

Integer Programming-based Error-Correcting Output Code Design

for Robust Classification

Samarth Gupta1 Saurabh Amin2

1Center for Computational Science and Engineering, Massachusetts Institute of Technology, USA
2Laboratory for Information & Decision Systems, Massachusetts Institute of Technology, USA

{samarthg, amins}@mit.edu

Abstract

Error-Correcting Output Codes (ECOCs) offer a
principled approach for combining binary classi-
fiers into multiclass classifiers. In this paper, we
study the problem of designing optimal ECOCs
to achieve both nominal and adversarial accuracy
using Support Vector Machines (SVMs) and bi-
nary deep neural networks. We develop a scalable
Integer Programming (IP) formulation to design
minimal codebooks with desirable error correct-
ing properties. Our work leverages the advances
in IP solution techniques to generate codebooks
with optimality guarantees. To achieve tractability,
we exploit the underlying graph-theoretic struc-
ture of the constraint set. Particularly, the size of
the constraint set can be significantly reduced us-
ing edge clique covers. Using this reduction tech-
nique along with Plotkin’s bound in coding theory,
we demonstrate that our approach is scalable to a
large number of classes. The resulting codebooks
achieve a high nominal accuracy relative to stan-
dard codebooks (e.g., one-vs-all, one-vs-one, and
dense/sparse codes). Interestingly, our codebooks
provide non-trivial robustness to white-box attacks
without any adversarial training.

1 INTRODUCTION

Error Correcting Output Codes (ECOCs) offer an effective
and flexible tool to combine individually trained binary clas-
sifiers for multiclass classification. Prior research [Dietterich
and Bakiri, 1995, Allwein et al., 2000] showed that ECOCs
can provide high multiclass classification accuracy using
simple but powerful binary classifiers (e.g., Support Vector
Machines and Adaboost). More recently extensive body of
work has emerged, showing that when large amount of train-
ing data is available, deep learning models [LeCun et al.,
2015] outperform most multiclass classifiers. Still, further

progress is needed for classification tasks when training
data is limited and model robustness and interpretability are
preferred.

In this paper, we consider the problem of ECOC-based mul-
ticlass classification, when individual binary classifiers are
SVMs or deep learning models. We focus on the question of
"optimal" design of codebooks based on explicitly designed
criteria that contribute to high prediction accuracy, both in
nominal and adversarial settings.

Our approach to codebook design is distinct from the prior
works that use a continuous relaxation of the inherently
discrete optimization problem, and solve the relaxed prob-
lem using nonlinear optimization tools Crammer and Singer
[2002], Zhao and Xing [2013], Xiao Zhang et al. [2009],
Martin et al. [2018]. While this approach is scalable to a
large number of classes, it does not provide optimality guar-
antees. This limitation prevents a systematic evaluation of
how accurately the original (discrete) problem is solved. An
earlier approach in Dietterich and Bakiri [1995] casts the
design problem as a propositional satisfiability problem that
can be solved for using off-the-shelf SAT solvers. However,
using their approach only a feasible solution may be readily
computable. In contrast to both these approaches, we formu-
late the optimal codebook design problem as a large-scale
Integer Program (IP) and exploit the structure of the prob-
lem to obtain a tight formulation that can be easily solved
with modern IP solvers. Importantly, the resulting codebook
has optimality guarantees. This also enables a systematic
comparison with respect to several well-known fixed-size
codebooks on real-world datasets.

Our flexible IP formulation can account for the following
codebook (or coding matrix) design criteria: (i) Sufficiently
large Hamming distance between any pair of codewords
(row separation); (ii) Uncorrelated columns (column sep-
aration); (iii) Relatively even distribution of data points
across two classes (balanced columns); and (iv) Larger
Hamming distance between pair of codewords whose cor-
responding classes are hard to separate from one another

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

 (data-distribution). These criteria are important not only
for the nominal error correction performance, but they also
contribute to adversarial robustness. However, this initial for-
mulation can quickly become intractable for classification
problems with more than 10 classes.

To address the above-mentioned computational bottleneck,
we exploit the inherent graph-theoretic structure of the con-
straint set [Padberg, 1973, Atamtürk et al., 2000]. In par-
ticular, we prove that the constraints modeling the pair of
columns that do not satisfy column separation criterion can
be replaced by a much smaller set formed by an edge clique
cover of the underlying graph. This result enables us to
transform our original problem into another IP with a much
smaller set of constraints. We further scale to even larger
number of classes, while maintaining optimality gaurantees
using the classical Plotkin’s bound.

