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Abstract

We present a new non-negative matrix factoriza-
tion model for (0, 1) bounded-support data based
on the doubly non-central beta (DNCB) distribu-
tion, a generalization of the beta distribution. The
expressiveness of the DNCB distribution is par-
ticularly useful for modeling DNA methylation
datasets, which are typically highly dispersed and
multi-modal; however, the model structure is suffi-
ciently general that it can be adapted to many other
domains where latent representations of (0, 1)
bounded-support data are of interest. Although
the DNCB distribution lacks a closed-form con-
jugate prior, several augmentations let us derive an
efficient posterior inference algorithm composed
entirely of analytic updates. Our model improves
out-of-sample predictive performance on both real
and synthetic DNA methylation datasets over state-
of-the-art methods in bioinformatics. In addition,
our model yields meaningful latent representations
that accord with existing biological knowledge.

1 INTRODUCTION

DNA methylation is a mechanism by which epigenetic
changes to DNA can modify the transcription of nearby
genes. These epigenetic changes can activate oncogenes or
inactivate tumor suppressors to drive the onset of cancer and
other diseases [Laird, 2010]. Discovering novel subtypes of
cancer that share underlying patterns of DNA methylation
is of interest to scientists, who seek to better understand the
role of DNA methylation in cancer development, and to clin-
icians, who seek to refine existing cancer treatment strate-
gies. To achieve this goal, computational biologists routinely
apply dimensionality reduction methods to DNA methy-
lation datasets in order to discover latent representations
that are both scientifically interesting and clinically useful.

A DNA methylation dataset typically consists of an
N x M sample-by-gene matrix of bounded-support data
B € (0,1)N*M "where the number of samples N is often
far exceeded by the number of genes M. A single element
of this matrix 3;; € (0, 1) represents the degree of methy-
lation for regions of the genome near gene j in sample .

The most commonly used dimensionality reduction
methods are principal component analysis (PCA) [Teschen-
dorff et al., 2007] and non-negative matrix factorization
(NMF) [Zhuang et al., 2012]. These methods are based
on Gaussian assumptions that are inappropriate for (0, 1)
bounded-support data. As a result, they fit DNA methylation
datasets worse than methods that are based on more
appropriate probabilistic assumptions [Ma et al., 2014].

The few existing non-Gaussian dimensionality reduction
methods for DNA methylation datasets almost all as-
sume that the elements of a sample-by-gene matrix are
beta-distributed. Indeed, this assumption is so standard
in bioinformatics that the elements are typically referred
to as “beta values” [Kuan et al., 2010]. Of these existing
methods, the most expressive is beta-gamma non-negative
matrix factorization (BG-NMF), a non-negative matrix
factorization model with a beta likelihood [Ma et al., 2014].

Although the beta distribution is a natural choice for model-
ing data with bounded support between 0 and 1, it is a chal-
lenging distribution with which to build probabilistic models
due its lack of a closed-form conjugate prior [Fink, 1997].
In general, there are few tractable and modular motifs for de-
riving posterior inference algorithms for models that assume
a beta likelihood. Models that do not make overly simplistic
assumptions tend to be accompanied by posterior inference
algorithms that are highly tailored to their specific structures,
making them difficult to modify or extend. Moreover, these
inference algorithms typically rely on approximations that
hamper precise quantification of uncertainty, which is of
particular interest in biomedical settings where datasets are
often small and properly calibrated decisions are critical.
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Figure 1: The DNCB distribution can take multi-modal shapes
when €1 < 1 or e2 < 1. This expressiveness is particularly use-
ful when modeling DNA methylation datasets, which are typi-
cally highly dispersed and multi-modal. The DNCB distribution
can also look like the standard beta (see fig. 1a of the appendix).

