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Need for causal representation learning

Huge amounts of unlabeled data of many
different modalities

Representation learning allows integrating
different modalities and extracting latent
structures that capture intrinsic behavior

without labeled data

Broad Genomics, by the numbers

Data Generated (Petabases)
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Similar to Twitter
Netflix movie corpus: 60pb

Total data currently under
management at Broad: ~100pb



Need for causal representation learning

Huge amounts of unlabeled data of many Understanding the underlying mechanisms / causal
different modalities relationships is critical in biomedical sciences

recommen- i
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Generated by DALL-E 2

T We need a theory of
Causal causal representation
[Inference } learning!

Representation learning allows integrating
different modalities and extracting latent
structures that capture intrinsic behavior

without labeled data

k Perturbations
(CRISPR, drugs, ...)
[Representation} represent unique

IearningN opportunity!




Gene regulation and structural equation models

Ex: Gene regulatory network for pregastrular
endomesoderm specification in sea urchins
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Eric H. Davidson, 2006

Sewell Wright
developed the
foundation of
causal inference
by studying
heredity

p
causal structural

\equation models Dam Sewell Wright, 1920

Causal relations given by
directed network; each
node is associated with
a random variable;

\ / X3 = f3(€3) stochasticity introduced
Xy « f4(X2, X3,€4) by independent noise
variables €;

Defining interventional distributions:

do(Xz = ¢)

e Intervention on Xs:

o p(X3 | do(Xs = c)) = p(x3) 7 p(x3 | xa), but

p(Xa | do(X3 = ¢)) = p(xa | x3) # p(xa)

Intervention defines probabilistic
operation that is different from
conditioning and marginalization

Judea Pearl, 1995




UMAP_2

Engineering cell states: rejuvenation,
regenerative & personalized medicine

Achievable e.g. through: combinations of
transcription factors (humans ~2000)

8.

Cancer Immunotherapy Challenge:
https://go.topcoder.com/schmidt
centercancerchallenge

»

Progenitor

L}

Terminal

o Exhuuste&

5 .Effecior

S 0 5 10

[Pluripotency |
_ESC iPSCs _ - -

Aberrant
epigenetic
changes

:" Rt lp“h
W mesoderm I

qu2 My &
0ct4 KIf4 5t )
!! OSKM iPSCs 4N-off
Fibroblasts
2|§;f4 7_’ ’ w—
T
SgX2 % cMyc SKM iPSCs
, LR 4N-on

https://www.sciencedirect.com/science/article/pii/51934590919304230

Space of possible perturbations and relevant contexts is
combinatorial & continuous!



UAI contributions: Malinsky, Rios, Moffa, Kuipers,

Ca usda I St ru Ct ure d iscove ry Kiyavash, Choo, Shiragur, Claassen, Mooij, Koivisto,

Evans, Cussens, Richardson, Cooper, Shimizu, Meek,...

Foundations for learning causal networks from *  Problem: number of conditional
observational data were developed at CMU by independence tests

Spirtes, Glymour & Scheines in 1990s: .
* Developed greedy sparest permutation

These algorithms assume faithfulness, i.e., that algorithm that is consistent under strictly
causal effects cannot cancel each other out weaker conditions

Gene 1 ——> Gene 2 * Building on Eberhardt’s formalism, we
\/ extended this to first provably consistent

algorithm for inferring causal network
Gene 3 from observational & interventional data

10-node graphs
10 e * Computationally scales to graphs with

o
w

Problem: Faithfulness 1000s of nodes, but not performance-wise
violations are
frequent when
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How to predict the effect of unseen interventions/perturbations?

Expression in Expression in
context 1 context 2 Single-cell Single-cell
(disease, cell (disease, cell images images
type, etc.) type, etc.)
Al (RN control &
X PR fon : X Ncﬂ("
LT i 2 @=n 5
o2 - 4
 genes genes
Transport to new contexts Transport to new perturbations

How to think of causal variables in images?
Can multi-modality help?



Multi-modal integration / translation
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Yang et al., ICML Workshop 2019 & Nature Communications, 2021

Multi-modal integration for
genetic association studies

Radhakrishnan et al.,
Nature Communications 2023

Multi-modal learning as a tool for causal feature discovery
by learning integrated latent spaces:
Causal features should be invariant to modality in which they are measured

Related work:

Invariant prediction for causal inference: Peters, Buehlmann, Meinshausen

Invariant risk minimization: Arjovsky, Bottou, Gulrajani, Lopez-Paz
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linear additive causal

structural equation
model with non-
Gaussian noise

full column rank

X! [aa]

Allows application of the @ For each shared latent node
results on identifiability of there is at least one child in
linear ICA every domain

Theorem: The number of shared latent nodes and the joint domain distribution is identifiable.
If there are no edges between the shared and domain-specific latent components and each
shared latent node has at least 2 pure children, then also the shared latent graph is identifiable.

