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Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

CHATGPT

@ 0openAl

RL holds great promise in the era of Al
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One more recent success: RLHF
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ChatGPT
RLHF stands fo[ Reinforcement Learning from Human Feedback.]lt's

atechnique used in machine learning and artificial intelligence
where a model learns to perform tasks or make decisions based on
feedback from human trainers, rather than solely relying on pre-

existing data sets or explicit programming. This approach allows the

A new prompt
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the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

ChatGPT
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Optimize a policy against
the reward model using
reinforcement learning.
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Data efficiency

Data collection might be expensive, time-consuming, or high-stakes

self-driving cars

clinical trials

Calls for design of sample-efficient RL algorithms!
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

Calls for computationally efficient RL algorithms!
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This tutorial

FIRST-ORDER METHODS
IN OPTIMIZATION High-Dimensional

N o
Amir Beck ek tgft‘&

: .

(large-scale) optimization (high-dimensional) statistics

Part 1. Basics, statistical RL in the tabular setting

Part 2. Beyond the tabular setting
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Part 1

. Basics: Markov decision processes

. RL w/ a generative model (simulator)
. Online RL

. Offline RL



Markov decision process (MDP)

state s action ay

0
I
I

environment |« — —J

e S={1,...,S}: state space (containing S states)
e A={1,...,A}: action space (containing A actions)
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Markov decision process (MDP)

state s action ay
pommmmm———- 1
| I
i reward
ith=T(8t,at |
R .

Dl environment |« — —

e S={1,...,S}: state space (containing S states)
e A={1,...,A}: action space (containing A actions)

e 1(s,a) € [0,1]: immediate reward
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Discounted infinite-horizon MDPs

action

environment |« — -

S =1{1,...,5}: state space (containing S states)
A={1,...,A}: action space (containing A actions)
r(s,a) € [0,1]: immediate reward

7(+|s): policy (or action selection rule)
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Discounted infinite-horizon MDPs

action

environment |« — -

next state
St41 ~ P(st, ar)
S =1{1,...,5}: state space (containing S states)
A={1,...,A}: action space (containing A actions)
r(s,a) € [0,1]: immediate reward
7(+|s): policy (or action selection rule)

P(-|s,a): unknown transition probabilities
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Value function

state s iction
_7r(_||st) T0 1 T2 T3 T4

I I
rgward I :> 80— S1 ‘I S2— S3 ‘l Sa ‘I
re =1(se, ae H i H ' i 3 H ' H '
4 N .’ o’ o’ Nt N’
4~~" environment - ao a as as aq
<

Sth1 ~ P(‘|8hae)

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
=0
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Value function

state s IHon.
~r (.I|St) o r 72 rs ra
v | > e-Le-lelelal
n=T(S¢,a:% co 'y co . ’

N
S

<

- - oo - -
4=~ environment - ag a az as ay
<

Sth1 ~ P(‘|St,ae)

Value of policy m: cumulative discounted reward

o0
VseS: V7T(s):=E Z’yt'r(st,at) |so=s
t=0
e v €[0,1): discount factor
o take 7 — 1 to approximate long-horizon MDPs

1

o effective horizon: —
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Q-function (action-value function)

To T1 T2 T3 T4 Ts
I
Q (80, ao) ’—"I—>81—‘|—>32—‘|—'83—‘|—>84—‘|—>s5—‘|—> oo
o A A N N A
Qo a1 a2 (] (21 as

Q-function of policy 7:

V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]sozs,ao =a
t=0

o (g¢7 s1,a1, S2,a2,---): induced by policy 7
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Q-function (action-value function)

To T T2 T3 T4 T5
VW(SO) . % 31_‘]_’82 "I_’SS_‘I—'$4—‘L*S5—‘I—> eoe
ST
To T T2 T3 T4 Ts5
QW(So,ag) .—,‘I—*sl—,‘l—vsz—‘l—>33—‘L>34—‘|—>s5—‘|—> XY
\a ;l \Ef/ \(3]_2 o \EL'S'/ \zz:;¢ \&3‘¢
Q-function of policy 7:
oo
V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]so =s,a0 =a
t=0

e (ge¢7 s1,a1,52,a2,---): induced by policy w
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™

Theorem 1 (Puterman’94)

For infinite horizon discounted MDP, there always exists a
deterministic policy 7, such that

V™ (s) > V™(s), Vs, and .
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™

e optimal value / Q function: V* := VT Qr = Q"
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™
e optimal value / Q function: V* := VT Qr = Q"

e A question to keep in mind: how to find optimal 7*?
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Finite-horizon MDPs (nonstationary)

reward
Th = 7'(5}“ ap I

| environment [« — -

<
next state
Spy1 ~ Pr(-|sn,an)

