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Abstract

Probabilistic Sentential Decision Diagrams (PS-
DDs) are effective tools for combining uncertain
knowledge in the form of (learned) probabilities
and certain knowledge in the form of logical con-
straints. Despite some promising recent advances
in the topic, very little attention has been given to
the problem of effectively learning PSDDs from
data and logical constraints in large domains. In
this paper, we show that a simple strategy of sam-
pling and averaging PSDDs leads to state-of-the-
art performance in many tasks. We overcome some
of the issues with previous methods by employing
a top-down generation of circuits from a logic for-
mula represented as a BDD. We discuss how to lo-
cally grow the circuit while achieving a good trade-
off between complexity and goodness-of-fit of the
resulting model. Generalization error is further de-
creased by aggregating sampled circuits through
an ensemble of models. Experiments with various
domains show that the approach efficiently learns
good models even in very low data regimes, while
remaining competitive for large sample sizes.

1 INTRODUCTION

Probabilistic Circuits (PCs) are generative models with neu-
ral network-like semantics capable of tractably answering
several advanced probabilistic queries. Conceptually, PCs
unify a wide range of tractable probabilistic models such as
arithmetic circuits [Darwiche, 2003], sum-product networks
[Poon and Domingos, 2011], (mixtures of) cutset networks
[Rahman et al., 2014], and generative forests [Correia et al.,
2020].

Probabilistic Sentential Decision Diagrams (PSDDs) are a
particularly interesting subclass of PCs, as tractability cov-
ers a broader spectrum of exact queries in such models [Kisa

et al., 2014, Bekker et al., 2015, Shen et al., 2016, Mattei
et al., 2020, Vergari et al., 2021]. Also, the parameters of PS-
DDs have a clear probabilistic interpretation, which allows
for closed-formula parameter learning and the injection of
domain knowledge in the form of propositional logic formu-
lae expressed in the network structure [Darwiche, 2011, Kisa
et al., 2014]. This allows PSDDs to be efficiently learned
from a combination of data and logic constraints, increasing
sample efficiency and allowing the easy representation of
combinatorial objects such as hierarchies, rankings, routes,
etc [Choi et al., 2016, 2015, 2017, Shen et al., 2017].

Most existing approaches to learning PSDDs from intricate
constraints and data are limited to specific logic formulae
[Choi et al., 2015, 2017, Shen et al., 2017]. To our knowl-
edge, the only existing algorithms that take arbitrary con-
straints and data are LEARNPSDD [Liang et al., 2017] and
STRUDEL [Dang et al., 2020]. Both are centered on the idea
of iteratively applying structural transformations that pre-
serve the logical constraints represented in the incumbent
model and increase goodness-of-fit or some proxy mea-
sure. While LEARNPSDD performs a costly local search
requiring several evaluations through the whole circuit at
every iteration, STRUDEL makes use of fast heuristic lo-
cal searches to achieve similar performance at much lower
computational cost. The question of how to initialize the
structure search is left mostly unaddressed by Liang et al.
[2017], while Dang et al. [2020] suggest compiling a circuit
from a Chow-Liu Tree learned from data that ignores logical
constraints.

Logical restrictions can be incorporated in learning by com-
piling a CNF formula into an initial logic circuit, usually
chosen to minimize size [Choi and Darwiche, 2013, Oztok
and Darwiche, 2015]. The compiled circuit is canonical,
in that it is the unique representation of the formula for
a given partial ordering of the variables, and is devoid of
any probabilistic meaning. Such an approach presents two
major shortcomings. First, some logical constraints (e.g.
cardinality constraints) that can be efficiently represented
as PCs have intractable CNF representation [Nishino et al.,
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 2016], or require the addition of auxiliary (latent) variables
[Sinz, 2005]. Second, canonicity results in trivial represen-
tations for sub-circuits whose variables are not logically
constrained, leading to unreasonable probabilistic indepen-
dence assumptions. Besides some recent preliminary work
on the sampling of PSDDs, little attention has been given to
the generation of initial circuits from both logic formulae
and data. Mattei et al. [2019] suggested a top-down approach
to sampling PSDDs, yet no practical algorithm was fully
formulated. Geh et al. [2020] recommended using a BDD
to more efficiently represent the partial formulae required
in the sampling of the circuit, however the generated circuit
suffered from an exponential blow-up in size.

