Representing and comparing probabilities

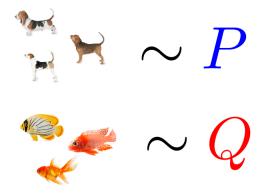
Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

UAI, 2017

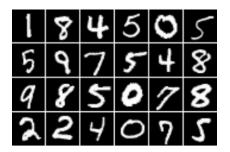
Comparing two samples

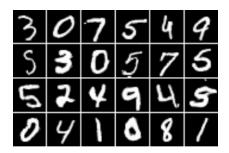
Given: Samples from unknown distributions P and Q.
Goal: do P and Q differ?



An example: two-sample tests

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: do P and Q differ?



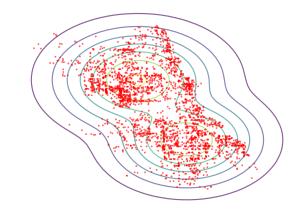


MNIST samplesSamples from a GANSignificant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016.

Testing goodness of fit

Given: A model P and samples and Q.
Goal: is P a good fit for Q?



Chicago crime data

Model is Gaussian mixture with two components.

Testing independence

Given: Samples from a distribution P_{XY} **Goal:** Are X and Y independent?

Х	Y
	A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose.
	Their noses guide them through life, and they're never happier than when following an interesting scent.
MAN AND AND AND AND AND AND AND AND AND A	A responsive, interactive pet, one that will blow in your ear and follow you everywhere.
Text from dogtime.com and petfinder.com	

Two sample testing

Test statistic: Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)
- Statistical testing with the MMD
- Troubleshooting GANs with MMD

Outline: part 2

Goodness of fit testing

- The kernel Stein discrepancy
 - Dependence testing
- Dependence using the MMD
- Depenence using feature covariances
- Statistical testing

Additional topics

Outline: part 2

Goodness of fit testing

■ The kernel Stein discrepancy

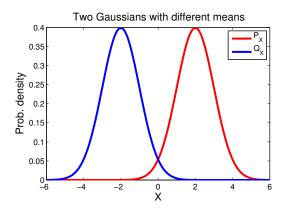
Dependence testing

- Dependence using the MMD
- Depenence using feature covariances
- Statistical testing

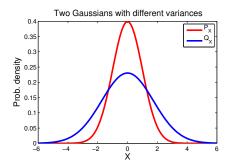
Additional topics

Maximum Mean Discrepancy

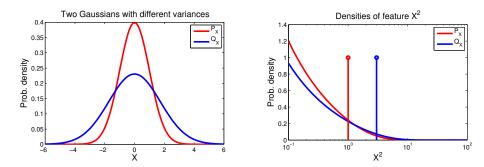
Simple example: 2 Gaussians with different meansAnswer: t-test



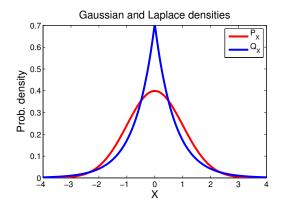
- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$



- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $arphi(x)=x^2$



- Gaussian and Laplace distributions
- Same mean *and* same variance
- Difference in means using higher order features...RKHS



Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$arphi(x) = [\dots arphi_i(x) \dots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$arphi(x) = [\dots arphi_i(x) \dots] \in \ell_2$$

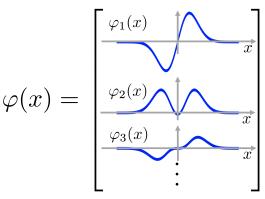
For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x-x'
ight\|^2
ight)$$



Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 12/51

Infinitely many features of *distributions*

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

 $\mu_P = [\dots \mathbf{E}_P [\varphi_i(X)] \dots]$

For positive definite k(x, x'),

$$\langle \mu_P, \mu_Q
angle_{\mathcal{F}} = \mathrm{E}_{P,Q} k(\pmb{x},\pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

Infinitely many features of *distributions*

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P [\varphi_i(X)] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_{P}, \mu_{Q}
angle_{\mathcal{F}} = \mathrm{E}_{P,Q} k(\pmb{x},\pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(\mathbf{b})}$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$
$$= \langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$$
$$= \underbrace{\mathbf{E}_{P}k(X, X')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(\mathbf{b})}$$

The maximum mean discrepancy is the distance between **feature** means:

$$MMD^{2}(P, Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$

= $\langle \mu_{P}, \mu_{P} \rangle_{\mathcal{F}} + \langle \mu_{Q}, \mu_{Q} \rangle_{\mathcal{F}} - 2 \langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{F}}$
= $\underbrace{\mathbf{E}_{P}k(X, X')}_{(a)} + \underbrace{\mathbf{E}_{Q}k(Y, Y')}_{(a)} - 2\underbrace{\mathbf{E}_{P,Q}k(X, Y)}_{(b)}$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dog_i, dog_j), k(dog_i, fish_j), or k(fish_i, fish_j)