H: horizon length

S: state space with size S e A: action space with size A
rh(Sn,ap) € [0, 1]: immediate reward in step h

7 = {7y }i_,: policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h
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Finite-horizon MDPs (nonstationary)

reward

Th = T(S}u Qap, I
“""""1 environment (¢ — ~

next state
Sht1 ~ Pu(-|sn, an)

value function: V;7(s) =E

H
Zrh(sh,ah) | Sp = S‘|

t=h
H

Q-function: Q}(s,a) =E Zrh(sh,ah) | Sp = 8,ap = a
t=h
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function at all steps
e optimal value / Q function: V;* := V™, Q% := QT , Vh

e Question: how to find optimal m*?
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Basic dynamic programming algorithms
when MDP specification is known



A simpler problem: policy evaluation
— given MDP M and policy 7, how to compute V7™, Q77
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A simpler problem: policy evaluation
— given MDP M and policy 7, how to compute V7™, Q77

solution: Bellman’s consistency equation

Vi) = E Q7))
Q(s;0)= r(s0) +v E | V() |
—— S/NP(.|3,Q) N——
immediate reward next state's value

e one-step look-ahead g@

Richard Bellman
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A simpler problem: policy evaluation
— given MDP M and policy 7, how to compute V7™, Q77

solution: Bellman’s consistency equation

Vi) = E Q7))
Q(s;0)= r(s0) +v E | V() |
—— S/NP(.|3,(Z) N——
immediate reward next state's value

| g~
e one-step look-ahead g@

e P7T: state-action transition matrix induced by 7: =

Q" =r+9PQ" = Q" =(I—9P") s \ﬁ
Richard Bellman
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Back to main question: how to find optimal policy 7*7

solution: Bellman’s optimality principle
e Bellman operator:
TQ)(s,a):= 1(s,0) +7 E [maxQ(s,a)]
s'~P(-|]s,a) ta’'€A
immediate reward
next state’s value

o one-step look-ahead

o y-contraction: ||[T(Q1) — T (Q2)|lec < ¥||Q1 — Q2lo0
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Back to main question: how to find optimal policy 7*7

solution: Bellman’s optimality principle
e Bellman operator:
TQ)(s,a):= 1(s,0) +7 E [maxQ(s,a)]
s'~P(-|]s,a) ta’'€A
immediate reward
next state’s value

o one-step look-ahead

o y-contraction: ||[T(Q1) — T (Q2)|lec < ¥||Q1 — Q2lo0

e Bellman equation: Q* is unique solution to

TQ) ="
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Two dynamic programming algorithms

Q(U)

Value iteration (VI) T
(1)
Fort=0,1,... ¢
-
Qe+ = T(QY) ”
Q

Policy iteration (PI)

Fort=0,1,...

policy evaluation: Q) = Q™"

policy improvement: 7V (s) = argmaxQ¥ (s, a)

acA /
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Iteration complexity

Theorem 2 (Linear convergence of policy/value iteration)

QW —@*|., <+ 1R - Q.
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Iteration complexity

Theorem 2 (Linear convergence of policy/value iteration)

QW —@*|., <+ 1R - Q.

Implications: to achieve ||Q) — Q*||o < ¢, it takes no more than

©) _ o*
L log (”QQ”OO> iterations
1 —x €
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Iteration complexity

Theorem 2 (Linear convergence of policy/value iteration)

QW —@*|., <+ 1R - Q.

Implications: to achieve ||Q) — Q*||o < ¢, it takes no more than

L (107 =l

) iterations
1 —x €

Linear convergence at a dimension-free rate!
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When the model is unknown ...

Reinforcement | \\ Dynamic Programming
Learning \ and Optimal Control
An lntsoduction § DIMITRI P. BERTSEKAS

second edition

]
1
]
| !
7/ \ -
7
/
44
77/ (
7 )
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When the model is unknown ...

Reinforcement
Learning

A latsoduction
second edition

— Dynamic Programming
.l and Optimal Control

DIMITRI P. BERTSEKAS

g
4
£
S
H
2
H
a
£

Need to learn optimal policy from samples w/o model specification
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Two approaches

2o model A
e ’ """"" iy

/ model-based )

samples value function
(experience) policy

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on the empirical P
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Two approaches

oV model A

T g P e T | P, .
«%“'”/?' ” (ie. P e RISIAIXIS) ‘1“19
/ model-based \
samples value function
(experience) policy
. b 4
wodel-free

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on the empirical P

Model-free approach
— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
o can query arbitrary state-action pairs to draw samples
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Sampling mechanisms
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o can query arbitrary state-action pairs to draw samples

2. online RL
o execute MDP in real time to obtain sample trajectories

3. offline RL

o use pre-collected historical data
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
o can query arbitrary state-action pairs to draw samples

2. online RL
o execute MDP in real time to obtain sample trajectories

3. offline RL

o use pre-collected historical data

Question: how many samples are sufficient to
learn an e-optimal policy?

