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Huge amounts of unlabeled data of many 
different modalities

Source: CODEX

Representation learning allows integrating 
different modalities and extracting latent 
structures that capture intrinsic behavior 

without labeled data

Need for causal representation learning



Huge amounts of unlabeled data of many 
different modalities

Understanding the underlying mechanisms / causal 
relationships is critical in biomedical sciences

Source: CODEX

recommen-
dation

Representation learning allows integrating 
different modalities and extracting latent 
structures that capture intrinsic behavior 

without labeled data

Need for causal representation learning
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Causal 
Inference

Representation 
learning

We need a theory of 
causal representation 

learning!

Perturbations 
(CRISPR, drugs, …) 
represent unique 

opportunity!



Gene regulation and structural equation models

Ex: Gene regulatory network for pregastrular
endomesoderm specification in sea urchins

Defining interventional distributions:

Causal relations given by 
directed network; each 
node is associated with 
a random variable; 
stochasticity introduced 
by independent noise 
variables         

Sewell Wright, 1920

Judea Pearl, 1995

Intervention defines probabilistic 
operation that is different from 

conditioning and marginalization

Sewell Wright 
developed the 
foundation of 

causal inference 
by studying 

heredity

causal structural 
equation models

Eric H. Davidson, 2006



Motivation: Cell state engineering

Space of possible perturbations and relevant contexts is 
combinatorial & continuous!

https://www.sciencedirect.com/science/article/pii/S1934590919304230

 Engineering cell states: rejuvenation, 
regenerative & personalized medicine

 Achievable e.g. through: combinations of 
transcription factors (humans ∼2000)

Cancer Immunotherapy Challenge: 
https://go.topcoder.com/schmidt

centercancerchallenge



Causal structure discovery

Problem: Faithfulness 
violations are 

frequent when 
sample size n isn’t 

infinite

Foundations for learning causal networks from 
observational data were developed at CMU by 

Spirtes, Glymour & Scheines in 1990s:

Uhler et al., Ann. Statist., 2013; Raskutti & Uhler, Stat, 2018

Learning network on 100 nodes requires 
>>10^100 samples

These algorithms assume faithfulness, i.e., that 
causal effects cannot cancel each other out

Gene 1 Gene 2

Gene 3

n=100
n=10,000
n=1,000,000

24 nodes, 15,000 samples

• Building on Eberhardt’s formalism, we 
extended this to first provably consistent 
algorithm for inferring causal network 
from observational & interventional data

• Computationally scales to graphs with 
1000s of nodes, but not performance-wise

Yang, Katcoff & U., ‘18,                                                                                                             
Squires, Wang & U., ’20,

Recent review: Squires & 
U., Causal structure 
learning: a combinatorial 
perspective, FoCM 2022 

10-node graphs

• Problem: number of conditional 
independence tests

• Developed greedy sparest permutation 
algorithm that is consistent under strictly 
weaker conditions  [Wang, Solus, Yang & U., ‘17] 

UAI contributions: Malinsky, Rios, Moffa, Kuipers, 
Kiyavash, Choo, Shiragur, Claassen, Mooij, Koivisto, 
Evans, Cussens, Richardson, Cooper, Shimizu, Meek,…



Causal transport and multi-modality

Expression in 
context 1 

(disease, cell 
type, etc.)

genes

Expression in 
context 2

(disease, cell 
type, etc.)

genes

f?

control

? ?

control

Single-cell 
images

f?

Single-cell 
images

Transport to new contexts Transport to new perturbations

How to think of causal variables in images?
Can multi-modality help?

How to predict the effect of unseen interventions/perturbations?



Multi-modal autoencoders for learning causal features

Multi-modal learning as a tool for causal feature discovery
by learning integrated latent spaces:

Causal features should be invariant to modality in which they are measured

Multi-modal integration for 
genetic association studies

Radhakrishnan et al., 
Nature Communications 2023Yang et al., ICML Workshop 2019 & Nature Communications, 2021

Multi-modal integration / translation

Related work: Invariant prediction for causal inference: Peters, Buehlmann, Meinshausen
Invariant risk minimization: Arjovsky, Bottou, Gulrajani, Lopez-Paz



Learning latent causal graph from multi-modal data

Sturma, Squires, Drton & Uhler, arXiv:2302.00993
(building heavily on Kun Zhang’s recent work)

full column ranklinear additive causal 
structural equation 

model with non-
Gaussian noise

Allows  application of the 
results on identifiability of 

linear ICA

For each shared latent node 
there is at least one child in 

every domain

Theorem: The number of shared latent nodes and the joint domain distribution is identifiable. 
If there are no edges between the shared and domain-specific latent components and each 

shared latent node has at least 2 pure children, then also the shared latent graph is identifiable.