Sturma, Squires, Drton & Uhler, arXiv:2302.00993
(building heavily on Kun Zhang’s recent work)



Learning latent causal graph from interventional data

Given observational and perturbational data X, X9: . polynomial  gonserved X
* learn a generative model for P(X9|X, g), function

* the grouping of targeted variables I = {g}, @ faithfu|:> B
* and the causal graph between I. causal model o e—

Theorem: If interventional data from at least one intervention per latent node is available, then
the latent interventional targets and the causal structure between the latent variables are

identifiable (up to permutation), in theory as well as algorithmically using our discrepancy-VAE.
Zhang, Squires, Greenewald, Srivastava, Shanmugam & Uhler, arXiv:2307.06250
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Related: Identifiability results under hard interventions in linear model Squires, Seigal, Bhate & Uhler, ICML 2023
Causal variable learning: Kun Zhang, Eberhardt, Sridhar, Hartford,... Disentanglement: Schoelkopf, Bengio,...



Transport to new contexts Transport to new perturbations

Expression in Expression in
Fontext 1 c.:ontext 2 Single-cell Single-cell
(disease, cell (disease, cell images images
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Given the causal graph, then necessary and sufficient conditions for causal
transportability (i.e. transport across contexts) are known [Bareinboim & Pearl,
NeurlPS 2014, PNAS 2016, etc.]

Black-box versus causal model: Transport problem to new genetic
perturbations seems the hardest problem because of missing prior?



Causal matrix completion using neural tangent kernel

20000

We built an NTK framework for matrix completion that

Predict the effect of a )
can make use of feature priors on rows and columns

new perturbation /
context combination?

Lpd et
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Application Feature-Prior
Movie Rating Prediction Embedding of User & Movie
& h Drug Imputation Embedding of Drug

Image Inpainting/Reconstruction | Embedding of Image Coordinates

Cell
ell Types Reconstructed Image

Corrupted Image

CMap CMap
(Full Dataset) (Sparse Regime)
Evaluation Mean Over Cell Type FaLRTC DNPP NTK Evaluation Mean Over Cell Type FaLRTC DNPP NTK
Metric* (Naive Baseline) (Llu etal. 2013) | (Hodos et al. 2018) (Qurs) Metric* (Naive Baseline) (Liu et al. 2013) | (Hodos et al. 2018) (Ours)
Pearson r 0.374 £ 0.0004 0.545 + 0.0003 0.556 £ 0.0003 0.572 + 0.0002 Pearson r 0.450 0.544 0.538 0.573
Mean R2 0.134 + 104(-5) 0.286 + 0.0003 0.296 + 0.0004 0.320 + 0.0002 Mean R? 0.197 0.285 0.278 0.324
Mean Cosine M Cosi
A 0.371+ 10-5) 0.536£0.0004 | 0541£0.0004 | 0.554+0.0002 ean ~osine 0.448 0.536 0.532 0.565
Similarity Similarity

Radhakrishnan et al., PNAS 2022

*Higher is better, with a maximum of 1.

Related work: Synthetic controls / interventions: Shah, Agarwal, Abadie



Where we are headed: from prediction to control

If we are able to predict the effect of an unseen intervention, we should be able to optimize
interventions to induce a particular cell state transition

Active learning of interventions: For cell state engineering:
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causally informed acquisition function:

Our acquisition function is theoretically sound (information-theoretic bounds, provably recovers
optimal intervention) and computationally efficient (closed-form evaluation and fast gradient-
based optimization for linear Gaussian SEM and the problem of mean matching)

Zhang, Squires et al., to appear in Nature Machine Intelligence 2023

Related work: Active learning/Bayesian opt/Bandits: Gulchin, Aglietti, Bareinboim; also: Zhang, Squires & U., Neur|PS 2021



L)

Biomedical sciences are uniquely suited not only to being
one of the greatest beneficiaries of research in causality/ML
but also one of the greatest sources of inspiration for it.

While in biology we have access to large-scale multi-modal
and interventional datasets, the underlying causal model
incl. causal variables is generally unknown

Optimally making use of large-scale multi-modal and
interventional datasets requires a theoretical and
algorithmic framework for causal representation learning

Many open problems regarding how to optimally combine
approaches from representation learning with causality

Concentrated on Pearl’s level 2 (predicting the effect of
unseen interventions): instead of combining methods from
level 1 and level 3, do we need a completely new
theoretical and algorithmic framework?

Pearl’s causal hierarchy
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J. Pearl, The Book of Why, 2018
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