In this work, we show how the aforementioned problems
can be mitigated by a simple learning method that is domain
agnostic and scales to large amounts of data and intricate
propositional formulae. The proposed method consists in
sampling PSDDs in a way that balances model diversity,
complexity and goodness-of-fit (Section 3). Our approach
solves the intractability issues in the works of Mattei et al.
[2019] and Geh et al. [2020] by partly relaxing logical con-
strains generated during the sampling. Experiments with
previously used tasks show that, through simple ensemble
strategies, the proposed method achieves competitive results
against state-of-the-art methods (Section 4). We also present
some conclusions and final remarks (Section 5). We start by
reviewing the theory behind PSDDs (Section 2).

2 BACKGROUND

We first review basic concepts of PSDDs, and fix some no-
tation. Random variables are written in upper case (e.g. X)
and their values in lower case (e.g. x). We identify proposi-
tional variables with 0/1-valued random variables, and use
them interchangeably. Sets of variables and their joint values
are written in boldface (e.g. X, x). Given a Boolean formula
f , we write 〈f〉 to denote its semantics, that is, the Boolean
function represented by f . For Boolean formulas f and g,
we write f ≡ g if they are logically equivalent, that is, if
〈f〉 = 〈g〉; we abuse notation and write φ ≡ f to indicate
that φ = 〈f〉 for a Boolean function φ. The scope Sc(f)
of a formula f is the set of variables that appear in it. The
partitions of a Boolean formula are an important concept to
understand PSDDs [Darwiche, 2011]:

Definition 1. Let φ(x,y) be a Boolean function over dis-
joint sets of variables X and Y, and D = {(pi, si)}ki=1 be
a set of tuples where pi and si are formulae over X and
Y, respectively, satisfying pi ∧ pj ≡ ⊥ for each i 6= j and
∨ki=1pi ≡ >. We say that D is an (X,Y)-partition of φ
iff φ ≡

∨k
i=1(pi ∧ si). Each pi and si is called a prime

and sub, respectively; together they form an element of the
partition.

Each prime and sub can be further decomposed into new
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Figure 1: (a) A probability distribution whose support is
given by (A → ¬B) ∧ (C → A) and (c) its PSDD repre-
sentation and (b) corresponding vtree.

partitions, recursively, until they contain only literals. This
process generates a logic circuit as the one in Figure 1c (if
one disregards the weights at the edges). In the figure we
draw the prime pi of an element as the left child (input) of
an AND gate, and the sub as its right child. Such a recursive
decomposition is often guided by a vtree, which is a rooted
binary tree whose leaves are the variables in both the data
and φ. The variables appearing in a vtree with root v are
denoted Sc(v). We distinguish the children of a node v of a
vtree into a left child, denoted as v←, and a right child, de-
noted as v→. Intuitively, the left child contains the variables
in the X part of an (X,Y)-partition, while the right child
contains the variables in Y. A vtree is said to be right-linear
(resp., left-linear) when every left (resp., right) child is a
leaf. A vtree defines a total variable ordering as a left-right
traversal. Figure 1b shows a right-linear vtree for the circuit
in Figure 1c; the vtree defines the total order (A,B,C).

PSDDs represent probability distributions subject to logical
constraints by associating weights to the logic circuit of a
recursive decomposition of a formula [Kisa et al., 2014]:

Definition 2 (PSDD). Fix a vtree v. A PSDD is either (i) an
indicator function of a literal [[X]] or [[¬X]] where X is a
variable associated to a leaf of v,1 or (ii) a convex combina-
tion

∑k
i=1 θiPpi

(X)Psi(Y) where Ppi and Psi are PSDDs
over variables X and Y, respectively, which are also the
variables in the left and right children of an inner node of v.
We require that

∑
i Ppi

(x) = Ppj
(x) for some j for each

assignment x of X, and that θi = 0 if maxy Psi(y) = 0.