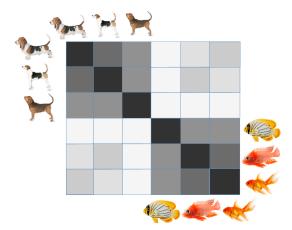
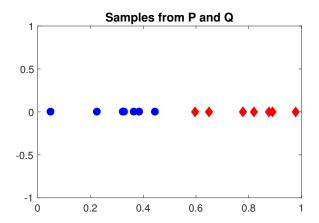


Illustration of MMD

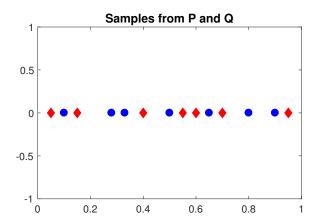
The maximum mean discrepancy:

$$\widehat{MMD}^{2} = \frac{1}{n(n-1)} \sum_{i \neq j} k(\log_{i}, \log_{j}) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\operatorname{fish}_{i}, \operatorname{fish}_{j})$$
$$- \frac{2}{n^{2}} \sum_{i,j} k(\log_{i}, \operatorname{fish}_{j})$$
$$k(\log_{i}, \operatorname{dog}_{j}) \quad k(\log_{i}, \operatorname{fish}_{j})$$
$$k(\operatorname{fish}_{j}, \operatorname{dog}_{j}) \quad k(\operatorname{fish}_{i}, \operatorname{fish}_{j})$$

Are P and Q different?



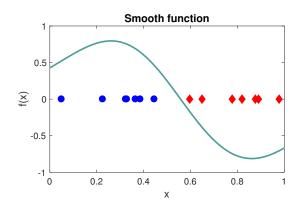
Are P and Q different?



Integral probability metric:

Find a "well behaved function" f(x) to maximize

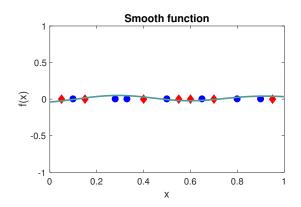
$\mathbf{E}_{P}f(X)-\mathbf{E}_{Q}f(Y)$



Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathbf{E}_{P}f(X)-\mathbf{E}_{Q}f(Y)$

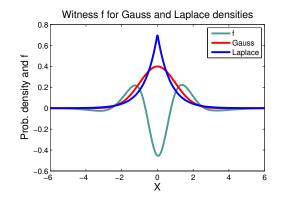


Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$



Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\top} \begin{bmatrix} \varphi_1(x) & & & \\ \varphi_2(x) & & & \\ \varphi_3(x) & & & \\ \vdots & & \\ \end{bmatrix}^{\top}$$

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Expectations of functions are linear combinations of expected features

$$\mathbf{E}_P(f(X)) = \langle f, \mathbf{E}_P arphi(X)
angle_{\mathcal{F}} = \langle f, oldsymbol{\mu}_P
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

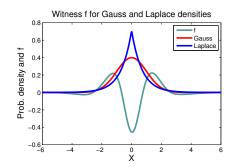
For characteristic RKHS \mathcal{F} , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

The MMD:

 $MMD(P, Q; F) = \sup_{f \in F} [\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)]$



The MMD:

use

 $egin{aligned} MMD(P, oldsymbol{Q}; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_{oldsymbol{Q}}
ight
angle_{\mathcal{F}} \end{aligned}$

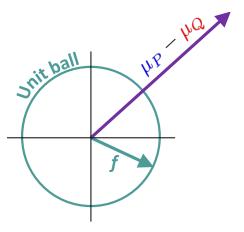
 $\mathbf{E}_{P}f(X) = \langle \boldsymbol{\mu}_{P}, f \rangle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

 $= \sup_{f\in F} \left[\mathrm{E}_{P} f(X) - \mathrm{E}_{\mathcal{Q}} f(Y)
ight]$

$$=\sup_{f\in F}\left\langle f,oldsymbol{\mu}_{P}-oldsymbol{\mu}_{Q}
ight
angle _{\mathcal{F}}$$

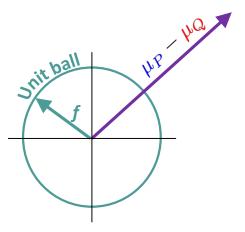


The MMD:

MMD(P, Q; F)

 $= \sup_{f\in F} \left[\mathrm{E}_{P} f(X) - \mathrm{E}_{\mathcal{Q}} f(Y)
ight]$

$$=\sup_{f\in F}\left\langle f,oldsymbol{\mu}_{P}-oldsymbol{\mu}_{Q}
ight
angle _{\mathcal{F}}$$

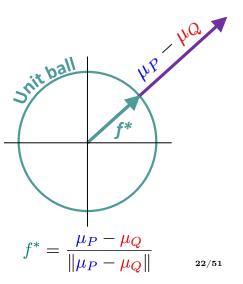


The MMD:

MMD(P, Q; F)

 $= \sup_{f \in F} \left[\mathrm{E}_{P} f(X) - \mathrm{E}_{\mathcal{Q}} f(Y)
ight]$

$$=\sup_{f\in F}\left\langle f,oldsymbol{\mu}_{P}-oldsymbol{\mu}_{Q}
ight
angle _{\mathcal{F}}$$