In this paper, we therefore introduce a new non-negative
matrix factorization model for (0, 1) bounded-support data
based on the doubly non-central beta (DNCB) distribu-
tion [Ongaro and Orsi, 2015]. The DNCB distribution is
a four-parameter generalization of the beta distribution that
can take a more flexible set of shapes over the (0, 1) interval,
including those that are multi-modal (see fig. 1). Although
our model was developed specifically for DNA methylation
datasets, the model structure is sufficiently general that it
can be adapted to many other domains where latent repre-
sentations of (0, 1) bounded-support data are of interest.

The property of the DNCB distribution that makes it particu-
larly useful for building probabilistic models is that it can be
augmented in terms of a pair of Poisson-distributed auxiliary
variables. With this augmentation, we can build tractable di-
mensionality reduction methods for (0; 1) bounded-support
data based on Poisson factorization models, which are well
studied and easy to build on [Titsias, 2007, Cemgil, 2009,
Zhou et al., 2012, Gopalan et al., 2012, Paisley et al., 2015].

We develop an accompanying Gibbs sampler by appealing
to special relationships between the beta, gamma, and Pois-
son distributions to obtain analytic updates that involve the
Bessel distribution [ Yuan and Kalbfleisch, 2000]. Our Gibbs
sampler is asymptotically guaranteed to sample from the
exact posterior distribution and it is general to any Poisson
factorization model for which analytic updates already exist.

We compare our model’s out-of-sample predictive perfor-
mance to that of state-of-the-art methods in bioinformatics.
We find that our model performs significantly better than
NME, which assumes a Gaussian likelihood, and BG-NMF,
which assumes a beta likelihood, for real DNA methylation
datasets. We also use a biologically motivated synthetic
data generator [de Souza et al., 2020] to create synthetic
datasets that enable us to study our model’s suitability for
(0, 1) bounded-support data that may arise in other domains.

Finally, we explore our model’s ability to discover meaning-
ful latent representations by applying our model to a microar-
ray dataset composed of samples from six different cancer
types. We demonstrate that the resulting representations ac-
cord with existing epigenetic knowledge about the gene path-
ways that play major roles in the six different cancer types.

Contributions and roadmap. To summarize, in this pa-
per, we make three main contributions, outlined below:

1. A new non-negative matrix factorization model for data
with bounded support between 0 and 1 based on the
doubly non-central beta (DNCB) distribution (section 2).

2. An auxiliary variable scheme, involving several augmen-
tations, that lets us develop an efficient Gibbs sampler
composed entirely of analytic updates (section 4).

3. A study of our model’s out-of-sample predictive perfor-
mance on real and synthetic DNA methylation datasets
(section 5), and a case study demonstrating that the
model also yields meaningful latent representations that
accord with existing biological knowledge (section 6).

2 DNCB MATRIX FACTORIZATION

Here, we present doubly non-central beta matrix factoriza-
tion (DNCB-MF), a new model that assumes each element
Bi; € (0,1) in a sample-by-gene matrix is drawn as follows:

Bij ~ DNCB (68)7 662)7 )\i;)v A(2)) ) (1)

(2)

where €, and €’ are shared across all i and j and /\(” nd

/\(2) are linear functions of low-rank latent factors—l €.,

Z 9<2)¢k] )

DNCB-MF is one instance of a class of models for (0, 1)
bounded-support data that factorize the “non-centrality”
parameters of the DNCB distribution, as defined below.

(1) Z 0(1)¢k] and /\(2>

Definition 1. The doubly non-central beta (DNCB) distribu-
tion is continuous over the support 3 € (0, 1) and defined by

“shape” parameters €1, €3 > 0, “non-centrality” parameters

A1, A2 > 0, and the following probability density function:

DNCB (B; €1, €2, A1, A2)
= Beta (f; €1, €2) ¢ Wa[easer, 23 M, Xa(1-P)]

Humbert s conﬂuent hypergeometrlc functton [Srivastava
and Karlsson, 1985, Ongaro and Orsi, 2015].