1The notation [[φ]] denotes the Iverson Bracket, which is a
function that returns 1 if φ is true and 0 otherwise.



 PSDDs are materialized as probabilistic circuits, that is,
directed acyclic graphs whose leaves are univariate distribu-
tions and inner nodes represent convex combinations (OR
gates) of products (AND gates) of their input. Logical con-
straints are embedded into a PSDD structure as the sup-
port of each sub-circuit. In fact, one can read off a logical
expression/circuit of a PSDD by translating each convex
combination

∑k
i=1 θiPpi(X)Psi(Y) into a logical formula∨k

i=1[[Ppi
(X) > 0]] ∧ [[Psi(Y) > 0]]. This justifies naming

convex combinations as OR gates and products as AND
gates. Figure 1 shows an example of (a) a probability distri-
bution whose support is the satisfying assignments of the
formula (A→ ¬B)∧ (C → A), (c) a PSDD representation
of the same distribution and (b) the corresponding vtree.
In the figure, the indicator functions are represented more
clearly as literals; each θi of a convex combination is rep-
resented as a weighted edge connecting OR gates to AND
gates. Note that OR gates can have more than one parent,
hence the PSDD is not limited to tree structures as in the
example.

By construction, the probabilistic circuit representation of a
PSDD satisfies properties of determinism (each OR gate has
at most one non-zero input when evaluated at a complete
configuration of the literals), smoothness (all subcircuits of
an OR gate have identical scope) and structural decomposi-
tion (AND gates have two children whose scopes are given
by a vtree).

Once each leaf/literal of a PSDD has its value fixed, the cor-
responding probability value can be computed in linear time
in the size of the circuit by visiting nodes from the leaves to
the root and applying the function associated to each node
(product for AND gates and convex combination for OR
gates). One can also obtain in linear time the probability of
some evidence e that specifies a partial assignment to the
variables by bottom-up propagation: each leaf is assigned
value 1 if the corresponding literal is satisfied by e or absent
in e and 0 otherwise; and each inner node is assigned the
value resulting of the corresponding function of the children
values. Applying this procedure for the PSDD in Figure 1c
we obtain P (A = 1) = 0.8. Conditional probabilities can
thus be efficiently obtained as two computations of prob-
ability of evidences. Many other exact inferences can be
performed efficiently in PSDDs by passing values through
the graphical structure [Bekker et al., 2015, Mattei et al.,
2020].

3 SAMPLING PSDDS

In this section, we describe a procedure for effectively learn-
ing PSDDs by sampling and averaging. Given a Boolean
formula, our method generates a vtree uniformly at random,
and then finds a PSDD structure that approximates φ as
much as possible while maintaining the circuit size below
some given threshold. Approximating the logical constraints
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Figure 2: Exact, invalid and partial partitions.

allows us to trade consistency for circuit complexity, and
scale to large domains.

Consider a Boolean formula φ which we want to decom-
pose as an (X,Y)-partition according to some vtree. We
therefore must produce elements such that their primes are
mutually exclusive, exhaustive and their disjunction is valid.
To simplify the problem, we consider only partitions where
the primes are conjunctions of literals, as in the example
in Figure 2a. In this particular case, generating an element
consists in producing a conjunction of literals to serve as the
prime p, with the respective sub obtained as the restriction
of φ by the single assignment of X consistent with p. We
denote the latter operation as φ|p. A naïve implementation
of that strategy, however, scales poorly, as the number of
elements in a partition grows exponentially in the cardinality
of X. To counter this blow up, we instead sample a con-
stant number of mutually exclusive and exhaustive primes,
leading to an upper approximation of the Boolean formula.

