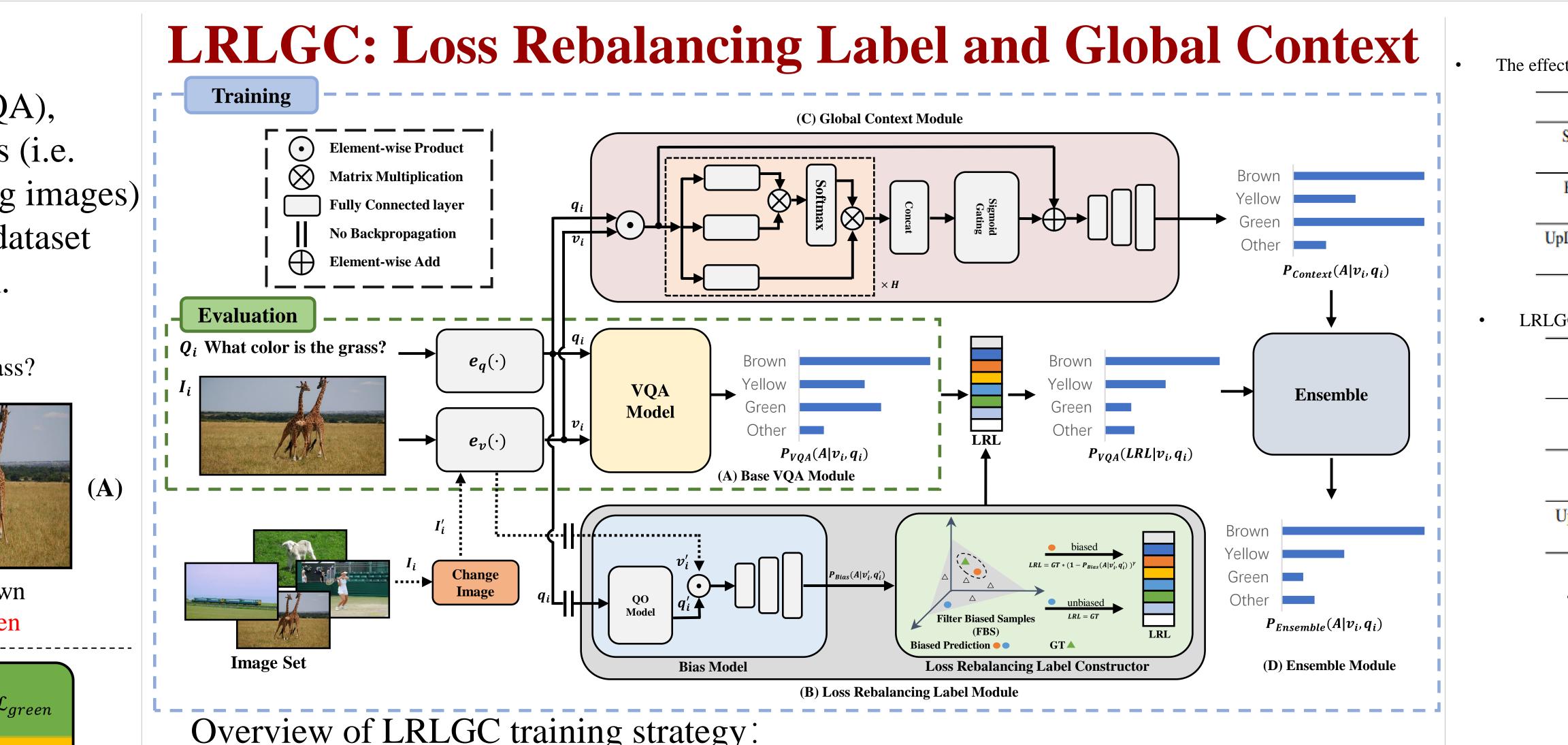

# **Overcoming Language Priors for Visual Question Answering via Loss Rebalancing Label and Global Context**



### Language priors in VQA

- Despite the advances in Visual Question Answering (VQA), many VQA models currently suffer from language priors (i.e. generating answers directly from questions without using images)
- LRLGC can overcome the class imbalance in the VQA dataset by rescaling the total VQA loss to a more balanced form.




Our contributions:

- We propose a novel model-agnostic generic framework LRLGC that enables end-to-end training and can be easily integrated into various VQA models.
- We propose LRL and Global Context Module, which can effectively help the model overcome the language priors while preserving the contextual information.
- Experimental results show that LRLGC achieves competitive performance on the bias-sensitive VQA-CP v2 (60.91%) without sacrificing performance on the indistribution VQA v2 (60.81%).

## **LRLGC vs. Other Re-Weighting Methods**

| Model                             | Adaptive | q | v | FBS | GC | VQA-CP v2 test (%) |
|-----------------------------------|----------|---|---|-----|----|--------------------|
| Loss-Rescaling [Guo et al., 2022] |          | 1 |   |     |    | 53.26              |
| LPF [Liang et al., 2021]          | ✓        | 1 |   |     |    | 55.34              |
| LP-Focal [Lao et al., 2021]       | ✓        | 1 |   |     |    | 58.45              |
| LRLGC (Ours)                      | ✓        | 1 | ✓ | ✓   | ✓  | 60.91              |

<sup>1</sup>Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China <sup>2</sup>Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin 541004, China \* Zhixin Li is the corresponding author



### Overview of LRLGC training strategy:

- (A) An arbitrary VQA model.
- biased sample.
- (D) Learning by the ensemble.

