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Language priors in VQA

Our contributions:

• We propose a novel model-agnostic generic framework 

LRLGC that enables end-to-end training and can be easily 

integrated into various VQA models.

• We propose LRL and Global Context Module, which can 

effectively help the model overcome the language priors 

while preserving the contextual information.

• Experimental results show that LRLGC achieves 

competitive performance on the bias-sensitive VQA-CP v2 

(60.91%) without sacrificing performance on the in-

distribution VQA v2 (60.81%).
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Question: What color is the mouse pad?  GT: blue
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Question: How many planes are there?  GT: 1
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Question: Does this horse have a saddle on it's back? GT: no
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• Quantitative analysis

LRLGC vs. Other Re-Weighting Methods

• Results for various α and β combinations.

• Each LRLGC module's effect on the model performance.

• LRLGC results on VQA-CP v2 test set with varying training split proportions.

• The effect of different backbones on model performance on the VQA-CP v2 test set.LRLGC: Loss Rebalancing Label and Global Context

• Comparison results for the VQA-CP v2 test split and the VQA v2 validation split.

• Despite the advances in Visual Question Answering (VQA), 

many VQA models currently suffer from language priors (i.e. 

generating answers directly from questions without using images)

• LRLGC can overcome the class imbalance in the VQA dataset 

by rescaling the total VQA loss to a more balanced form.

Experimental results

Overview of LRLGC training strategy：
• (A) An arbitrary VQA model.

• (B) A Bias Model captures language biases, and the Loss Rebalancing Label 

Constructor dynamically generates Loss Rebalancing Labels (LRL) for each 

biased sample.

• (C) A gated multi-headed self-attention mechanism captures global context.

• (D) Learning by the ensemble.