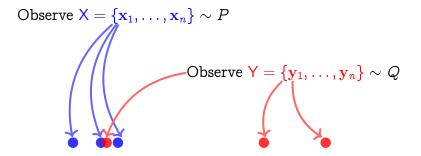


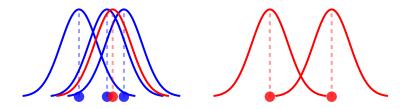
Integral prob. metric vs feature difference

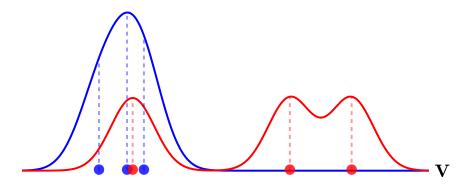
The MMD:

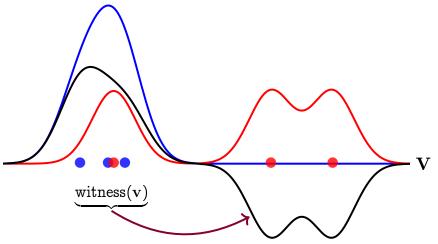
$$egin{aligned} & MMD(P, oldsymbol{Q}; F) \ &= \sup_{f \in F} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ &= \sup_{f \in F} \left\langle f, \mu_P - \mu_{oldsymbol{Q}}
ight
angle_{\mathcal{F}} \ &= \left\| \mu_P - \mu_{oldsymbol{Q}}
ight\| \end{aligned}$$

Function view and feature view equivalent









Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, arphi(v)
angle_{\mathcal{F}}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_\mathcal{F} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, arphi(v)
angle_\mathcal{F} \end{aligned}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, arphi(v)
angle_{\mathcal{F}} \ &= rac{1}{n} \sum_{i=1}^n k(x_i, v) - rac{1}{n} \sum_{i=1}^n k(\mathbf{y}_i, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$

24/51

Two-Sample Testing

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y_i}, \pmb{y_j}) \ &- rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{y_j}) \end{aligned}$$

How does this help decide whether P = Q?

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{x_i},\pmb{x_j}) + rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{y_i},\pmb{y_j}) \ &-rac{2}{n^2}\sum_{i,j}k(\pmb{x_i},\pmb{y_j}) \end{aligned}$$

Perspective from statistical hypothesis testing:

Null hypothesis H₀ when P = Q
should see MMD² "close to zero".
Alternative hypothesis H₁ when P ≠ Q
should see MMD² "far from zero"

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{x_i},\pmb{x_j}) + rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{y_i},\pmb{y_j}) \ &-rac{2}{n^2}\sum_{i,j}k(\pmb{x_i},\pmb{y_j}) \end{aligned}$$

Perspective from statistical hypothesis testing:

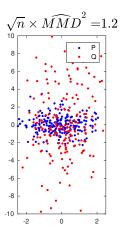
Null hypothesis H₀ when P = Q
should see MMD² "close to zero".
Alternative hypothesis H₁ when P ≠ Q
should see MMD² "far from zero"

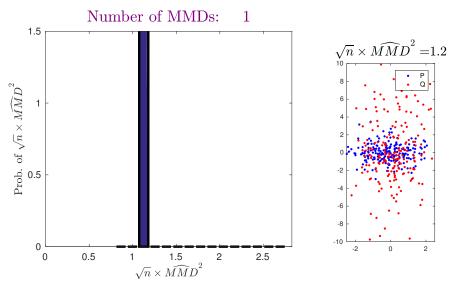
Want Threshold c_{α} for \widehat{MMD}^2 to get false positive rate α

Draw n = 200 i.i.d samples from P and Q

• Laplace with different y-variance.

$$\sqrt{n} \times \widehat{MMD}^2 = 1.2$$

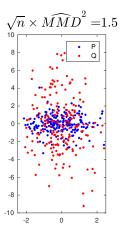


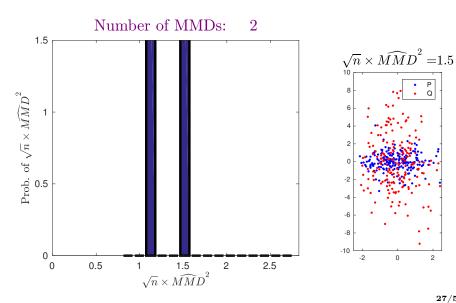


Draw n = 200 new samples from P and Q

• Laplace with different y-variance.

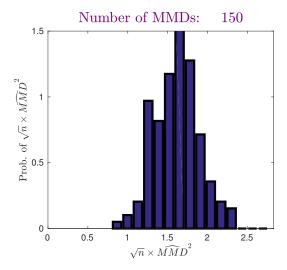
 $\sqrt{n} \times \widehat{MMD}^2 = 1.5$



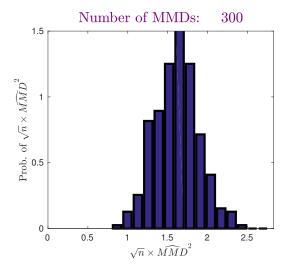


27/51

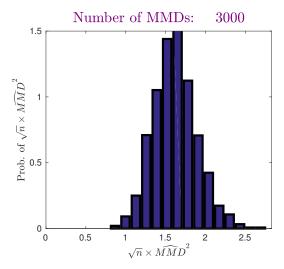
Repeat this 150 times ...