#### **Experimental results**

Comparison results for the VQA-CP v2 test split and the VQA v2 validation split.

| a    |                                    |              | VQA-CI       | P v2 test    |              | VQA v2 val   |        |              | Comparison   |       |              |
|------|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------|--------------|--------------|-------|--------------|
| Case | Model                              | Overall      | Yes/No       | Number       | Other        | Overall      | Yes/No | Number       | Other        | Gap↓  | Mean         |
| I    | SAN [Yang et al., 2016]            | 24.96        | 38.35        | 11.10        | 21.74        | 52.41        | 70.06  | 39.28        | 47.84        | 27.45 | 38.69        |
|      | BAN [Kim et al., 2018]             | 37.03        | 41.55        | 12.43        | 41.40        | 63.90        | 81.42  | 45.18        | 55.54        | 26.87 | 50.47        |
|      | UpDn [Anderson et al., 2018]       | 39.74        | 42.27        | 11.93        | 46.05        | 63.48        | 81.18  | 42.14        | 55.66        | 23.74 | 51.61        |
|      | AttAlign [Selvaraju et al., 2019]  | 39.37        | 43.02        | 11.89        | 45.00        | 63.24        | 80.99  | 42.55        | 55.22        | 23.87 | 51.31        |
| П    | HINT [Selvaraju et al., 2019]      | 46.73        | 67.27        | 10.61        | 45.88        | 63.38        | 81.18  | 42.99        | <u>55.56</u> | 16.65 | 55.06        |
|      | SCR [Wu and Mooney, 2019]          | 49.45        | 72.36        | 10.93        | 48.02        | 62.20        | 78.80  | 41.60        | 54.50        | 12.75 | 55.83        |
|      | Unshuffling [Teney et al., 2021]   | 42.39        | 47.72        | 14.43        | 47.24        | 61.08        | 78.32  | 42.16        | 52.71        | 18.69 | 51.74        |
|      | RandImg [Teney et al., 2020b]      | 55.37        | 83.89        | 41.60        | 44.20        | 57.24        | 76.53  | 33.87        | 48.57        | 1.87  | 56.31        |
| ш    | CSS [Chen et al., 2020]            | 58.95        | 84.37        | 49.42        | 48.21        | 59.91        | 73.25  | 39.77        | 55.11        | 0.96  | 59.43        |
|      | CL-VQA [Liang et al., 2020]        | 59.18        | 86.99        | 49.89        | 47.16        | 57.29        | 67.27  | 38.40        | 54.71        | 1.89  | 58.24        |
|      | SSL-VQA [Zhu et al., 2020]         | 57.59        | 86.53        | 29.87        | 50.03        | 63.73        | -      | -            | -            | 6.14  | 60.66        |
|      | AdvReg [Ramakrishnan et al., 2018] | 41.17        | 65.49        | 15.48        | 35.48        | 62.75        | 79.84  | 42.35        | 55.16        | 21.58 | 51.96        |
|      | RUBi [Cadene et al., 2019]         | 45.42        | 63.03        | 11.91        | 44.33        | 58.19        | 63.04  | 41.00        | 54.43        | 12.77 | 51.81        |
|      | LMH [Clark et al., 2019]           | 52.01        | 72.58        | 31.12        | 46.97        | 56.35        | 65.06  | 37.63        | 54.69        | 4.34  | 54.18        |
|      | CF-VQA [Niu et al., 2021]          | 53.55        | 91.15        | 13.03        | 44.97        | <u>63.54</u> | 82.51  | <u>43.96</u> | 54.30        | 9.99  | 58.55        |
|      | GGE-DQ [Han et al., 2021]          | 57.32        | 87.04        | 27.75        | <u>49.59</u> | 59.11        | 73.27  | 39.99        | 54.39        | 1.79  | 58.22        |
| IV   | LPF [Liang et al., 2021]           | 55.34        | 88.61        | 23.78        | 46.57        | 55.01        | 64.87  | 37.45        | 52.08        | 0.33  | 55.18        |
| 1 V  | Loss-Rescaling [Guo et al., 2022]  | 53.26        | 72.82        | 48.00        | 44.46        | 56.81        | 68.21  | 36.37        | 52.29        | 3.55  | 55.04        |
|      | LP-Focal [Lao et al., 2021]        | 58.45        | 88.34        | 34.67        | 49.32        | 62.45        | -      | -            | -            | 4.00  | 60.45        |
|      | CCB-VQA [Yang et al., 2021]        | 59.12        | 89.12        | <u>51.04</u> | 45.62        | 59.17        | 77.28  | 33.71        | 52.14        | 0.05  | 59.15        |
|      | SBS [Ouyang et al., 2022]          | <u>59.57</u> | 87.44        | 52.96        | 46.79        | 61.97        | 78.80  | 42.17        | 54.41        | 2.40  | <u>60.77</u> |
|      | LRLGC (Ours)                       | 60.91        | <u>89.95</u> | 45.13        | 50.03        | 60.81        | 77.65  | 39.25        | 53.71        | 0.10  | 60.86        |

Runlin Cao<sup>1,2</sup>, Zhixin Li<sup>\*,1,2</sup>

• (B) A Bias Model captures language biases, and the Loss Rebalancing Label Constructor dynamically generates Loss Rebalancing Labels (LRL) for each

• (C) A gated multi-headed self-attention mechanism captures global context.