V> Ve

23/ 85



Exploration vs exploitation

Exploration

offline RL

\l
— *:%‘”efx

BN s

,mj\
“Recal

rcaldating ..

online RL

generative model
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Exploration vs exploitation

> Exploration

offline RL online RL generative model

Varying levels of trade-offs between exploration and exploitation. J
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Part 1

. Basics: Markov decision processes

. RL w/ a generative model (simulator)
. Online RL

. Offline RL



A generative model / simulator

— Kearns and Singh, 1999

generative model

e sampling: for each (s,a), collect N samples {(S,G,S/(Z-))hgigN
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A generative model / simulator

— Kearns and Singh, 1999

generative model

e sampling: for each (s,a), collect N samples {(S,G,S/(Z-))hgigN

e construct 7 based on samples (in total SA x N)
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{s-sample complexity: how many samples are required to

learn an e-optimal policy ?

o~

Vs: V7 (s) > V*(s)—e



An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns et al., 2002

Azar et al., 2013

Sidford et al., 2018a, 2018b
Wang, 2019

Agarwal et al., 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru et al., 2020

Mou et al., 2020

Cui and Yang, 2021
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Model estimation

Sampling: for each (s, a),
collect IV ind. samples
{(s,a, Sl(i))}lgz'gzv

generative moolel
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Model estimation

Sampling: for each (s, a),
collect IV ind. samples
{(s;a,s() h<isn

Empirical estimates

generative model /‘S a) Z 1 {S

empirical frequency

29/ 85



Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[ empirical MDP

H E N
| [ |
| - | =
H B [ planning =%
[ BB oracle
| [ | _ .
| | | B e.g. dynamic programming
N N |
| |
T

empirical p

Find policy based on the empirical MDP (empirical maximizer)
—_—— (S —

using, e.g., policy iteration (P,r)
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Challenges in the sample-starved regime

H N
- O
| n
H
H N
o B
|
L
H_ B
O |
_ SAxS empirical estimate:
truth: P e R p

e Can't recover P faithfully if sample size < S2?Al
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Challenges in the sample-starved regime

H N
- O
| n
H
H N
o B
|
L
H_ B
O |
_ SAxS empirical estimate:
truth: P e R p

e Can't recover P faithfully if sample size < S2?Al

e Can we trust our policy estimate when reliable model estimation
is infeasible?
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(~-based sample complexity

Theorem 3 (Agarwal, Kakade, Yang’19)
1

Forany 0 <e < Naert

achieves

the optimal policy T of empirical MDP

V™ =Vl <&

with high prob., with sample complexity at most

o (=)
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(~-based sample complexity

Theorem 3 (Agarwal, Kakade, Yang’19)

ﬁ
achieves

V™ =Vl <&

with high prob., with sample complexity at most
~ SA
o —=2"
((1 - 7)352>

e matches minimax lower bound: Q(W) when € < ——

(equivalently, when sample size exceeds (1_7)2) Azar et al., 2013

ﬁ_
2
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sample
complexity

SIIA
(=7

ISIAL |-

(1-9)?

/-

X0
N

N
bq‘/“
S —Sidford et al.'18a

e era oan

Agarwal et al.’19

S, BN °S,
7
3 BON
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sample
complexity

SIIA
(=7

ISIIA|

-

ISIIA|
1-v

/.

P

&

R .
— Sidford et al. '18a

o“(\e>
Agarwal et al.’19 z(\o
<, oo
sk
@
1 1 >
N BN °S,
7 4
3 O\
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sample
complexity

SIIA]

(T=7?°

S]]
(1-9)?