Repeat this 300 times ...



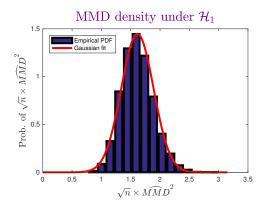
Repeat this 3000 times ...

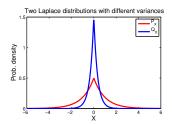


Asymptotics of \widehat{MMD}^2 when $P \neq Q$

When $P \neq Q$, statistic is asymptotically normal, $\frac{\widehat{\mathrm{MMD}}^2 - \mathrm{MMD}(P, Q)}{\sqrt{V_n(P, Q)}} \xrightarrow{D} \mathcal{N}(0, 1),$

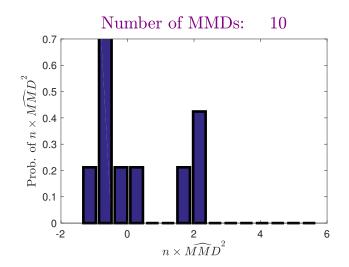
where variance $V_n(P,Q) = O(n^{-1})$.





What happens when P and Q are the same?

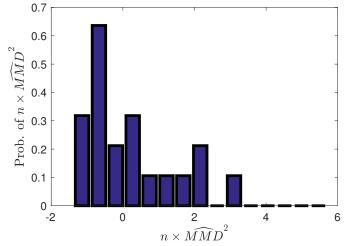
• Case of $P = Q = \mathcal{N}(0, 1)$



31/51

• Case of $P = Q = \mathcal{N}(0, 1)$

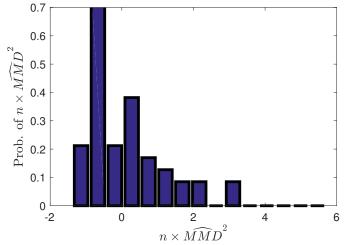
Number of MMDs: 20



31/51

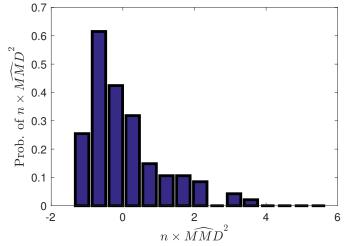
• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 50

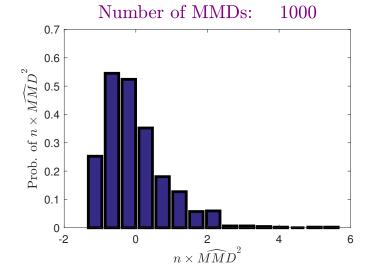


• Case of $P = Q = \mathcal{N}(0, 1)$

Number of MMDs: 100



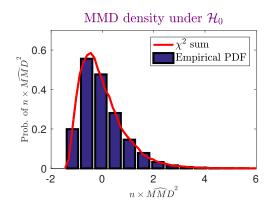
• Case of $P = Q = \mathcal{N}(0, 1)$



Asymptotics of \widehat{MMD}^2 when P = Q

Where P = Q, statistic has asymptotic distribution

$$n \widehat{ ext{MMD}}^2 \sim \sum_{l=1}^\infty \lambda_l \left[z_l^2 - 2
ight]$$

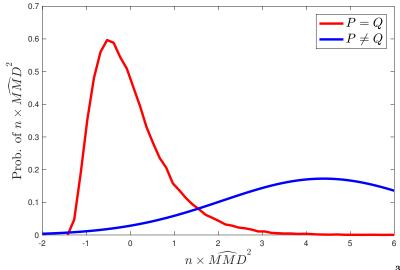


where

$$\lambda_i \psi_i(x') = \int_{\mathcal{X}} \underbrace{ ilde{k}(x,x')}_{ ext{centred}} \psi_i(x) dP(x)$$

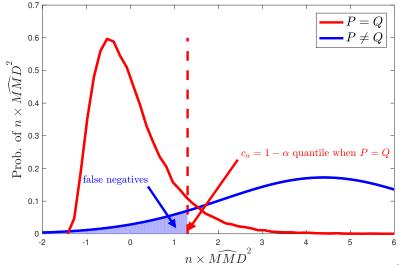
$$z_l \sim \mathcal{N}(0,2)$$
 i.i.d.