A distinct advantage of our ECOC based design approach is,
that our IP-generated compact codebooks achieve high nom-
inal accuracy and outperform well-known codebooks such
as one-vs-all, one-vs-one and other dense or sparse designs.
To evaluate the robustness of our optimal codebooks to
adversarial perturbations (see Szegedy et al. [2013], Good-
fellow et al. [2015], Su et al. [2017]), we conduct extensive
experiments based on white-box attacks Madry et al. [2018],
Tramer et al. [2020]. Remarkably, our codebooks achieve
non-trivial robustness even without any adversarial training
of the individual binary classifiers. Thus, our results suggest
a strong potential of ECOCs for training robust classifiers.

Our main contributions are as follows: (i) We propose an IP
formulation to the fundamental ECOC design problem and
achieve tractability by exploiting the graph-theoretic struc-
ture of the constraint set. (ii) We provide optimality guaran-
tees, even for large number of classes using Plotkin’s bound.
(iii) Our formulation can flexibly incorporate different de-
sign criteria while preserving the (integer) linear structure
of the optimization problem. (iv) Our IP generated code-
books outperform standard codebooks on various natural
classification tasks. (v) Our codebooks provide non-trivial
robustness without any adversarial training, which appears
to be the first such result in the literature.

2 ECOC FOR CLASSIFICATION
In the ECOC-based framework [Dietterich and Bakiri,
1995], for a given k-class classification problem, each class
is encoded with a unique codeword of length L, result-
ing in a codebook (coding matrix) M = (mij) of size
k × L. For binary (resp. ternary) codes, the entries mij

of the coding matrixM belong to the set {+1,−1} (resp.
{+1, 0,−1}). The rows (resp. columns) ofM correspond
to distinct classes (resp. binary classifiers or hypotheses).
Figure 1 shows examples of two standard codebooks.

In the learning problem corresponding to every column
inM, the set of training examples belonging to different

(a) one-vs-all (binary) (b) one-vs-one (ternary)

Figure 1: Examples of codebooks for a 4-class problem.

classes C1, . . . , Ck is partitioned into two groups: all ex-
amples from classes with entry +1 represent the positive
class, and all examples from classes with entry−1 represent
the other class. In the case of ternary codes, examples from
classes with entry 0 are not included in the training set and
are considered irrelevant.

Let f1(·), . . . , fL(·) denote the learned binary hypotheses
for the corresponding columns ofM. For a learned hypoth-
esis s ∈ {1, . . . L} and a test example x̃, let fs+1

(x̃) (resp.
fs−1(x̃)) denote the output/score of the class +1 (resp. class
−1). Then,

fs(x̃) :=

{
+1 if fs+1(x̃) > fs−1(x̃)

−1 otherwise
∀s ∈ {1, . . . , L}.

After evaluating x̃ on all the L hypotheses, we obtain an en-
coding ~f(x̃) = [f1(x̃), . . . , fL(x̃)]. To associate ~f(x̃) with
a class (i.e., a row of coding matrixM), we can use a decod-
ing scheme based on a similarity measure such as Hamming
distance. Particularly, one can compute the Hamming dis-
tance dH(·, ·) between ~f(x̃) and each codewordM(r, ·) and
select the class, denoted ŷ, that corresponds to the minimum
distance:

dH(M(r, ·), ~f(x̃)) :=
L∑

s=1

(
1−M(r, s)× fs(x̃)

2

)
ŷ = argmin

r
dH(M(r, ·), ~f(x̃)). (1)

3 CODEBOOK DESIGN CRITERIA
The final prediction accuracy of ECOC scheme (1) intro-
duced in section 2, crucially depends on the error correction
capability of the coding matrixM. To ensure low test er-
ror, the coding matrix must be chosen carefully. We now
introduce the key criteria that guide our design of binary
codes.1

Row Separation: It is well-known that more separation be-
tween pairs of codewords (i.e., rows in the coding matrix
M) improves the error correction capability. Particularly, if
every pair of distinct codewords has a Hamming distance
of at-least d, then such a code can correct at-least

⌊
d−1
2

⌋
errors [Guruswami and Sahai, 1999]. Thus, we seek a cod-
ing matrix with high row separation between any pair of

1Similar codebook design approach can be developed for
ternary codes (not presented here due to space constraints).

 codewords. For a code of size k × L, the minimum Ham-
ming distance d between any pair of rows (or codewords)
can be analytically upper bounded using the bound provided
in Plotkin [1960]:

d ≤
⌊ kL

2(k − 1)

