }
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Distinguishing Feature(s)

witness2(v)

Take square of witness (only worry about
amplitude)

v
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Distinguishing Feature(s)

New test statistic: witness2 at a single v�;
Linear time in number n of samples
....but how to choose best feature v�?

v
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Distinguishing Feature(s)

Best feature =
v� that maximizes witness2(v)??

v�

v
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Distinguishing Feature(s)

v

Sample size n = 3

witness2(v)
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Distinguishing Feature(s)

v

Sample size n = 50
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Distinguishing Feature(s)

v

Sample size n = 500
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Distinguishing Feature(s)

P(x)

Q(y)

witness2(v)

v

Population witness2 function
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Distinguishing Feature(s)

P(x)

Q(y)

witness2(v)

v
v�? v�?
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Variance of witness function

Variance at v = variance of X at v + variance of Y at v.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .
Jitkrittum, Szabo, Chwialkowski, G., NIPS 2016

Best location is v� that maximizes �̂n .
Improve performance using multiple locations fv�j gJj=1
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Variance of witness function

Variance at v = variance of X at v + variance of Y at v.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .
Jitkrittum, Szabo, Chwialkowski, G., NIPS 2016

v ¤

^̧
n(v)

Best location is v� that maximizes �̂n .
Improve performance using multiple locations fv�j gJj=1
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Properties of the ME Test

Can use J features V = fv1; : : : ;vJg.
Under H0 : P = Q , asymptotically �̂n(V) follows �2(J ) for any V.

� Rejection threshold is T� = (1� �)-quantile of �2(J ).
Under H1 : P 6= Q , it follows PH1(�̂n) (unknown).

� But, asymptotically �̂n !1. Consistent test.
Test power = probability of rejecting H0 when H1 is true.

Theorem: Under H1, optimization of V (by maximizing �̂n) increases
the (lower bound of) test power.

Runtime: O(n) for both testing and optimization.
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Distinguishing Positive/Negative Emotions

+ :

happy neutral surprised

� :

afraid angry disgusted

35 females and 35 males
(Lundqvist et al., 1998).

48� 34 = 1632 dimensions.
Pixel features.

Sample size: 402.

The proposed test achieves maximum test power in time O(n).

Informative features: differences at the nose, and smile lines.
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Proposed

MMD (quadratic time)
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Distinguishing Positive/Negative Emotions
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Distinguishing Positive/Negative Emotions

+ :

happy neutral surprised

� :

afraid angry disgusted

Learned feature

The proposed test achieves maximum test power in time O(n).
Informative features: differences at the nose, and smile lines.

Jitkrittum, Szabo, Chwialkowski, G., NIPS 2016

Code: https://github.com/wittawatj/interpretable-test
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