A summary of the asymptotics:



A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

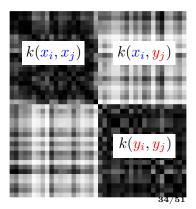


How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$X = \begin{bmatrix} & & & \\ & & & \\$$

$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{x_i},\pmb{x_j}) \ &+rac{1}{n(n-1)}\sum_{i
eq j}k(\pmb{y_i},\pmb{y_j}) \ &-rac{2}{n^2}\sum_{i,j}k(\pmb{x_i},\pmb{y_j}) \end{aligned}$$



How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

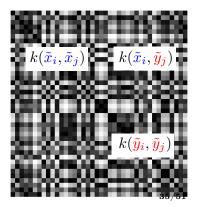
How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \llbracket \bigotimes \bigotimes \bigotimes \bigotimes \ldots \rrbracket$$
$$\widetilde{Y} = \llbracket \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \ldots \rrbracket$$

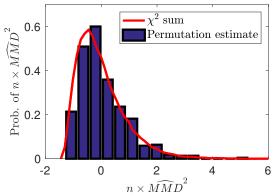
$$egin{aligned} \widehat{MMD}^2 =& rac{1}{n(n-1)}\sum_{i
eq j}k(ilde{x}_i, ilde{x}_j) \ &+rac{1}{n(n-1)}\sum_{i
eq j}k(ilde{\mathbf{y}}_i, ilde{\mathbf{y}}_j) \ &-rac{2}{n^2}\sum_{i,j}k(ilde{x}_i, ilde{\mathbf{y}}_j) \end{aligned}$$

Permutation simulates P = Q



Demonstration of permutation estimate of null

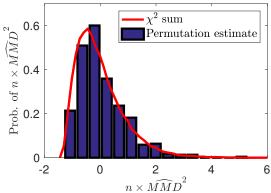
Null distribution estimated from 500 permutations
P = Q = N(0, 1)



MMD density under \mathcal{H}_0

Demonstration of permutation estimate of null

Null distribution estimated from 500 permutations
P = Q = N(0, 1)



MMD density under \mathcal{H}_0

Use $1 - \alpha$ quantile of permutation distribution for test threshold c_{α}

How to choose the best kernel

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_1\left(n\widehat{\mathrm{MMD}}^2 > \hat{c}_{\alpha}\right)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{aligned} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{m{lpha}}
ight) \ & o \Phi\left(rac{n ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{m{lpha}}}{\sqrt{V_n(P,Q)}}
ight) \end{aligned}$$

where

- Φ is the CDF of the standard normal distribution.
- \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_{1}\left(n\widehat{\mathrm{MMD}}^{2} > \hat{c}_{\alpha}\right)$$

$$\rightarrow \Phi\left(\underbrace{\frac{\mathrm{MMD}^{2}(P,Q)}{\sqrt{V_{n}(P,Q)}}}_{O(n^{1/2})} - \underbrace{\frac{c_{\alpha}}{n\sqrt{V_{n}(P,Q)}}}_{O(n^{-1/2})}\right)$$

Variance under \mathcal{H}_1 decreases as $\sqrt{V_n(P,Q)} \sim O(n^{-1/2})$ For large *n*, second term negligible!

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{aligned} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{oldsymbollpha}
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P, \, Q)}{\sqrt{V_n(P, \, Q)}} - rac{c_{oldsymbollpha}}{n\sqrt{V_n(P, \, Q)}}
ight) \end{aligned}$$

To maximize test power, maximize

$$\frac{\text{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

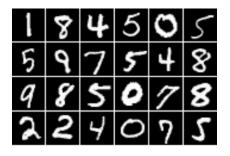
(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017) Code: github.com/dougalsutherland/opt-mmd

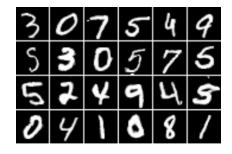
Graphical illustration

Reminder: maximising test power same as minimizing false negatives



Troubleshooting for generative adversarial networks

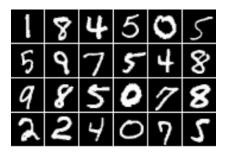




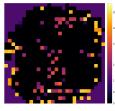
MNIST samples

Samples from a GAN

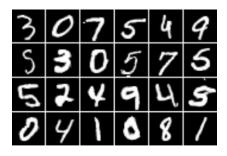
Troubleshooting for generative adversarial networks



MNIST samples



ARD map

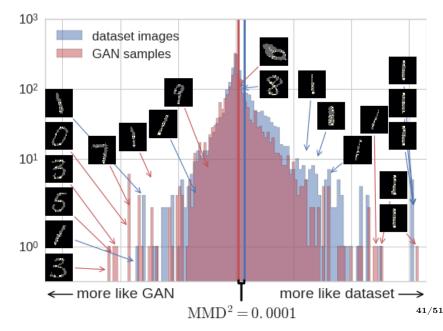


Samples from a GAN

Power for optimzed ARD kernel: 1.00 at α = 0.01

Power for optimized RBF kernel: 0.57 at $\alpha = 0.01$

Troubleshooting generative adversarial networks



MMD for GAN critic

Can you use MMD as a critic to train GANs?