To motivate the approach taken, and illustrate the difficulties
it overcomes, consider generating a partition of the formula
φ(A,B,C,D) = (A∧¬B∧¬D)∨(B∧¬C∧D) according
to the root node v = 1 of the vtree in Figure 2b, using at
most 3 elements whose primes are conjunctions of literals.
An exact decomposition requires 23 elements whose primes
are all combinations of positive and negative literals of
the variables {A,B,C}. We can reduce that number down
to our limit of 3 elements by grouping primes that share
literals. For example, take the partially constructed circuit
in Figure 2b. The prime of e1 is obtained as the disjunction



 of the primes A ∧ B ∧ C and A ∧ B ∧ ¬C. Similarly, the
prime of e3 is the disjunction of all primes that contain
¬A. The subs are obtained by the restriction of φ by the
corresponding prime. As the example shows, the result is
not a proper ({A,B,C}, {D,E})-partition, as the subs of
e1 and e3 both contain the variable C in the scope. Further
note that, despite E not appearing in Sc(φ) (i.e. there is no
logical restriction on E), it may nonetheless retain some
probabilistic influence derived from the data, and as such
may not be removed from the circuit.

To efficiently decompose a formula, we resort to a weaker
definition of a partition that relaxes the logical constraints.

Definition 3 (Partial partition). Let φ(x,y) be a Boolean
function over disjoint sets of variables X and Y, and D =
{(pi, si)}ki=1 be a set of tuples where pi and si are formulae
over X and Y, respectively, with pi ∧ pj ≡ ⊥ for i 6= j and
∨ki=1pi ≡ >. We say that D is a partial partition of φ if〈

k∨
i=1

(pi ∧ si)

〉
≥ φ ,

where the inequality is taken coordinate-wise.

Partial decompositions are similar in spirit to oblivious
bounds in probabilistic databases [Gatterbauer and Su-
ciu, 2014], where a probability computation is made more
tractable by relaxing a formula in such a way that the ap-
proximate probabilities provide an upper bound which does
not depend on the actual probability.

The set of conjunctive primes in a partial partition can be
represented as a binary decision tree where each node is
labeled as a variable and the outgoing edges denote positive
and negative literals over that variable, as in the example
Figure 2c (right). A path from the root to a leaf represents
all literals in a prime. We use that tree representation to
efficiently generate a partial (Sc(v←),Sc(v→))-partition
of a Boolean formula φ according to a vtree node v with
at most k primes as follows. First, randomly sample an
ordering (X1, . . . , Xm) of the variables in Sc(v←). Start-
ing from the root node labeled as X1, repeatedly expand a
leaf labeled Xi with two children labeled as Xi+1 until the
number of leaves is between k − 1 and k (so that further
expanding a leaf would violate the bound on the number of
primes). When expanding a leaf, generate restrictions φ|Xi

and φ|¬Xi
, and associate them with the left and right chil-

dren, respectively. Now, it may happen that φ|Xi ≡ φ|¬Xi .
In this case, relabel the node as Xi+1 and re-expand it with
children Xi+2. When the process terminates we have at
most k conjunctive primes p represented by paths in the
tree, associated with formulae φ|p. Now, because the primes
do not contain all variables in Sc(v←), those formulae are
not valid subs. To obtain valid subs, we apply the opera-
tion Forget(ψ,X) ≡ ψ|X ∨ ψ|¬X to each such formula
ψ and each variable X in Sc(ψ) ∩ Sc(v←). Note that by

Algorithm 1 SAMPLEPARTIALPARTITION

Input BDD φ, vtree node v, number of primes k
Output A set of sampled elements

1: Define E as an empty collection of sampled elements
2: Sample an ordering X1, . . . , Xm of Sc(v←) ∩ Sc(φ)
3: Let Q be a queue initially containing (φ, 1, {})
4: j ← 1 . Counter of sampled elements
5: while |E| < k do
6: Pop top item (ψ, i, p) from Q
7: if j ≥ k or i > m or ψ ≡ > then
8: Add (p,Forget(φ|p,Sc(v←))) to E
9: continue