The key property of the DNCB distribution that makes
it particularly useful for building probabilistic mod-
els is that it can be augmented in terms of a pair of
Poisson-distributed auxiliary variables, as defined below.



Definition 2. A random variable 3~ DNCB(e1, €2, A1, A2)
can be drawn from a standard beta distribution conditioned
on two Poisson-distributed auxiliary variables as follows:

y1 ~ Pois(N\1) and ys ~ Pois (\a), 3)
(B1y1,y2) ~ Beta (e1+y1, e2+y2) . €]

Under the Poisson-randomized representation in definition 2,
we can combine eqgs. (1) and (2) to express DNCB-MF as

K
y NPois( S 9§',;;>¢kj) forr € {1,2),  (5)
k=1

Bij ~ Beta (€5 +yy;, € +u5)) (6)

which connects Poisson factorization to a beta likelihood.

To complete the model, we place gamma priors over the
factors, as is standard for Poisson factorization models:

9;’?7 9;]? ~ Gam(ao, bo), (7)
br; ~ Gam(eg, fo). (®)

Interpretation of the auxiliary counts. Intuitively, the
Poisson-distributed auxiliary variables y;;" and y; per-
turb the conditional distribution of 3;; away from a shared
background distribution, Beta(ej”, ¢g”). If y;;) > ;7. the
distribution shifts toward values closer to 0; conversely, if
y;j) > yg;), the distribution shifts toward 1. Moreover, as

the overall magnitude of y;3’ = y;7’+y;7 increases, the

distribution concentrates around its mean which equals

[CORIEY)

+vi;
E[B,: |y» ] = o ¥ 9
[61] |y7.j ’ylj ] E(().)-i-yi;) ( )
The effect of the non-centrality parameters (i.e., the means
of the Poisson-distributed auxiliary variables) on the DNCB
marginal distribution of 3;; can be explained similarly.

(M1 — ™ ey
Because E[y;”'] = Aj} for r € {1,2}, a large A}/, rel-
ative to )\gj‘-), shifts the density toward 0, while a large
Ay = Aj + Aj7 concentrates the distribution around its
mean, whose functional form is in appendix A.

Interpretation of the latent factors. The latent factor
@15 represents how relevant gene j is in latent component k.
The largest elements of the vector ¢, € Rf can therefore
be interpreted as representing a “pathway” of genes that
exhibit correlated patterns of methylation. The latent factors
¢5,) and 6.7 represent how methylated or unmethylated,
respectively, the genes in pathway k are in sample 7. As 92,?
increases, relative to 0;;), the rate of y;;) increases, relative

to the rate of yg), and the distribution of j3;; shifts toward

o .. . (1) (2)
0. A convenient way to jointly summarize ¢;,’ and 0’ is
W
Ok
M @
0;,) + 0

(2

pik = (10)

where p;; > 0.5 means pathway k is hypermethylated in
sample ¢ and p;; < 0.5 means pathway k is hypomethy-
lated in sample i. The vector p; € (0,1)¥ can also be inter-
preted as an embedding of sample ¢. We show these embed-
dings can be used to guide exploratory analyses in section 5.

3 RELATED WORK

In this section, we briefly review the most closely related
dimensionality reduction methods, with an emphasis on
the methods that are commonly used for DNA methylation
datasets. We draw connections to our model as appropriate.

PCA and NMF. Non-negative matrix factorization
(NMF) [Lee and Seung, 1999] factorizes an N x M matrix
into two non-negative latent factor matrices © € ]RJJ\:XK
and @ € R M. This is typically achieved by minimizing
the Frobenius norm of the reconstruction error subject to
a non-negativity constraint on the latent factor matrices as:

©*,®" € argmin |[B—- 0P| st ©,2>0. (11
X

When fit using this Frobenius loss, NMF can be viewed
as performing maximum likelihood estimation (MLE)
in a Gaussian model that is truncated so that 3;; € R :

K
Bij ~ TruncNorm(Z Oik ki, 00)- (12)

k=1

Principal component analysis (PCA) involves a similar op-
timization but without the non-negativity constraint on the
latent factor matrices. PCA can be viewed as performing
MLE in a standard (i.e., non-truncated) Gaussian model.