Learning latent causal graph from interventional data

Zhang, Squires, Greenewald, Srivastava, Shanmugam & Uhler, arXiv:2307.06250

Theorem: If interventional data from at least one intervention per latent node is available, then 
the latent interventional targets and the causal structure between the latent variables are 
identifiable (up to permutation), in theory as well as algorithmically using our discrepancy-VAE.

Given observational and perturbational data 𝑋𝑋,𝑋𝑋𝑔𝑔:
• learn a generative model for ℙ 𝑋𝑋𝑔𝑔 𝑋𝑋,𝑔𝑔 ,
• the grouping of targeted variables 𝐼𝐼 = 𝑔𝑔 ,
• and the causal graph between  𝐼𝐼.

Related: Identifiability results under hard interventions in linear model Squires, Seigal, Bhate & Uhler, ICML 2023 
Causal variable learning: Kun Zhang, Eberhardt, Sridhar, Hartford,… Disentanglement: Schoelkopf, Bengio,…

faithful 
causal model

polynomial
function

Discrepancy-based VAE Loss:



Causal transport: blackbox or causal model?

Expression in 
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(disease, cell 
type, etc.)

genes

Expression in 
context 2

(disease, cell 
type, etc.)

genes
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control

? ?

control

Single-cell 
images

f?

Single-cell 
images

Transport to new contexts Transport to new perturbations

Black-box versus causal model: Transport problem to new genetic 
perturbations seems the hardest problem because of missing prior?

Given the causal graph, then necessary and sufficient conditions for causal 
transportability (i.e. transport across contexts) are known [Bareinboim & Pearl, 
NeurIPS 2014, PNAS 2016, etc.] 



Causal matrix completion using neural tangent kernel

Predict the effect of a 
new perturbation / 
context combination?

Standard low-rank 
matrix completion 
approaches won’t 
work! 

rows: interventions,
cols: conditioning

We built an NTK framework for matrix completion that 
can make use of feature priors on rows and columns

Radhakrishnan et al., PNAS 2022

Related work:  Synthetic controls / interventions: Shah, Agarwal, Abadie



Where we are headed: from prediction to control

If we are able to predict the effect of an unseen intervention, we should be able to optimize 
interventions to induce a particular cell state transition

Zhang, Squires et al., to appear in Nature Machine Intelligence 2023

Active learning of interventions: For cell state engineering:

Algorithm iteratively updates causal 
model belief using samples acquired 
so far from different interventions, 
and selects next intervention that is 
most informative and will move the 
distribution to the desired state using 
causally informed acquisition function:

Our acquisition function is theoretically sound (information-theoretic bounds, provably recovers 
optimal intervention) and computationally efficient (closed-form evaluation and fast gradient-
based optimization for linear Gaussian SEM and the problem of mean matching)

Related work: Active learning/Bayesian opt/Bandits: Gulchin, Aglietti, Bareinboim;   also: Zhang, Squires & U., NeurIPS 2021



 While in biology we have access to large-scale multi-modal 
and interventional datasets, the underlying causal model 
incl. causal variables is generally unknown

 Optimally making use of large-scale multi-modal and 
interventional datasets requires a theoretical and 
algorithmic framework for causal representation learning

 Many open problems regarding how to optimally combine 
approaches from representation learning with causality 

 Concentrated on Pearl’s level 2 (predicting the effect of 
unseen interventions): instead of combining methods from 
level 1 and level 3, do we need a completely new 
theoretical and algorithmic framework?

Biomedical sciences are uniquely suited not only to being 
one of the greatest beneficiaries of research in causality/ML 

but also one of the greatest sources of inspiration for it.

Pearl’s causal hierarchy

J. Pearl, The Book of Why, 2018
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