⌋
. (2)

Column Separation: Additionally, every pair of distinct
columns inM should be uncorrelated. The benefit of large
column separation can be understood by drawing analogy
to error correction in communication over a noisy channel.
Encoding a signal and transmitting the codeword over a
noisy channel is highly effective when the errors introduced
during transmission are random. By maintaining a suffi-
ciently large encoding, one can recover the original signal
at the receiving end with high accuracy. Analogously, in our
setup, if any two columns (classifiers) make errors in their
predictions on the same inputs (i.e., their outputs are highly
correlated), then the effectiveness of encoding in correcting
errors will be reduced.

Balanced Columns: On the other hand, to prevent over-
fitting of individual (binary) hypotheses, it is important to
prioritize the selection of columns for which the entire k-
class training data are evenly distributed across the two
classes.

Data Distribution: Finally in multi-class problems, some
class pairs are more difficult to separate than others. There-
fore, it is desirable to have larger Hamming distances among
pairs of codewords corresponding to hard-to-separate class
pairs. Since the underlying data-distribution is unknown,
this hardness of separation can be estimated from training
data either using the semantics of classes, as done in Zhao
and Xing [2013]; or by calculating similarity measures be-
tween classes (for small datasets) as shown in Pujol et al.
[2006], Griffin and Perona [2008], Gao and Koller [2011],
Xiao Zhang et al. [2009], Martin et al. [2018].

We develop a flexible approach to capture the above-
mentioned criteria into a discrete optimization formulation.

4 INTEGER PROGRAMMING
FORMULATION

To begin with, note that for a k−class problem a coding
matrix can have at most (2k − 2)/2 = 2k−1 − 1 columns.
However, such an exhaustive coding might be feasible only
for a small k (2 to 5). As k increases, the number of binary
classifiers that need to be trained for exhaustive coding
increase exponentially. Practically, it is desirable to select a
small subset (say of L columns) from 2(k−1) − 1 possible
columns. This subset should be selected in accordance with
the codebook design criteria described in section 3.

A classical way to formulate the column subset selection
problem is to cast it as a propositional satisfiability problem,
and solve it using an off-the-shelf SAT solver. For example,
Dietterich and Bakiri [1995] considered the following prob-

lem for 8 ≤ k ≤ 11: For a predefined number of columns
L and some value ρ, is there a solution such that the Ham-
ming distance between any two columns is between ρ and
L− ρ? However, this approach only leads to a feasible (not
necessarily optimal) solution and does not capture other
design criteria. In contrast, we present an Integer Program-
ming (IP) formulation that captures the design criteria in a
flexible manner and develop an approach to find an optimal
codebook.

For sake of simplicity, we first consider the row and col-
umn separation criteria; the remaining criteria on balanced
columns and data distribution can be addressed in our IP
formulation, as discussed subsequently at end of this section.
In its basic form, our problem is the following: We want
to find a solution which maximizes the minimum Hamming
distance between any two rows (or the error-correcting
property) while maintaining high column separation.

Let xi denote the binary variable associated with each col-
umn i of the exhaustive code for i ∈ {1, . . . 2k−1 − 1},
i.e. the decision variable whether or not column i is se-
lected in the final solution. Also, let xij be the binary
variable which represents the outcome of AND operation
between variables xi and xj for all distinct i, j pairs, i.e.
(i, j) ∈ {1, . . . , 2k−1 − 1}2|i < j. We can now write our
basic IP formulation to generate an optimal codebook as
follows:
IP1 : max

xi,xij

min {d1,2H (xi), . . . , d
k−1,k
H (xi) } (3)

s.t.
2k−1−1∑

i=1

xi ≤ L

ρ xij ≤ dH
(
M(·, i),M(·, j)

)
xij ≤ (L− ρ) xij

∀ (i, j) ∈ {1, . . . , 2k−1 − 1}2| i < j (4)
xij ≤ xi (5)
xij ≤ xj (6)
xi + xj − 1 ≤ xij (7)

ds,tH (xi) =

2k−1−1∑
i=1

(1−M(s, i)×M(t, i)

2

)
xi

∀ (s, t) ∈ {1, . . . , k}2| s < t

xi ∈ {0, 1} ∀ i ∈ {1, . . . , 2k−1 − 1}
xij ∈ {0, 1} ∀ (i, j) ∈ {1, . . . , 2k−1 − 1}2| i < j

In IP1, max-min objective (3) can be simplified
by introducing an auxiliary variable t, where t =
min {d1,2H (xi), d

1,3
H (xi), . . . , d

k−1,k
H (xi) }, and adding

the corresponding constraints t ≤ d1,2H (xi) , t ≤
d1,3H (xi) , . . . , t ≤ dk−1,kH (xi). Eq. (4) ensures large col-
umn separation when xij = 1. Constraints (5) and (6) en-
sure that if xij = 1 then both columns i and j are included
in the solution, i.e. xi = 1 and xj = 1. Conversely, Equa-
tion (7) ensures that if columns i and j are selected then
xij = 1.