Both PCA and NMF are commonly used in bioinformatics
and have been used for DNA methylation datasets,
where NMF perform betters due to its non-negativity
constraint [Teschendorff et al., 2007, Zhuang et al.,
2012]. In addition, NMF is often preferred because of the
“parts-based” interpretation of its non-negative latent factors.

Non-Gaussian mixture models. Several non-Gaussian
clustering methods and mixture models have been devel-
oped specifically for DNA methylation datasets; see Ma
et al. [2014] for a survey. Some of these models, like the
recursive-partitioning beta mixture model of Houseman
et al. [2008], assume a beta likelihood. Although these
models make probabilistic assumptions that are appropriate
for (0, 1) bounded-support data, they yield less expressive
latent representations than admixture models such as NMF.

BG-NMEF. Our model is most closely related to beta-gamma
non-negative matrix factorization (BG-NMF), which was
developed by Ma et al. [2015] specifically for DNA
methylation datasets. BG-NMF is the first (and, to our
knowledge, only) matrix factorization model to assume a
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(a) The graphical model for BG-NMF [Ma
et al., 2015] and for the form of DNCB-MF
given in eq. (1), where all of the auxil-
iary variables have been marginalized out.

(b) The Poisson-randomized beta form of
DNCB-MF given in eqs. (5) and (6). The
data’s dependence on the factors flows
through the auxiliary variables y

(c) The fully augmented form of DNCB-MF
given in egs. (14) and (15), where (3;; is
determined by 'yf]l ) and 'yi(;). This form is

5 particularly useful for posterior inference.

ij

(2)

and y; ;"

Figure 2: A graphical comparison of related generative processes. All hyperparameters (including ef)l) and eff) for DNCB-MF) are
omitted for ease of comparison. The plate notation represents exchangeability across the specified indices. Shaded nodes are observed
variables; unshaded nodes are latent variables. Solid edges denote random variables; dotted edges denote deterministic variables.

beta likelihood. Specifically, it assumes that each element
Bi; € (0,1) in a sample-by-gene matrix is drawn as follows:

85 ~ Beta (o), o)),

(13)
where the two “shape” parameters o}’ and o’ are defined
to be the same linear functions of low-rank latent factors as
those given in eq. (2). BG-NMF also places the same gamma
priors over these factors as those given in eqs. (7) and (8).

We provide a graphical comparison of BG-NMF and DNCB-
MF in fig. 2. DNCB-MF and BG-NMF both factorize a
sample-by-gene matrix into three non-negative latent factor
matrices; however, DNCB-MEF factorizes the non-centrality
parameters of the DNCB distribution, while BG-NMF
factorizes the shape parameters of the beta distribution.

Deriving an efficient and modular posterior inference algo-
rithm for BG-NMF is hampered by the lack of a closed-form
conjugate prior for the beta distribution. Ma et al. [2015]
propose a variational inference algorithm that maximizes
nested lower bounds on the model evidence. Their derivation
is sophisticated, but highly tailored to the specific structure
of the model, which makes the model difficult to modify
or extend. Moreover, the quality of this algorithm’s approx-
imation to the posterior distribution is not well understood.
For biomedical settings, in which precise quantification
of uncertainty is often necessary, the lack of an efficient
MCMC algorithm therefore limits BG-NMF’s applicability.

4 POSTERIOR INFERENCE

Given an N x M sample-by-gene matrix of bounded-
support data B € (0,1)V*M  the goal is to approximate
the posterior distribution over the latent factor matrices
P(O™, 0® &|B). Like the beta distribution, the DNCB
distribution lacks a closed-form conjugate prior; however,
it admits several augmentations that let us exploit special
relationships between the beta, gamma, and Poisson distri-
butions to derive an auxiliary-variable Gibbs sampler whose
stationary distribution is the exact posterior. Moreover,
this Gibbs sampler is composed entirely of closed-form
complete conditionals that can be sampled from efficiently.