SIIA]

1-v

Agarwal et al.,

P

N
&
R )
— 0 — Sidford et al.'18a

5

=/ o
Agarwal et al.’19
?/ \«“*
/
1 1 1 >
@\\ L @\\/ 52
4 4
7
SO
>
2019 still requires a burn-in sample size 2 ﬁ
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sample
complexity

SIIA]
T=7?[=

'"Aérwal et al.'19

ISIIA| &
(1 =2 3
P
.\‘\\
isila | ® «
1-v 14 1 1 > —
@\\ L @\\/ 52
4
5 BN
>
Agarwal et al., 2019 still requires a burn-in sample size 2 %

Question: is it possible to break this sample size barrier? J
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Perturbed model-based approach (Li et al.’20)

— Li, Wei, Chi, Chen, '20, OR'24

/" empirical MDP / N
H EDNR H N E
|| | || -]
[ | W o | perwurb | W HE
| | B | rewards || B . ~
H N || H N B planning 71—:
. . . :> - . . oracle
[ | [ | | [ ]
.- . .. . e.g. dynamic programming
H BN H BB
|| | B B
empiricalf’ T &IPTP/

Find policy based on empirical MDP w/ slightly perturbed rewards
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Optimal /..-based sample complexity

Theorem 4 (Li, Wei, Chi, Chen’20, OR’24)

Forany 0 < e < % the optimal policy 7}, of perturbed empirical
MDP achieves

[V = V| < &

with high prob., with sample complexity at most

o (=)

35/ 85



Optimal /..-based sample complexity

Theorem 4 (Li, Wei, Chi, Chen’20, OR’24)

Forany 0 < e < % the optimal policy 7}, of perturbed empirical

MDP achieves
[V = V| < &

with high prob., with sample complexity at most

o (=)

e matches minimax lower bound: Q(u—iﬁ) Azar et al., 2013

e full e-range: ¢ € (0, 1i7] — no burn-in cost

35/ 85
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A glimpse of key analysis ideas

1. leave-one-out analysis: decouple statistical dependency by
introducing auxiliary state-action absorbing MDPs by dropping
randomness for each (s, a)

f
— ! H E = l. =i
decouple
dependency .. u = .. | =
HE B HE B
H ER H EHNR
H N [ | H BE |
| |
H ENR H EHNR
EE N EE B
empirical P 7 leave-one-out P(+:®) (s
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A glimpse of key analysis ideas

1. leave-one-out analysis: decouple statistical dependency by
introducing auxiliary state-action absorbing MDPs by dropping
randomness for each (s, a)

f
— ! H E = l. =i
decouple
dependency .. u = .. | =
HE B HE B
H ER H EHNR
H N [ | H BE |
| |
H ENR H EHNR
EE N EE B
empirical P 7 leave-one-out P(+:®) (s

2. tie-breaking via random perturbation

Vs, Q*(s,7*(s))— max Q*(s,a) >0

a: a#n*(s)
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A glimpse of key analysis ideas

1. leave-one-out analysis: decouple statistical dependency by
introducing auxiliary state-action absorbing MDPs by dropping
randomness for each (s, a)

f
— ! H E = l. =i
decouple
dependency .. u = .. | =
HE B HE B
H ER H EHNR
H N [ | H BE |
| |
H ENR H EHNR
EE N EE BN
empirical P 7 leave-one-out P(+:®) (s

2. tie-breaking via random perturbation

VS, Q\*(S,%*(S)) — max @*(s,a) >0
a:a#£m*(s)

Solution: slightly perturb rewards r — 7

*
p
37/ 85



sample

complexity
IS[IAl
(=
ISIJAl |2
(1=9)?
|S[IA]
1 1 1 > 1
© AN @\\/ 82
7 %

Model based RL is minimax optimal under generative models
and does NOT suffer from a sample size barrier J




Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P
2. planning based on empirical P

Model-free / value-based approach

— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...
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Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(87a) + nt(ﬁ(Qt)(Sch) - Qt(s,a)), > 0

sample transition (s,a,s’)
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(87a) + nt(ﬁ(Qt)(Sch) - Qt(s,a)), > 0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) + ymax Q(s',a’)

T(@Q)(s,a) =7(s,a) +v E [max Qs a’)]

s'~P(-]s,a) a’

41/ 85



A generative model / simulator

— Kearns, Singh, 1999

generative model

Each iteration, draw an independent sample (s, a, s") for given (s, a)

42/ 85



Synchronous Q-learning

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s,a, s’), run

Qr1(s,a) = (1 —ny)Qu(s,a) + nt{r(s,a) + 7 max Qi(s, a/)}

synchronous: all state-action pairs are updated simultaneously J

e total sample size: TSA
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Sample complexity of synchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

{6(0_‘%‘;‘452) ifA>2

5(#) ifA=1 (TD learning)
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Sample complexity of synchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

2! SA .
O(i2m) ifA=2
O(ﬁ) ifA=1 (TD learning)

e Covers both constant and rescaled linear learning rates:

1 o 1
= ca(1-T rn= c2(1—7)t
1+ log? T 1 + log? T

44/ 85



Sample complexity of synchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

2! SA f
6((1—5)352) ifA=1 (minimax optimal)

other papers sample complexity
Even-Dar & Mansour, 2003 21—v %
(1—-v)%e
: S242
Beck, Srikant, 2012 (1=5)5:2

. . SA
Wainwright, 2019 (1=2)5:2

Chen, Maguluri, Shakkottai, Shanmugam, 2020 %
(1—~)°e
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All this requires sample size at least %

Pt
4 O
sample %

complexity

(log scale) N

(A>2)...