10: α← ψ|Xi , β ← ψ|¬Xi

11: if α ≡ β then enqueue (ψ, i+ 1, p) in Q
12: else
13: if α 6≡ ⊥ then push (α, i+ 1, p ∧Xi) to Q
14: if β 6≡ ⊥ then push (β, i+ 1, p ∧ ¬Xi) to Q
15: j ← j + 1

16: return E

construction Forget(ψ,X) ≥ ψ, and by extent any PSDD
constructed as such is a relaxation of its intended logic for-
mula. The described procedure is more formally visualized
in the pseudocode of Algorithm 1. Figure 2c displays an
example of a partial partition of the formula φ obtained
by the algorithm using an ordering A,B,C and 3 primes.
The Boolean functions φ in the algorithm are represented
as Binary Decision Diagrams [Bryant, 1986], which allow
for the efficient implementation of restriction and forget
operations. This has the additional benefit of allowing effi-
cient representations of logic constraints whose CNF/DNF
representations are intractable.

We generate a PSDD structure by repeatedly applying
SAMPLEPARTIALPARTITION over the previously generated
primes and subs until there are only literals left. Alterna-
tively, we may apply a compression or merge operation in
order to penalize the circuit size. LetD = {(pi, si)}ki=1 be a
partial partition of a Boolean function φ. If there are primes
pi and pj in D such that si = sj , for i 6= j, then we can
obtain a smaller circuit representing the same logic formula
by replacing elements (pi, si) and (pj , sj) with a new ele-
ment (pi ∨ pj , si). This operation is known as compression
[Darwiche, 2011]. Although compression does not change
the formula of D, it does alter the PSDD’s underlying dis-
tribution. A merge operation, as opposed to compression,
preserves the structure of primes, and reduces the circuit by
connecting identical subs into a single sub-circuit. Figure 3
shows examples of compression and merging. Note that the
merge operation is the only one to generate gates with more
than a single parent.

Algorithm 2 describes the SAMPLEPSDD algorithm for
sampling PSDD structures. Starting with the full, original
formula and root vtree node, the algorithm essentially grows
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on the left are either compressed (top) or merged (bottom),
resulting in the (incomplete) circuit on the right.

Algorithm 2 SAMPLEPSDD

Input BDD φ, vtree node v, number of primes k
Output A sampled PSDD structure

1: if Sc(v) = 1 then
2: if φ is a literal then return φ as a literal node
3: else return a Bernoulli distribution from Sc(v)

4: else if φ ≡ > then
5: return a fully factorized circuit over Sc(v)
6: E← SAMPLEPARTIALPARTITION(φ, Sc(v←), k)
7: Create an OR gate S
8: Randomly compress elements in E with equal subs
9: Randomly merge elements in E with equal subs

10: for each element (p, s) ∈ E do
11: l← SAMPLEEXACTPSDD(p, v←, k)
12: r ← SAMPLEPSDD(s, v→, k)
13: Add an AND gate with inputs l and r as a child of S
14: return S

a PSDD circuit in a top-down fashion by recursively call-
ing SAMPLEPARTIALPARTITION. The recursion terminates
when it is called on a vtree leaf node, in which case either a
literal node is created if φ is a literal, or a Bernoulli distri-
bution is learned if φ ≡ > and Sc(v) = 1. Note the special
treatment for φ ≡ > in Line 5. Since any partial partition of
φ is a(n exact) partition, the algorithm is able to construct
a random circuit from a tautology. Alternatively, we may
associate some template circuit for such cases. For simplic-
ity, we return a fully factorized distribution when recursing
with a tautology in the pseudo-code.

To ensure prime mutual exclusivity and determinism, no
relaxation is allowed at any subcircuit rooted at a prime.
Consider Figure 2c as an example: suppose a recursive call
on e1’s prime A ∧ B relaxes it to B. This contradicts the

partition definition, as B conflicts with e3’s prime ¬A (be-
cause B ∧ ¬A 6≡ ⊥). To deal with this problem, we must
make sure subcircuits rooted at primes only contain exact
partitions. This is done with SAMPLEEXACTPSDD (Line
9), which simply calls a SAMPLEEXACTPARTITION equiva-
lent during prime sampling. One can easily verify that, since
we assume k as a bounded constant, these exact subcircuits
will never suffer from an exponential blowup, as all of their
subsequent exact partitions contain primes with at most
dlog2(k)e variables and thus at most 2dlog2(k)e elements.