Below, we introduce auxiliary variables that augment
DNCB-MF to create conditionally conjugate links to the
latent factors. Specifically, we work within the Poisson-
randomized beta form of the model given in eqs. (5) and (6),
which links 3;; to a pair of Poisson-distributed auxiliary
variables y7 ~ Pois(\{) for r € {1,2}, whose rates ;7
are factorized into the latent factors. Conditioned on these
auxiliary variables, the updates for the latent factors follow

from gamma—Poisson matrix factorization [Cemgil, 2009].

In light of this, the only thing that is needed is to de-
rive an efficient Gibbs sampler is a way to sample the
Poisson-distributed auxiliary variables from their complete
conditionals. Our approach relies on further augmenting
the conditional likelihood using the following definition.



Definition 3. A beta random variable 8 ~ Beta(ay, ag) can

be simulated as 3= 7111% , where . ~ Gam (., ) forr €

{1,2} are independent gamma variables with rate ¢> 0.

We can represent the conditional likelihood in eq. (6) as

75;) ~ Gam (eér)er;;), 1) forr € {1,2}, (14)

T

O
ij

vy =7+ and B = (15)
which corresponds to the fully augmented form of DNCB-
MF shown in fig. 2¢c. This form of our model is particularly
useful for posterior inference. Indeed, our Gibbs sampler
iterates between sampling ;7 given ~;;’ and vice versa.

; e)) @
Sampling ;" and ;;
Because the gamma-distributed auxiliary variables have a
deterministic relationship with 3;;, we can sample them
from their complete conditional by first sampling their sum

7;;) from its complete conditional and then calculating
vy =By and 4P =(1-8)yy.  (16)

To derive the complete conditional of 75;), we appeal to the
following unique property of gamma-distributed variables.

Definition 4. For any pair of independent positive random
variables X1 and Xo, their sum X o = X1+ X5 and their pro-
portion X =X, / (X; + X5) are marginally independent—
that is, P(X,, X) = P(X,) P(X)—if and only if Xy and
X5 are both gamma-distributed [Lukacs, 1955].

The complete conditional of 7;;) is therefore independent
of 3;; and equal to its distribution under the prior. Because
7,5 is defined as the sum of two gamma-distributed random
variables, its complete conditional (and prior) is as follows:

;5 ~ Gam (e +y;7,1) . (17)

Collectively, eqs. (16) and (17) provide an efficient

way to sample ;" and %’ from their complete conditional.

)

Sampling yijl) and yl(;)

Conditioning on ~;;> and ~;7 renders the Poisson-

i
distributed auxiliary variables y;;’ and y;> independent un-
der their complete conditional. Moreover, as shown by the
following proposition, their complete conditionals have a
closed form.

Definition 5. If v ~ Gam(e+y, c¢) and y ~ Pois ()\), then
the posterior of y is Bessel [Yuan and Kalbfleisch, 2000]:

P(y|7,6,6,0) = Bess (y;e=1,2/c3A) . (18)

where the Bessel distribution is defined as
2
(5=

y!'T(y +v+1) L(a)

Bess (y;v,a) = (19)

and where I,,(a) is the first type modified Bessel function.

Using this definition, the complete conditional for yf;) is

)~ Bess (<12 /75N;) . @0)

Devroye [2002] gives methods for efficiently sampling from
the Bessel distribution. Although it is still relatively un-
known, the Bessel distribution has gained attention in a few
recent papers [Zhou et al., 2015, Schein et al., 2019b,a].

(v}

1)

Sampling 0.,”, 605;); ¢y,

Conditioned on y " @)

;; and y;5°, the updates for the latent
factors 65, 653, ¢y; follow from gamma-Poisson matrix
factorization. We provide these updates in appendix B,

along with a complete summary of our entire Gibbs sampler.