Can you train convolutional features as input to the MMD critic? From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ Richard Zennel^{1,2} ¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA ²Canadian Institute for Advanced Research, Toronto, ON, CANADA

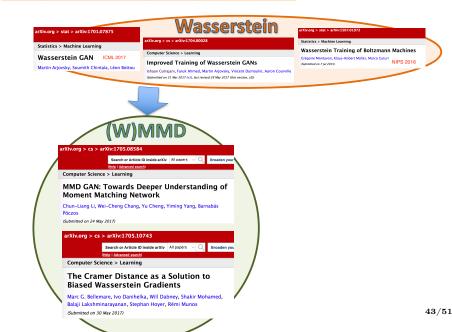
YUJIALI@CS.TORONTO.EDU KSWERSKY@CS.TORONTO.EDU ZEMEL@CS.TORONTO.EDU

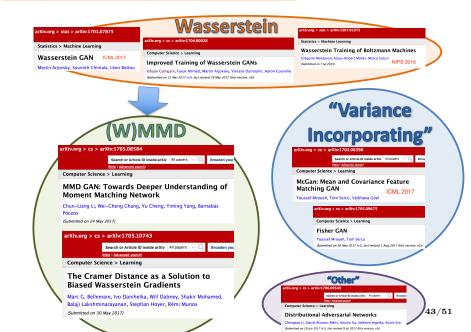
From UAI 2015:

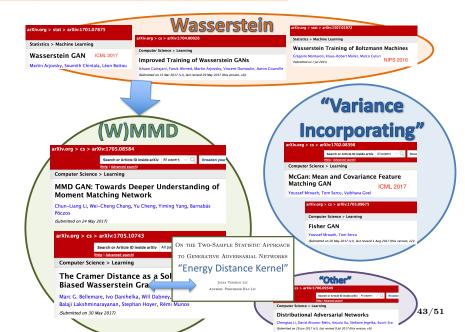
Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge Daniel M. Roy University of Toronto Zoubin Ghahramani University of Cambridge

arXiv.org > stat > arXiv:1701.07875	Wasserstein	arXiv.org > stat > arXiv:1507.01972
Constanting a Marshing Langerton	arXiv.org > cs > arXiv:1704.00028	Statistics > Machine Learning
Statistics > Machine Learning Wasserstein GAN ICML 2017 Martin Arjovsky, Soumith Chintala, Léon Bottou	Computer Science > Learning	Wasserstein Training of Boltzmann Machines
	Improved Training of Wasserstein GANs	Grégoire Montavon, Klaus-Robert Müller, Marco Cuturi (Satemited en 7 Jul 2015) NIPS 2016
	Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville (Satimitted on 31 Mar 2017 (v1), Jast revised 29 May 2017 (this version, v2))	

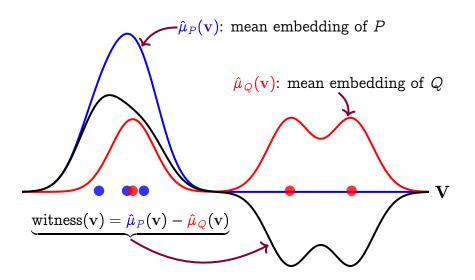


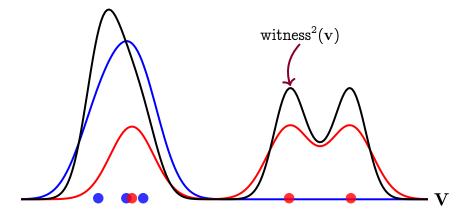




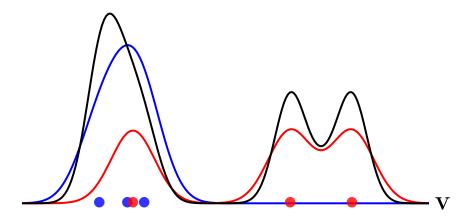
An adaptive, linear time distribution metric

Reminder: witness function for MMD



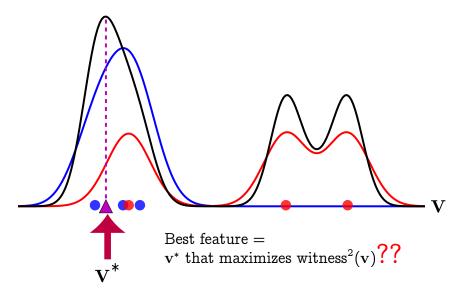


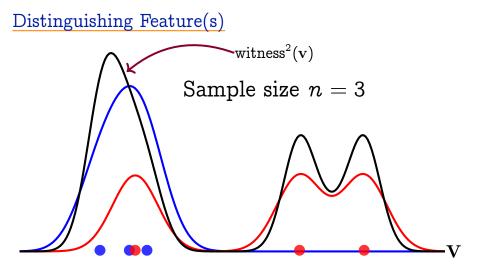
Take square of witness (only worry about amplitude)

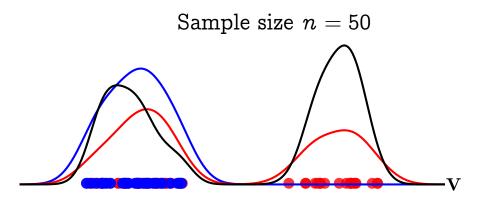


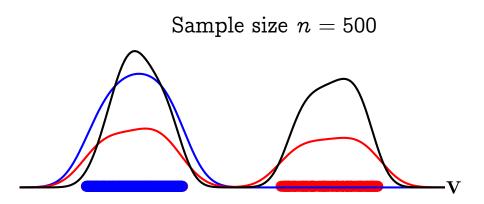
New test statistic: witness² at a single v*;
Linear time in number n of samples
but how to choose host feature x*?