All this requires sample size at least % (A>2)...

sample
complexity

(log scale)

1
log scale
~— (log scale

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



Q-learning is NOT minimax optimal

Theorem 6 (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least

Q <(1—51:;{>452> Samp/es
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Q-learning is NOT minimax optimal

Theorem 6 (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 <& <1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least
~ < SA

Q (1_7>4€2> Samp/es

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2
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Q-learning is NOT minimax optimal

Theorem 6 (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least

Q <(1_51:/?)482> Samp/es

sample +
complexity
(log scale)

(log scale)
L=y 46/ 85



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

15 m max, Q(s,a) - Vi(s)

0 mm Q'(s, argmax, Q(s, a)) — Va(s)

< il

g

error

o

©248%%
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

15 m max, Q(s,a) - Vi(s)

0 [ Q'(s, argmax,Q(s, a)) — Vi(s)
5 |
oo JF &4

%
3

error

o

R R RN
e ge%

number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

A provable improvement: Q-learning with variance reduction

(Wainwright 2019)
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

ik execute 7!

episode 1 |::> {sh»ah, 7 e

(= 3Ir execute 7>
L 2 2 2\H
episode 2 {8h> @ T =1
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

U execute 7'

episode 1 |::> {sh»ah, 7 e

S e [ execute 7>

2 2 oH
episode 2 :> {8h: @k, i h=1

execute 75

episode K |:> {Sf ai{7 T}{(}hH:I
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

4
LE execute 7!

episode 1 |:> {sh> ah,ThHhey

execute 7>

s rihin

episode 2

‘;% execute 75

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute
st = policy 7!

episode 1
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Regret: gap between learned policy & optimal policy

adversary learner

>

initial state execute initial state execute
I 51 I = policy ! = e = 5K = | policy 7

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy ! = e = 5K = | policy 7

episode 1 episode K

Performance metric: given initial states {s}}X , define
K

Regret(T) = Y (Vi(sf) = V7" (s1))
k=1

50/ 85



Lower bound
(Domingues et al, 2021)

Regret(T') =2 VH?SAT

Existing algorithms

UCB-VI: Azar et al, 2017

UBEV: Dann et al, 2017
UCB-Q-Hoeffding: Jin et al, 2018
UCB-Q-Bernstein: Jin et al, 2018
UCB2-Q-Bernstein: Bai et al, 2019
EULER: Zanette et al, 2019
UCB-Q-Advantage: Zhang et al, 2020
MVP: Zhang et al, 2020

UCB-M-Q: Menard et al, 2021
Q-EarlySettled-Advantage: Li et al, 2021
(modified) MVP: Zhang et al, 2024



Existing algorithms
e UCB-VI: Azar et al, 2017
e UBEV: Dann et al, 2017
e UCB-Q-Hoeffding: Jin et al, 2018

Lower bound o UCB-Q-Bernstein: Jin et al, 2018
(Domingues et al, 2021) o UCB2-Q-Bernstein: Bai et al, 2019
e EULER: Zanette et al, 2019
Regret(T") 2 VH?SAT e UCB-Q-Advantage: Zhang et al, 2020

e MVP: Zhang et al, 2020

e UCB-M-Q: Menard et al, 2021

e Q-EarlySettled-Advantage: Li et al, 2021
e (modified) MVP: Zhang et al, 2024

Which online RL algorithms achieve near-minimal regret? J




Model-based online RL with UCB exploration



Model-based approach for online RL

/ empirical MDP \

HENR )
execute 7! .. . = execute 7
=== =3l =
| —ll |:'|> - . planning E:> "
= .. = oracle
| ||
{shsahs Yo ..I. =
Nl

repeat:

e use collected data to estimate transition probabilities

e apply planning to the estimated model to derive a new policy for
sampling in the next episode
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Model-based approach for online RL

/ empirical MDP \

HENR )
execute 7! .. . = execute 7
=== =3l =
| —‘l |:'|> - . planning E:) %
= .. = oracle
| ||
{shsahs Yo ..I. =
Nl

repeat:

e use collected data to estimate transition probabilities

e apply planning to the estimated model to derive a new policy for
sampling in the next episode