S OUT-OF-SAMPLE PREDICTION

In this section, we present a study of our model’s out-of-
sample predictive performance on both real and synthetic
DNA methylation datasets. We compare our model’s perfor-
mance to that of state-of-the-art models in bioinformatics.

5.1 DATASETS

Microarray data. We used the Cancer Genome Atlas
(TCGA) [Tomczak et al., 2015] to compile a dataset of 400
cancer samples whose methylation level at about 27,000
genes was profiled using Illumina 450K BeadChip microar-
rays. We selected the samples so that there were 100 samples
each from four etiologically distinct cancer types: breast,
ovarian, colorectal, and lung cancer. The colorectal and
lung cancer samples further divide into two subtypes. Al-
though the goal of dimensionality reduction is usually to dis-
cover novel subtypes, checking a model’s ability to discover
known subtypes can be a way to assess its utility. Microar-
ray data comes processed into “beta values” [Kuan et al.,
2010]; we did not process the data any further. Following Ma
et al. [2014], we selected the 5,000 genes with the highest
variance across the samples to obtain a 400 x 5, 000 sample-
by-gene matrix. A heatmap of this matrix is shown in fig. 4.

Bisulfite sequenced methylation data. We downloaded
the dataset studied by Sheffield et al. [2017]. This dataset
consists of 156 Ewing sarcoma cancer samples and 32
healthy samples (N =188), whose methylation was profiled
using bisulfite sequencing (bi-seq). Bi-seq data consists of
binary “reads” of methylation at many loci per gene. We
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Figure 3: Histograms of the synthetic (yellow) and real (red) datasets. The synthetic datasets were created using Epiclomal with three levels
of dispersion. As dispersion increases, values are pushed to the extremes. The high-dispersion data (middle) is most similar to the real data.
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Figure 4: Heatmap of the microarray dataset. Only the first 1,000
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Te3da10[0)

Sunr

cooo o
SrhoSw S
B wERNS

processed this data into “beta values™ by first counting all
the methylated-mapped reads d;; and non-methylated reads
u;; for all loci within a given gene j and then calculating
Bij = % with the smoothing term set to so=0.1.
As with the microarray data, we selected the 5,000 genes
with the highest variance to obtain a 188 x 5, 000 matrix.

Synthetic data. To study our model’s suitability for (0, 1)
bounded-support data that may arise in other domains, we
created synthetic datasets using the Epiclomal synthetic
data generator [de Souza et al., 2020]. Epiclomal simulates
single-cell methylation data. To create “bulk” data, similar
to the microarray or bi-seq data, we generated and aggre-
gated 100 cells for every sample 7 for N = 100 samples at
M = 500 genes. We varied the Epiclomal parameters to gen-
erate datasets with three different levels of dispersion—Ilow,
medium, and high—where increasing dispersion pushes val-
ues toward the extremes of 0 and 1. For each level of disper-
sion, we generated three datasets, all with the “true” number
of components set to K *=10. We provide a comparison of
the synthetic and real datasets’ histograms in fig. 3.

5.2 MODELS

We compare our model’s out-of-sample predictive per-
formance to that of BG-NMF and NMF. BG-NMF is a
is a state-of-the-art matrix factorization model for DNA
methylation data that differs from DNCB-MF by assuming
a beta likelihood instead of a DNCB likelihood; NMF
serves as a simple baseline because it is so commonly used.

Setting K. For all models in all experiments, we used
K e {4,8,10,14,20,30}. These values are centered
around K =14, which Ma et al. [2014] report as being opti-
mal for BG-NMF when modeling DNA methylation datasets
that are similar in composition to our microarray dataset.