The effect of different backbones on model performance on the VQA-CP v2 test set.

| Model                       | Yes/No | Number | Other | Overall | Gap↑   |
|-----------------------------|--------|--------|-------|---------|--------|
| SAN† [Yang et al., 2016]    | 40.86  | 13.43  | 46.98 | 40.08   | +18.48 |
| SAN+LRLGC                   | 88.03  | 42.05  | 47.65 | 58.56   |        |
| BAN† [Kim et al., 2018]     | 43.53  | 13.60  | 46.35 | 40.53   | +18.66 |
| BAN+LRLGC                   | 89.85  | 42.74  | 47.64 | 59.19   |        |
| Dn† [Anderson et al., 2018] | 43.32  | 13.41  | 48.32 | 41.54   | +19.37 |
| UpDn+LRLGC                  | 89.95  | 45.13  | 50.03 | 60.91   |        |

LRLGC results on VQA-CP v2 test set with varying training split proportions

|                                      | Proportion of Training Set |       |       |       |              |  |  |  |
|--------------------------------------|----------------------------|-------|-------|-------|--------------|--|--|--|
| Model                                | 20%                        | 40%   | 60%   | 80%   | 100%         |  |  |  |
| SAN <sup>†</sup> [Yang et al., 2016] | 33.15                      | 36.62 | 39.11 | 39.71 | 40.08        |  |  |  |
| SAN+LRLGC                            | 43.80                      | 53.19 | 56.67 | 57.13 | 58.56        |  |  |  |
| BAN† [Kim et al., 2018]              | 33.05                      | 37.28 | 38.52 | 40.00 | 40.53        |  |  |  |
| BAN+LRLGC                            | 42.66                      | 54.16 | 56.91 | 58.65 | <b>59.19</b> |  |  |  |
| UpDn† [Anderson et al., 2018]        | 36.37                      | 38.72 | 39.91 | 40.53 | 41.54        |  |  |  |
| UpDn+LRLGC                           | 54.10                      | 57.57 | 59.02 | 59.96 | <b>60.91</b> |  |  |  |

Each LRLGC module's effect on the model performance.

|   | LRL | FBS          | GC           | VQA-CP v2 test (% |
|---|-----|--------------|--------------|-------------------|
| 1 |     |              |              | 41.54             |
| 2 | q   |              |              | 57.83             |
| 3 | qv  |              |              | 58.90             |
| 4 | q   | $\checkmark$ |              | 58.17             |
| 5 | qv  | $\checkmark$ |              | 58.77             |
| 6 | q   |              | $\checkmark$ | 59.43             |
| 7 | qv  |              | $\checkmark$ | 59.81             |
| 8 | q   | $\checkmark$ | $\checkmark$ | 59.84             |
| 9 | qv  | $\checkmark$ | $\checkmark$ | 60.91             |

Results for various  $\alpha$  and  $\beta$  combinations.

| Model | $\alpha$ vs. $\beta$ | VQA-CP v2 test (%) |
|-------|----------------------|--------------------|
|       | 0.1:4                | 59.58              |
|       | 0.3:4                | 60.08              |
|       | 0.5:4                | 60.91              |
| LRLGC | 0.7:4                | 60.28              |
|       | 0.5:3                | 60.65              |
|       | 0.5 : 5              | 60.08              |

Quantitative analysis

| Dn<br>Ouestion: V         | What color is the mo                                  | <b>LRLGC</b><br>buse pad? <b>GT</b> : <b>blue</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |              |
|---------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
|                           | gray 0.05<br>silver 0.05<br>blue 0.08                 | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.40<br>0.3)<br>gray 0.01<br>brown 0.03<br>blue<br>black 0.08 | 0.85         |
| Question                  | : How many planes                                     | are there? <b>GT</b> : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |              |
| 0-501ê<br>0-501ê<br>0.222 | 3<br>4<br>0.17<br>4<br>0.19<br>8<br>0.21<br>9<br>0.24 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 0.05<br>3 0.19<br>1                                         | 0.33<br>0.39 |
| <b>Question</b> : I       | Does this horse have                                  | a saddle on it's back? GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Γ: <b>no</b>                                                  |              |
| 0.05                      | 2 0.00<br>0 0.00<br>no 0.48<br>yes 0.51               | CONTRACTOR AND A CONTRACT | 1 0.00<br>2 0.00<br>yes 0.01<br>no                            | 0.97         |