How to balance exploration and exploitation in this framework? J

53/ 85



T. L. Lai H. Robbins

Optimism in the face of uncertainty:

e explores based on the best optimistic estimates associated with
the actions!

e a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level
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T. L. Lai H. Robbins

Optimism in the face of uncertainty:

e explores based on the best optimistic estimates associated with
the actions!

e a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level

Optimistic model-based approach: incorporates UCB framework
into model-based approach

54/ 85



UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H,H —1,...,1: run value iteration

Qn(Sh,an) < rr(sn,an) + Phsya, Vit
——
model estimate

Vi(sp) < max Qn(sh, a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H, H —1,...,1: run optimistic value iteration

Qn(snsan) < rr(sn,an) + Phsyan V1 +  bu(sn,an)
—— —_——
model estimate  bonus (upper confidence width)

Vi(sp) < max Qn(sh, a)

55/ 85



UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H, H —1,...,1: run optimistic value iteration

Qn(snsan) < rr(sn,an) + Phsyan V1 +  bu(sn,an)
—— —_——
model estimate  bonus (upper confidence width)

Vi(sp) < max Qn(sh, a)

2. Forward h =1,..., H: take actions according to greedy policy

Th(8) <— argmax,c 4 Qn (s, a)

to sample a new episode {s, an, 7},

55/ 85



UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")
VH2SAT

0 sample size : T’

56/ 85



UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")
—VH2SAT

UCB-VI

HYS%A

0 sample size : T’
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")
—VH2SAT

UCB-VI

HYS%A

>

S3AYHS  sample size : T
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T')

- VH2SAT

UCB-VI

HYS%A

>

S3AYHS  sample size : T

huge burn-in cost!
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T')

- VH2SAT

UCB-VI

HYS%A

>

S3AYHS  sample size : T

huge burn-in cost!

Issues: large burn-in cost
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Other asymptotically regret-optimal algorithms

Range of K that

Aleorthm Regret upper bound attains optimal regret
(Azarli(t:Ba\:,I2017) VSAHT + S2 Al [SPAH3, 00)
(Dann [e]I:I;? 2019) VSAHT + 5°AH! [SPAH?, x0)

(ZanettiU:tESI, 2019) VSAIPT + P AIY(VS + V) | [SPAHYVS + V), )
(Zhangcz Aa?,V 2020y | VSAHT+ SPAPHBIK [SSAYH?7, o0)
(Zhang Pg};, 2020) VSAH?T + S*AH? [S3AH, %0)
(Mena?dciM;E 2021) VSAH?T + SAH* [SAHS, )
Q-Earlysettled-Adv VSARTT + SAH® SAH®.o0)

(Li et al, 2021)
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Other asymptotically regret-optimal algorithms

Feerthm Regret upper bound attaine optimal egret
(Azarli(t:Ba\:,IZOU) VSAHT + S2 Al [SPAH3, 00)
(Dann [e]I:I;? 2019) VSAHT + 5°AH! [SPAH?, x0)

(ZanettiU;ES, 2019) VSAIPT + P AIY(VS + V) | [SPAHYVS + V), )
(Zhangcz Aa?,v 2020y | VSAHT+ SPAPHBIK [SSAYH?7, o0)
(Zhang P:XZL 2020) VSAH?T + S*AH? [S3AH, %0)
(Mena?dczsz;E 2021) VSAH?T + SAH* [SAHS, )
Q_E(afilzts:ftzloezﬁ_)lx dv VSAH?T + SAH® [SAH?, 50)

Can we find a regre-optimal algorithm with no burn-in cost?

J
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Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus
e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time
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Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus
e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time
UCB-VI

PN—@
PO _e@

}

2T WY Y
)

¢
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Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus

e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
P—@ —p(
P —@

PO —@

pU —@

PB—e - P
P(2) —@—

P —_@ —p)

58/ 85



Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus

e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
P—@ —p(
P —@

PO —@

pU —@

PB—e - P
P(2) —@—

P —_@ —p)

o visitation counts change much less frequently
— reduces covering number dramatically
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Monotonic Value Propagation

UCB-VI with doubling update rules and variance-aware bonus

e (s,a,h) is updated only when visited the {1,3,7,15,--- }-th time

UCB-VI MVP
P—@ —p(
56)_e.