DNCB-MF. We implemented the Gibbs sampler de-
scribed in section 4 in Cython. For all experiments, we
let the Gibbs sampler “burn in” for 1,000 iterations and then
ran it for another 2,000 iterations, saving every 201 sample.
We set the hyperparameters for the gamma priors to ag =
bo=eo= fo=0.1 and set the two DNCB shape parameters
to e(()l) (2) =¢9=0.75. For the synthetic datasets, we also

experimented with setting the shape parameters to g =0.25.

BG-NMF. We implemented BG-NMF in Python and set
the hyperparameters for the gamma priors to the values
described above for DNCB-MF. We set all other hyperpa-
rameters to the values recommended by Ma et al. [2014].

NMF. We used the implementation of NMF in Scikit-
learn [Pedregosa et al., 2011] with the default settings.

Code. We have released our implementations of DNCB-
MF and BG-NMEF.! Our code includes fast samplers for
the Bessel distribution and an algorithm for computing the
density of the DNCB distribution. We have also released the
real and synthetic datasets that we used for our experiments.

5.3 STUDY DESIGN

Random masks. We created three train—test splits
for each dataset (real or synthetic) by generating three

"https://github.com/aschein/dncb-mf
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Figure 5: Out-of-sample predictive performance for the synthetic datasets. We generated datasets with three levels of dispersion—low
(left), medium (middle), and high (right)—where increasing dispersion pushes values to the extremes of 0 and 1. For each level of
dispersion, we generated three datasets; for each dataset, we created three train—test splits by generating three binary masks. For all models
with all values of K, we used three different random initializations for each dataset and mask combination. For each value of K, we
plot PPDﬁ, where | M| is the number of held-out values, averaged across the initialization, dataset, and mask combinations; error bars
indicate 95% confidence intervals. For all three levels of dispersion, most models’ performance peaks at the true number of components
K = K*=10. NMF always performs worse than BG-NMF; BG-NMF is almost always “sandwiched” between DNCB-MF with o =0.25
and DNCB-MF with €p =0.75 (or vice versa). For the low-dispersion datasets, DNCB-MF with eg =0.75 performs the best, while DNCB-

MF with eg = 0.25 performs worse than than BG-NMF. For the medium- and high-dispersion datasets, DNCB-MF with €9 = 0.25 performs
the best. Intuitively, this makes sense: as the DNCB shape parameters get smaller, the density concentrates at the extremes (see fig. 1).
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H 47 NMF where @2”, 922)7 ® are samples from the posterior distri-
167 N bution, either saved during MCMC for DNCB-MF or drawn
1.4 from the fitted variational distribution for BG-NMF. For
12 : : 121 : : : both models, we used S =100. The predictive density P(-|-)
10 20 30 10 20 30

is the beta distribution for BG-NMF and the DNCB distribu-
tion for our model. Computing the DNCB density requires
computing Humbert’s confluent hypergeometric function,
for which we implemented the algorithm of Orsi [2017].

Number of components K Number of components K

Figure 6: Out-of-sample predictive performance for the two
real datasets described in section 5.1. For both, DNCB-MF with

€0 =0.75 performs significantly better than NMF and BG-NMF. )
For all models, we ultimately report PPDTMT, where | M| is

the number of held-out values, which is equivalent to the ge-
ometric mean of the predictive densities across the held-out
values and is therefore comparable across all experiments.
We note that this scaled version of PPD is the inverse of
perplexity, an evaluation metric that is commonly used
to evaluate statistical topic models and language models.

binary masks M that “hold out” a random 10% of the
sample-by-gene matrix. For all models with all values of
K, we used three different random initializations for each
dataset and mask combination. All models took the mask
as input and imputed the held-out values during inference.

5.4 RESULTS
Evaluation metric. To assess out-of-sample predictive

performance, we used the pointwise predictive density
(PPD) [Gelman et al., 2014]. For NMEF, this is as follows:

PPDyin = [ P(Bi; 107, ®%), (€3))
i,jEM

where ©* and ®* are point estimates of NMF’s latent factor

matrices and P(- | -) denotes a Gaussian truncated to (0, 00).