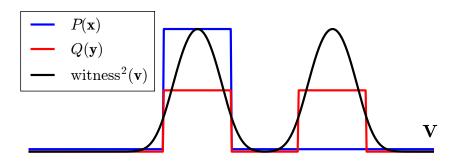
....but how to choose best feature v*?



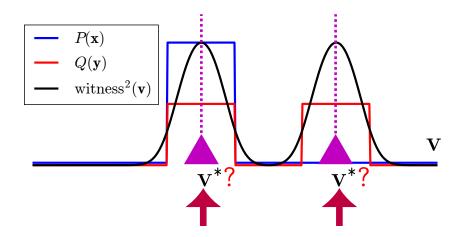








Population witness² function

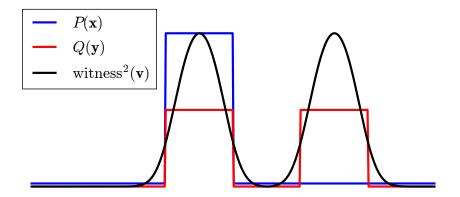


Variance at $\mathbf{v} =$ variance of X at $\mathbf{v} +$ variance of Y at \mathbf{v} .

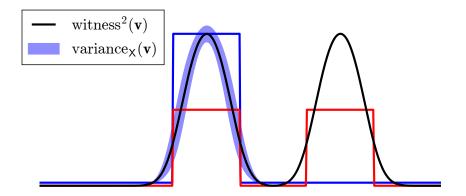
• ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.

Variance at v = variance of X at v + variance of Y at v.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.

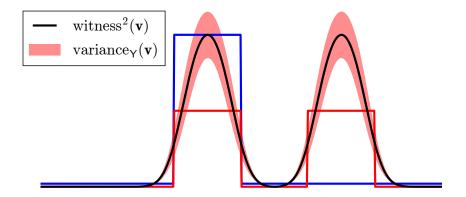
Variance at v = variance of X at v + variance of Y at v.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.



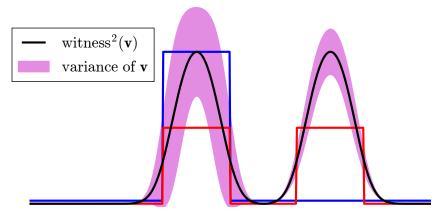
Variance at v = variance of X at v + variance of Y at v.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.



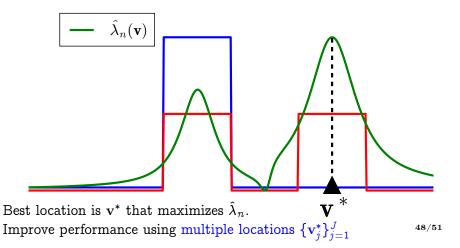
Variance at v = variance of X at v + variance of Y at v.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.



Variance at v = variance of X at v + variance of Y at v.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.



Variance at v = variance of X at v + variance of Y at v.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.



• Can use J features $\mathcal{V} = \{\mathbf{v}_1, \ldots, \mathbf{v}_J\}.$

Under $H_0: P = Q$, asymptotically $\hat{\lambda}_n(\mathcal{V})$ follows $\chi^2(J)$ for any \mathcal{V} .

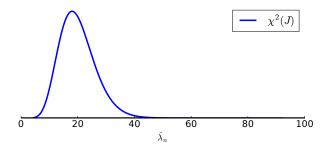
- Rejection threshold is $T_{\alpha} = (1 \alpha)$ -quantile of $\chi^2(J)$.
- Under $H_1: P \neq Q$, it follows $\mathbb{P}_{H_1}(\hat{\lambda}_n)$ (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test.

• Test power = probability of rejecting H_0 when H_1 is true.

Can use J features V = {v₁,..., v_J}.
Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.

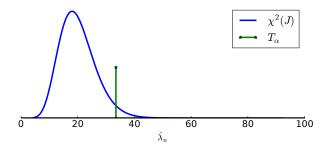
- Rejection threshold is $T_{\alpha} = (1 \alpha)$ -quantile of $\chi^2(J)$.
- Under $H_1: P \neq Q$, it follows $\mathbb{P}_{H_1}(\hat{\lambda}_n)$ (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test

• Test power = probability of rejecting H_0 when H_1 is true.



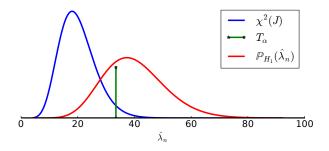
Can use J features V = {v₁,..., v_J}.
Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.
Rejection threshold is T_α = (1 - α)-quantile of χ²(J).
Under H₁: P ≠ Q, it follows P_{H1}(λ̂_n) (unknown).
But, asymptotically λ̂_n → ∞. Consistent test.