 We note that in IP1 there are 2k−1 − 1 ≈ O(2k−1) binary
variables for each column, and corresponding to every dis-
tinct pair of columns (i, j), there are

(
2k−1−1

2

)
≈ O(22k−3)

binary variables. Thus, the total number of binary variables
are O(22k−3). Similarly, the total number of constraints are
O(22k−1). For k = 10, this entails solving an IP of approxi-
mately 130, 000 variables and 650, 000 constraints. Modern
IP solvers like Gurobi and CPLEX can indeed handle such
problem instances.

However, for k > 10, the above optimization problem
quickly becomes intractable. The main reason is that we
have a binary variable xij for each pair of columns to
capture the large column separation criterion (4). We now
present a second formulation which does not involve a new
variable for every pair of columns.

Let Sp denote the set of all distinct pairs of columns in the
exhaustive code M, i.e. Sp = {(i, j) ∈ {1, . . . , 2k−1 −
1}2| i < j} and |Sp| =

(
2k−1−1

2

)
. We now consider

two mutually disjoint subsets Sfeasp and Sinfp , such that
Sp = Sfeasp ∪ Sinfp : the set Sfeasp (resp. Sinfp) contains
only those i, j pairs that satisfy (resp. do not satisfy) the
column separation criterion (4). Mathematically, we can
write:

Sp =
{
(i, j) ∈ {1, . . . , 2k−1 − 1}2| i < j

}
,

Sfeasp =
{
(i, j) ∈ {1, . . . , 2k−1 − 1}2| i < j and

ρ ≤ dH
(
M(·, i),M(·, j)

)
≤ (L− ρ)

}
, (8)

Sinfp = Sp \ Sfeasp .

In this new representation, the constraint (4) is captured by
the construction of Sfeasp (8), which eliminates the need
of variables xij for column pairs. Similarly, we no longer
need the constraints (5), (6) and (7). Note that, for any (i, j)
pair of columns in the set Sinfp , at-most one of the two
columns can be included in the final solution. This can be
achieved by setting xij = 0 in (7). Equivalently, for every
pair (i, j) ∈ Sinfp , it is sufficient to impose the constraint
xi + xj − 1 ≤ 0.

We can now write IP1 as the following equivalent form:

IP2 :max
xi

min {d1,2H (xi), . . . , d
k−1,k
H (xi) }

s.t.
2k−1−1∑

i=1

xi ≤L

xi + xj ≤ 1 ∀ (i, j) ∈ Sinfp (9)

ds,tH (xi) =

2k−1−1∑
i=1

(1−M(s, i)×M(t, i)

2

)
xi

∀ (s, t) ∈ {1, . . . , k}2| s < t

xi ∈ {0, 1} ∀ i ∈ {1, . . . , 2k−1 − 1}

Since IP2 does not contain any xij variables, this formu-
lation has significantly less number of variables and con-
straints in comparison to IP1. The computational complex-
ity of this formulation (IP2) is mainly governed by the size
of the set Sinfp , which determines the number of constraints
in (9). In IP2, there are O(2k−1) variables and the number
of constraints areO(|Sinfp |). However, even in this new rep-
resentation, the size of the set Sinfp becomes prohibitively
large as k increases further. Table 1, column 4 shows that
|Sinfp | quickly increases with k for an appropriately chosen
ρ.

Fortunately, the constraints (9) for the set Sinfp can be repre-
sented on a graph Ginfp , in which each node corresponds to
a column xi and each constraint xi + xj ≤ 1 corresponds
to an edge between the node i and node j; see Figure 2 for
an illustration.

Figure 2: An example of Sinfp and corresponding Ginfp .

This graph-theoretic representation can be exploited to re-
duce the number of constraints involving (i, j) column pairs
in the set Sinfp . Before presenting this result, we recall that
a clique (denoted as C) is a subset of nodes in a graph such
that there is an edge between any two distinct nodes of
this subset. Proofs of upcoming results are provided in the
supplementary material (SM).