Out-of-sample predictive performance for the synthetic and
real datasets are shown in figs. 5 and 6, respectively. Our
model performs significantly better than NMF and BG-NMF.
The results for the synthetic datasets reveal an intuitive rela-
tionship between the level of dispersion and the two DNCB
shape parameters eél) = 682) = €, with a smaller param-
eter value yielding better performance for the more highly
dispersed datasets. For these datasets, DNCB-MF with ¢y =
0.25 improves performance over both NMF and BG-NMF.
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Figure 7: The latent representations discovered by DNCB-MF when applied to the microarray dataset. Left: The inferred embedding
matrix. The dataset contains four cancer types (separated by horizontal lines); two of these cancer types (colorectal and lung) further divide
into two subtypes (separated by horizontal lines). Right: The genes with the ten highest ¢y ; values for four components £ = 1,9, 12, 14.

6 CASE STUDY

Here, we explore our model’s ability to discover meaning-
ful latent representations by applying our model to the mi-
croarray dataset described in section 5.1 and exploring the
resulting representations. The microarray dataset contains
samples from four different cancer types: breast, ovarian,
colorectal, and lung cancer; the colorectal and lung cancer
samples further divide into two subtypes (see fig. 4). We find
that the latent representations discovered by our model ac-
cord with existing epigenetic knowledge about the gene path-
ways that play major roles in the six different cancer types.

Figure 7a contains the inferred embedding matrix, where
each row p, is an embedding of sample ¢, as defined in
eq. (10). A red value denotes p; > 0.5 and indicates that the
loci proximal to the genes relevant to component k are hyper-
methylated in sample ¢ according to the model; conversely,
a blue value indicates that the loci are hypomethylated ac-
cording to the model. In fig. 7b, we additionally show the
genes with the ten highest ¢y.; values for four components.

Component k = 1 has red (high) values for the colorectal
cancer samples and blue (low) values for the lung cancer
samples, suggesting that the top genes for that component
are hypermethylated in colorectal cancer and hypomethy-
lated in lung cancer, respectively. The component stem plot
infig. 7b shows that the top genes include RAB34, a member
of the Ras oncogene family [Sun et al., 2018]. In general,
DNA methylation leads to gene silencing (especially when
proximal to the promoter region) and therefore hypomethyla-
tion can activate oncogenes like RAB34 [Moore et al., 2013].

The colorectal cancer samples exhibit hypermethylation for

component k =9, whose top gene is FLT4. Recent work
demonstrates that suppressing FLT4 inhibits cancer metas-
tasis [Xiao et al., 2015]; it is a known therapeutic target.

All samples exhibit hypomethylation for component k=12,
except for the ovarian cancer samples. The top gene is
TFE3, which promotes activation of the transforming
growth factor beta (TGFp) signaling pathway. TFE3
translocation and subsequent activation is a well-known
cause of adult renal cell carcinoma [Sukov et al., 2012].

Conversely, all samples exhibit hypomethylation for com-
ponent k=12, except for the ovarian cancer samples. The
top gene is the fibronectin protein FNDCS. Fibronectin pro-
motes cell migration and invasion in ovarian cancer [ Yousif,
2014], so this accords with existing biological knowledge.

7 CONCLUSION

We presented DNCB-MF, a new non-negative factoriza-
tion model for (0, 1) bounded-support data based on the
DNCB distribution. The DNCB distribution is an attractive
alternative to the beta distribution. As well as being more
expressive, the DNCB distribution admits several augmenta-
tions that connect DNCB-MF to Poisson factorization mod-
els, which are well studied and easy to build on. Although
DNCB-MF was developed specifically for DNA methyla-
tion data, the model structure is sufficiently general that it
can be adapted to other domains. We showed that DNCB-
MEF improves out-of-sample predictive performance on both
real and synthetic DNA methylation datasets over state-
of-the-art methods in bioinformatics and that the resulting
representations accord with existing epigenetic knowledge.
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