• Test power = probability of rejecting H_0 when H_1 is true.



- Can use J features V = {v₁,..., v_J}.
 Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.
 Rejection threshold is T_α = (1 − α)-quantile of χ²(J).
 Under H₁: P ≠ Q, it follows P_{H1}(λ̂_n) (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test.

• Test power = probability of rejecting H_0 when H_1 is true.



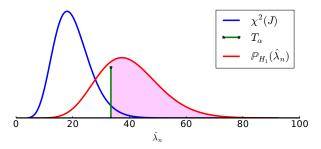
- Can use J features V = {v₁,..., v_J}.
 Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.
 Rejection threshold is T_α = (1 − α)-quantile of χ²(J).
 Under H₁: P ≠ Q, it follows P_{H1}(λ̂_n) (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test.

• Test power = probability of rejecting H_0 when H_1 is true.



- Can use J features V = {v₁,..., v_J}.
 Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.
 Rejection threshold is T_α = (1 − α)-quantile of χ²(J).
 Under H₁: P ≠ Q, it follows P_{H1}(λ̂_n) (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test.

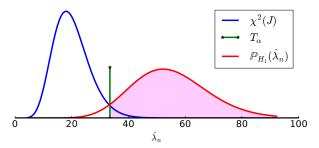
• Test power = probability of rejecting H_0 when H_1 is true.



Theorem: Under H_1 , optimization of \mathcal{V} (by maximizing $\hat{\lambda}_n$) increases the (lower bound of) test power.

- Can use J features V = {v₁,..., v_J}.
 Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.
 Rejection threshold is T_α = (1 − α)-quantile of χ²(J).
 Under H₁: P ≠ Q, it follows P_{H1}(λ̂_n) (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test.

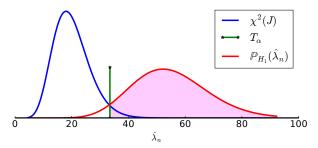
• Test power = probability of rejecting H_0 when H_1 is true.



Theorem: Under H_1 , optimization of \mathcal{V} (by maximizing $\hat{\lambda}_n$) increases the (lower bound of) test power.

- Can use J features V = {v₁,..., v_J}.
 Under H₀: P = Q, asymptotically λ̂_n(V) follows χ²(J) for any V.
 Rejection threshold is T_α = (1 − α)-quantile of χ²(J).
 Under H₁: P ≠ Q, it follows P_{H1}(λ̂_n) (unknown).
 - But, asymptotically $\hat{\lambda}_n \to \infty$. Consistent test.

• Test power = probability of rejecting H_0 when H_1 is true.



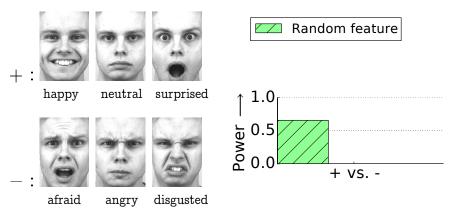
Theorem: Under H_1 , optimization of \mathcal{V} (by maximizing $\hat{\lambda}_n$) increases the (lower bound of) test power. 49/51

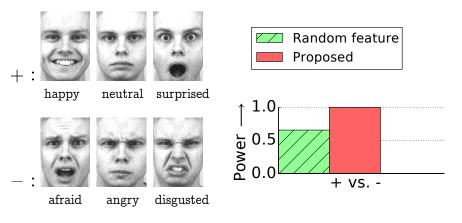
happy neutral s

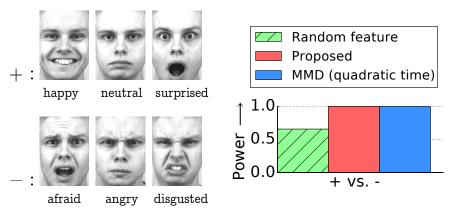
l surprised

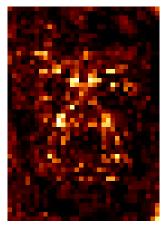
afraid angry disgusted

- 35 females and 35 males (Lundqvist et al., 1998).
 - 48 \times 34 = 1632 dimensions. Pixel features.
- Sample size: 402.









happy neutral surprised

y disgusted

Learned feature

happy neutral surprised

afraid

angry disgusted

Learned feature

 The proposed test achieves maximum test power in time O(n).
 Informative features: differences at the nose, and smile lines. Jitkrittum, Szabo, Chwialkowski, G., NIPS 2016

 $Code:\ https://github.com/wittawatj/interpretable-test$

Co-authors From Gatsby:

- Kacper Chwialkowski
- Wittawat Jitkrittum
- Bharath Sriperumbudur
- Heiko Strathmann
- Dougal Sutherland
- Zoltan Szabo
- Wenkai Xu

External collaborators:

- Kenji Fukumizu
- Bernhard Schoelkopf
- Alex Smola

Questions?