4 EXPERIMENTS

We evaluate the performance of SAMPLEPSDD in three
different tasks that combine logical constraints and data
against LEARNPSDD, STRUDEL, mixtures of STRUDELs
[Dang et al., 2020], and LEARNSPN [Gens and Domingos,
2013]. On each instance, we sample a fixed number n of
PSDD structures, learning their parameters through closed-
form smoothed maximum-likelihood estimation [Kisa et al.,
2014]. We then use these n PSDDs as a weighted mixture
of models, optimizing weights through several strategies:
(1) likelihood weighting (LLW), where each component’s
weight is proportional to its train likelihood; (2) uniform
weights, (3) Expectation-Maximization (EM), (4) stacking
[Smyth and Wolpert, 1998], and (5) Bayesian Model Com-
bination (BMC) [Monteith et al., 2011]. Due to the nature of
SAMPLEPSDD, circuit sampling can easily be parallelized,
significantly decreasing run time. In several instances, com-
piling an initial circuit from a CNF for LEARNPSDD was
intractable, in which case we compiled a BDD into a PSDD
to use in LEARNPSDD.

Experiments were run on an Intel i7-8700K 3.70 GHz ma-
chine with 12 cores and 64GB. We limited LEARNPSDD
to at most 100 iterations, and STRUDEL to 100 iterations
(we include runs with 1000 iterations in the supplementary
material). STRUDEL circuits were generated using the Juice
probabilistic circuits library [Dang et al., 2021], which was
also used for the SAMPLEPSDD and LEARNPSDD imple-
mentations. For LEARNSPN, we used the PySPN library.2

4.1 LED DISPLAY

We start with a toy problem. A seven-segment LED display
consists of LED light segments which are separately turned
on or off in order to represent a digit. Figure 5 (top) shows
all digits represented by a seven-segment display. Each digit
is associated with a local constraint on the values of each
segment. We adapted the approach by Mattei et al. [2020],
and generated a led dataset of faulty observations of the
segments as follows. Each segment is represented by a pair
of variables (Xi, Yi), where Yi is the observable state of

2https://gitlab.com/pgm-usp/pyspn

https://gitlab.com/pgm-usp/pyspn
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Figure 4: (a) Log-likelihoods for the unpixelized led, (b) led-pixels, (c) sushi 10-choose-5, (d) sushi ranking, and
(e) dota datasets. (f) Mean average in seconds of each PSDD learning algorithm.



 

Figure 5: Digits represented by a LED display, with their
image counterparts.

segment i (i.e. whether the segment is on or off) and Xi is
the latent state of i. We randomly sampled a PSDD over
variables Xi and Yi whose support are the valid configura-
tions of segments Xi representing the digits, and use that
model to generate a dataset of 5000 training instances and
10000 test instances.

A more complex alternative configuration for the LED set-
ting, led-pixels, is the interpretation of digits as images
and segments as pixel regions. The segment constraints re-
main unchanged, but now pixels act as the latent variables.
Figure 5 (bottom) shows the 10×15 black-and-white images
for each digit. In this pixelized version, we do not explicitly
describe, in the form of logical contraints, a one-to-one map-
ping of pixel regions as segments; instead, we visually iden-
tify key points where pixels are most often activated given a
segment configuration. Let Rs be the pixel variables which
are most often set to 1 when a segment s is on. We build a
constraint for each segment: ψ(s) = s→

∨
r∈Rs

r. We fur-
ther recognize which pixels are always off given a valid digit
segment configuration: φ(s) =

(∧
p:p=0|s ¬p

)
∧
(∧

s∈s s
)
.

The full logic formula encoding the constraints is the con-
junction of every possible φ and ψ.