PO —@

PW —@

PB—@ — P
P2 —@—

pl) g —pm

o visitation counts change much less frequently
— reduces covering number dramatically

e data-driven bonus terms (chosen based on empirical variances)

58/ 85



Regret-optimal algorithm w/o burn-in cost

Regret(T")

A

. VH2SAT

UCB-VI

H*S?A

0 S®AHS  sample size : T

Theorem 7 (Zhang, Chen, Lee, Du’24)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)
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Regret-optimal algorithm w/o burn-in cost

Regret(T")

A

. VH2SAT

UCB-VI

H*S?A

0 S®AHS  sample size : T

Theorem 7 (Zhang, Chen, Lee, Du’24)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)

e the only algorithm so far that is regret-optimal w/o burn-ins

59/ 85



Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21




Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH |
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH |

Issue: large variability in stochastic update rules
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Further improvement

early-settled

ucB variance variance
exploration reduction reduction
. Q-EarlySettled-
= () = [Eamas) =
Jin et al.'18 Zhang et al. '20 Lietal. 21

o UCB-Q-Advantage: use variance reduction to achieve
near-optimal regret, but with large burn-in cost;

o Q-EarlySettled-Advantage: stop updating the reference as soon
as possible to reduce burn-in cost.
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memory

complexity
A
UCB-M-Q

: UCB-Q-Advantage
SAH ‘ el . burn-in cost
0 SApoly(H)  SPA'HS  SSATH

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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memory

complexity
A
UCB-M-Q

: UCB-Q-Advantage
SAH ‘ el . burn-in cost
0 SApoly(H)  SPA'HS  SSATH

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

THE COMING INAUTONOMOUS VEHICLES

e B

/a5

medical records data of self-driving clicking times of ads
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

e But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

e B

/a5

medical records data of self-driving clicking times of ads
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

e But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

ou
w
e
. & e
< (7}

NS LS
N

medical records data of self-driving clicking times of ads

Question: can we learn based solely on historical data
w/o active exploration? J

65/ 85



A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!

historical dataset D = {(s(V,a(", s'))}: N independent copies of
s~ P, aNTrb('|S)a S,NP("Sva’)
e p: initial state distribution;  7P: behavior policy
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!

Goal: given a target accuracy level € € (0, H], find 7 s.t.

V*(p) — V?(p) = sIEp [V*(s)] — SINEp [V?(s)} <e

— in a sample-efficient manner

66/ 85



How to quantify quality of historical dataset D (induced by 7°)?
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™" (s, a) occupancy distribution of T*

C* := max =
sa dm (s, a)

. . . b
occupancy distribution of 7® ||
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

C* := max d b(s,a) =
s,a d™(s,a)

occupancy distribution of "

. . . b
occupancy distribution of 7® ||

e captures distributional shift
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™ (s,a occupancy distribution of "
C* = max b<’): paney T 1
s,a d™ (s, a) occupancy distribution of ©° ||
e captures distributional shift
large C*
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™ (s,a occupancy distribution of ™
C”* := max b(’): pancy ekttt - 1
s,a d™ (s, a) occupancy distribution of 7° ||
‘M\(\/V“\ ! )
e captures distributional shift /

e allows for partial coverage
o as long as it covers the part
reachable by 7*

67/ 85



Prior art: sample complexity bounds

sample“
complexity

H5SC~|-

w3scrl/

HSC*

4
4
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Prior art: sample complexity bounds

sample

. A
complexity

H5SC*

H3sC*|

HSC*

> Yan et al.

4
4
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Prior art: sample complexity bounds

sample
. A
complexity "
%C)
o
%
e
H5SC* ‘q’b‘g‘,}- Yan et al.
::ffb\g/‘ & N
,,,;:?\ _x’b ‘3;560
©
S
. B
H35C* < o
o
\O
s
HSC* «°
1 1 S
e e g2
N A
v
(5} /&
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Prior art: sample complexity bounds

sample
complexity“ "
c\,o
©
&/ w
>
H5SC* q’bé,}- Yan et al.
::ftf’g/‘ & &
,,,,, SEG o %
= NP2
. S
H3SC* o>
f\/ Ny O
/@ o
l:, \('\\((\'XF
HSC* _/ )
1 1 >
e e g2
N A
7
& /&

Can we close the gap between upper & lower bounds?
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Model-based (“plug-in”) approach?

samples
(experience)

model | Al
(i.e. P e RISIMIXISI) "‘\\‘}f‘f‘s
wmodel-based \

value function
policy
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Model-based (“plug-in”) approach?

[ empirical MDP

H E BN
| [ |
| |

u | . e

mE = Poracie” ™
i HBE

| _ .

| | | || e.g. dynamic programming
H_ EHNR
| |
r

empirical P

1. construct empirical model P

P(s'|s,a) = Z]l{s

empirical frequency
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Model-based (“plug-in”) approach?