Figure 4 (a) and (b) show how our approach fairs against
competitors using different percentages of available training
data on the unpixelized and pixelized versions of the dataset
respectively. The labels on the x-axis indicate percentage
and number of training instances. We sampled n = 100 cir-
cuits for both settings, with k = 32 and k = 8 for led and
led-pixels respectively. Note how the use of logic con-
straints greatly improves performance even under extremely
scarce data (with 1 or 2 datapoints!). Most of the SAM-
PLEPSDD approaches obtain the best sample efficiency
among the methods that achieve best performance with the
full dataset, and ranks amongst the best when data size is
small.

4.2 CARDINALITY CONSTRAINTS

The dota dataset contains the results of 102,944 online
matches of the Dota 2 videogame, made available at the
UCI Repository. In this game, each team is composed of
5 players, with each player controlling a single character
out of a pool of 113. Each character can be controlled by

at most one single player in a match. We represent the
domain by 2 groups of 113 Boolean variables C(i)

1 and C(i)
2 ,

denoting whether the i-th character was selected by the first
or second team, respectively. We then encode 113 choose
5 cardinality constraints on the selection of each team (i.e.,∑

i C
(i)
j = 5 for j = 1, 2). Adding the constraint that no

character can be selected by both teams (¬(C(i)
1 ∧ C

(i)
2 ))

made the BDD representation of the formula intractable, and
was ignored. Since the CNF representation of cardinality
constraints is intractable, we used a PSDD compiled from
the BDD to generate an initial circuit for LEARNPSDD
(as BDDs can efficiently encode such constraints [Eén and
Sörensson, 2006]).

The plot in Figure 4e shows the log-likelihood of the tested
approaches. Despite accurately encoding logical constraints,
LEARNPSDD initially obtains worse performance when
compared to SAMPLEPSDD, but quickly picks up, outper-
forming other models by a large margin. SAMPLEPSDD
ranks first for small data regimes, and is comparable to
other algorithms (e.g. STRUDEL) for larger training datasets.
LEARNSPN encountered problems scaling to more than
50k instances due to intensive memory usage.

We also compared methods on the sushi dataset
[Kamishima, 2003], using the setting proposed in Shen et al.
[2017]. The data contains a collection of 5,000 rankings
of 10 different types of sushi. For each ranking we create
10 Boolean variables denoting whether an item was ranked
among the top 5, and ignore their relative position. The logic
constraints represent the selection of 5 out of 10 items. We
split the dataset into 3,500 instances for training and 1,500
for the test set and evaluated the log-likelihood on both tasks
The plot in Figure 4c shows the log-likelihood for this data.
LEARNPSDD obtains superior performance across some of
the low sample sizes, but our approach was able to quickly
pick up and tie with LEARNPSDD when using the LLW,
stacking and EM strategies.

4.3 PREFERENCE LEARNING

We also evaluated the methods on the original task of rank-
ing the items on the sushi dataset. We adopt the same
encoding and methodology as Choi et al. [2015], where
each ranking is encoded by a set of Boolean variables
Xij indicating whether the i-th item was ranked in the j-
position. The test log-likelihood performance of the methods
is shown in Figure 4d. The results are qualitatively similar
to the previous experiments, with the added exception that
LEARNPSDD ranked first by a large margin compared to
others.



 4.4 PERFORMANCE AND SAMPLING BIAS

The approximation quality of SAMPLEPSDD is highly de-
pendent on both the vtree and maximum number of primes.
In this section, we compare the impact of both in terms of
performance and circuit complexity. We assess performance
by the log-likelihoods in the test set, as well as consistency
with the original logical constraints. The latter is measured
by randomly sampling 5,000 (possibly invalid) instances
and evaluating whether the circuit correctly decides their
satisfiability. A set of the top 100 sampled PSDDs (in terms
of log-likelihood in the train set) are selected out of 500 cir-
cuits learned on the 10-choose-5 sushi dataset to compose
the ensemble. Circuit complexity is estimated in terms of
both time taken to sample all 500 circuits and graph size (i.e.
number of nodes) of each individually generated PSDD.

It is quite clear that the structure of the vtree is strongly
linked to the structure of a PSDD. This is even more so
in the context of circuits of the SAMPLEPSDD form and
given the need to approximate a logic formula. For instance,
(near) right vtrees keep the number of primes fixed and
require no approximation, while (near) left vtrees discard
a large number of primes. In order to evaluate the effect of
the type of vtree on the quality of sampled structures, we
compared the performance of SAMPLEPSDD as we vary
the bias towards generation of right-leaning vtrees.3

Figure 6 shows the log-likelihood (top), consistency (mid-
dle) and circuit complexity (bottom) when varying the type
of vtrees used for guiding the PSDD construction. The blue
shaded area represents the interval of values for individ-
ual circuits. To verify consistency, we evaluate the PSDDs
in terms of satisfiability of a given example. An ensemble
returned a configuration as satisfiable if any of its models
attributed some nonzero probability to it; and unsatisfiable
if all models gave zero probability. This evaluation gives a
lower bound to consistency, which means all models even-
tually unanimously agreed on satisfiability when vtree right
bias ≥ 0.65. Alternatively, since SAMPLEPSDD is a relax-
ation of the original formula, an upper bound on consistency
could be achieved by evaluating whether any model within
the ensemble gave a zero probability to the example. In-
terestingly, we note that the likelihood weighting strategy
(LLW) dominates over other strategies on consistency. This
is because LLW often degenerates to a few models, giving
zero probability to lower scoring PSDDs, which means only
a small subset of circuits decide on satisfiability, and thus a
more relaxed model is less likely to disagree with the con-
sensus. On the other hand, this does not translate to better
data fitness on the general case, as we can clearly see from
Figure 4.

Overall, Figure 6 shows that performance greatly increases
3Given a parameter p, we grow a vtree in a top-down manner

where at each node we independently assign each variable to the
right child with probability p.
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Figure 6: PSDD samples generated from different vtree
biases and evaluated on data fitness (top), consistency with
formula (middle) and circuit complexity (bottom).



 as we move to more right-leaning vtrees, since we are more
likely to take advantage of available prior knowledge. Fig-
ure 6 (bottom) shows that this comes at a cost to complexity,
however, as more right-leaning vtrees mean smaller decom-
positions and fewer relaxations, resulting in larger circuits
and higher learning times.

The maximum number of sampled primes k also plays a
big role in providing good approximations. As previously
mentioned, a sufficiently high k reduces partial partitions to
exact partitions, although this is obviously generally not fea-
sible for larger formulae or datasets. We evaluate how this
impacts performance in the same manner as in the vtree ex-
periment; although, in this setting, we considered uniformly
random vtrees and only varied k. Figure 7 shows a similar
picture to the previous comparison: higher k’s translate to
higher performance at a cost to circuit complexity.

Finally, we compare the time performance of PSDD learn-
ing algorithms on the same task. Figure 4f displays the mean
time, in seconds, of each method as a function of training in-
stances in the sushi ranking dataset. For SAMPLEPSDD,
we measured the total time of learning 100 circuits in par-
allel. We observe that, although SAMPLEPSDD is much
slower than STRUDEL, it is the result of 100 learned cir-
cuits. Meanwhile, LEARNPSDD is orders of magnitude
slower compared to even SAMPLEPSDD, and outputs a
single PSDD.

5 CONCLUSION

We proposed a new approach for learning PSDDs from logi-
cal constraints and data by a random top-down expansion on
a propositional formula. Our method trades-off complexity
and goodness-of-fit by learning a relaxation of the formula.
We then leverage the diversity of samples by employing sev-
eral different ensemble strategies. We empirically showed
that this approach achieves state-of-the-art performance,
often surpassing competitors when under very low data
regimes. Finally, we reveal that PSDDs sampled from right
leaning vtrees are better formula approximators and have
increased log-likelihood performance, albeit at an increase
of circuit complexity.
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Figure 7: Performance of SAMPLEPSDD when varying k,
evaluating log-likelihood (top), satisfiability with the origi-
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