[ empirical MDP

H E BN
| [ |
| - | =
B E B G —> 7"
[ H B oracle
| _ .
| | | || e.g. dynamic programming
H_ EHNR
| |
r

empirical P

1. construct empirical model P

2. planning (e.g. value iteration) based on empirical MDP

69/ 85



Issues & challenges in the sample-starved regime

. H N
H
H H
|
H N
H BN
H
L
H_ N
| n
truth: P € RS4x5 empirical P (simulator)

e can't recover P faithfully if sample size < S%A
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Issues & challenges in the sample-starved regime

o H N H N
H
H H
|
H N
H BN |
H
L
H_ N H B
H n H
truth: P € RS4xS empirical P (simulator) empirical P (offline)

e can't recover P faithfully if sample size < S%A

e (possibly) insufficient coverage under offline data

70/ 85



Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

online

upper confidence bounds
— promote exploration of under-explored (s, a)

71/ 85



Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)

71/ 85



Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

1. build empirical model P
2. (value iteration) repeat: for all (s, a)

~

Q(s,a) < max {r(s, a) +~(P(-|s,a),V), 0}

where V(s) = max, Q(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

Penalize those poorly visited (s, a) ...

1. build empirical model P
2. (pessimistic value iteration) repeat: for all (s, a)

~

Q(s,a) <+ max {r(s, a) + ’y<]3( |s,a), ‘7> — b(s,a; ‘A/), O}
uncertainty penalty

where V(s) = max, Q(s, a)

71/ 85



Key idea: pessimism in the face of uncertainty

— Jin et al, 2020, Rashidinejad et al, 2021, Xie et al, 2021

Penalize those poorly visited (s, a) ...

1. build empirical model P
2. (pessimistic value iteration) repeat: for all (s, a)

~

Q(s,a) + max {r(s, a) + ’y<]3( |s,a), ‘7> — b(s,a; V), O}

uncertainty penalty

compared w/ Rashidinejad et al, 2021

e sample-reuse across iterations e Bernstein-style penalty

71/ 85



Sample complexity of model-based offline RL

Theorem 8 (Li, Shi, Chen, Chi, Wei'24)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V¥(p) = V7(p) < e

with high prob., with sample complexity at most

0 (a=p=)
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Sample complexity of model-based offline RL

Theorem 8 (Li, Shi, Chen, Chi, Wei'24)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V¥(p) = V7(p) < e

with high prob., with sample complexity at most
~ SC*
o—"=__
((1 - 7)352)

e depends on distribution shift (as reflected by C*)

e achieves minimax optimality

e full e-range (no burn-in cost)

72/ 85



sample
complexity

SC*

Model-based offline RL is minimax optimal with no burn-in
cost! J




Is it possible to design offline model-free algorithms
with optimal sample efficiency?



Is it possible to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al, 2022, Yan et al, 2023

Qey1(5t,ar) < (L —n)Qu(st, 1) + 0 Te (Qr) (8¢5 a1) — nebe(5e,ar)

———
classical Q-learning LCB penalty
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LCB-Q: Q-learning with LCB penalty

— Shi et al, 2022, Yan et al, 2023

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty
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LCB-Q: Q-learning with LCB penalty

— Shi et al, 2022, Yan et al, 2023

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) =  sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules

75/ 85



Further improvement

pessimism
(low confidence bounds)

sample
complexity’

Yan et al.

5
N
» 0&\6 °
\"q@‘v
-
e
¢
I 1
v 2
N i 6‘\\2 z
z\ 5

infinite-horizon MDPs

variance
reduction

— — [LCB—Q—Advantage]

sample
complexity

Xie et al

finite-horizon MDPs

Model-free offline RL attains sample optimality too!

— with some burn-in cost though .. .7J/ .




Reference: general RL textbooks |

“Reinforcement learning: An introduction,” R. S. Sutton, A. G. Barto, MIT
Press, 2018

“Reinforcement learning: Theory and algorithms,” A. Agarwal, N. Jiang,
S. Kakade, W. Sun, 2019

" Reinforcement learning and optimal control,” D. Bertsekas, Athena
Scientific, 2019

" Algorithms for reinforcement learning,” C. Szepesvari, Springer, 2022

“Bandit algorithms,” T. Lattimore, C. Szepesvari, Cambridge University
Press, 2020
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Reference: model-based algorithms |

“Finite-sample convergence rates for Q-learning and indirect algorithms,”
M. Kearns, S. Satinder, NeurlPS, 1998

"On the sample complexity of reinforcement learning,” S. Kakade, 2003
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