Lemma 1. The feasible space enclosed by the constraints
constituting the edges of any clique C in Ginfp is same as
that enclosed by the constraint:∑

i∈C
xi ≤ 1. (10)

From lemma 1, we obtain that for a clique of size n, n(n−
1)/2 constraints of form xi+xj ≤ 1 between all (i, j) node
pairs in the clique can be substituted with a single constraint
(10). This constraint captures the requirement that out of
all the columns inM forming a clique, at most one can be
present in a feasible solution. Before introducing our next
result, we recall the following useful definition [Conte et al.,
2016].

Definition 1 (Edge Clique Cover). An edge clique cover for
a graph G, denoted as ECC(G), is a set of cliques ECC(G) =
{C1, C2, . . . , Ck} such that:

1. No clique Ci is contained in another clique Cj , i.e
Ci * Cj for all i 6= j, and

 2. Every edge in the graph G is included in atleast one
clique.

Lemma 2. The feasible space enclosed by the constraint
set Sinfp (or its graphical equivalent Ginfp) in IP2 is same
as that enclosed by a much smaller constraint set formed by
the edge-clique-cover of Ginfp , i.e. ECC(Ginfp).

Note that a graph can have many possible edge clique covers;
see for example Figure 3. To reduce the size of the constraint
set Sinfp as much as possible, one would need to find an edge
clique cover of the smallest size. However, the minimum
edge cover problem is known to be NP-hard [Garey and
Johnson, 1990]. Several heuristics have been proposed to
find edge clique cover of a graph such as Kellerman [1973],
Kou et al. [1978], Gramm et al. [2009], Conte et al. [2016].
For our purpose, the heuristic proposed in Conte et al. [2016]
is particularly well-suited since it shows a linear runtime in
the number of edges. We therefore use this heuristic in our
analysis.

Figure 3: Graphical depiction of an example Sinfp in (a),
with two feasible edge clique covers ((b) and (c)). For edge-
cover in (b), we show the reduced set of constraints corre-
sponding to its cliques in blue and red.

Furthermore, we can extend lemma 2 to generate edge-
clique-covers of very large graphs in a distributed manner
as follows:

Lemma 3. Suppose G1, . . .Gm are edge-disjoint subgraphs
of Ginfp , such that:

1. Gi ∩ Gj = ∅ ∀ i, j ∈ {1, . . . ,m}2|i < j

2.
⋃m

i=1 Gi = Ginfp

The union of the edge clique covers of individual sub-
graphs G1, . . .Gm is a valid edge clique cover of Ginfp :⋃m

i=1 ECC(Gi) = ECC(Ginfp).

Finally, using lemma 2 (or its extension lemma 3) we can
reduce IP2 to the following integer program:

IP3 :max
xi

min { d1,2H (xi), . . . , d
k−1,k
H (xi)} (11)

s.t.

2k−1−1∑
i=1

xi ≤L∑
i: i ∈ Ct

xi ≤1 ∀ Ct ∈ ECC(Ginfp) (12)

ds,tH (xi) =

2k−1−1∑
i=1

(1−M(s, i)×M(t, i)

2

)
xi

∀ (s, t) ∈ {1, . . . , k}2| s < t

xi ∈ {0, 1} ∀ i ∈ {1, . . . , 2k−1 − 1}

The size of IP3 is mainly governed by the size of the set
ECC(Ginfp), which determines the number of constraints in
(12). This is a major improvement over IP2, as the size of
ECC(Ginfp) is much smaller than Sinfp ; to see this one can
compare columns 4 and 5 in Table 1.

We now address the remaining criteria of balanced columns
and data-distribution in IP3.

The requirement of balanced columns can be simply incor-
porated by pre-fixing all the xi violating this criterion to 0
in IP3. Equivalently, since each xi ∈ {0, 1} corresponds
to whether or not a column is selected from the exhaustive
code M, we can simply reduce M by removing the un-
balanced columns and then form IP3. In contrast to Xiao
Zhang et al. [2009], in our formulation, the requirement for
balanced columns further reduces the final problem size. For
more details, see appendix C.1 in SM.

The requirement of data-distribution can be easily incorpo-
rated by modifying the objective function. Previous works
such as Martin et al. [2018], Zhao and Xing [2013], Xiao
Zhang et al. [2009], pre-compute a similarity measure be-
tween every pair of classes (from training data) and use this
measure to estimate the desirable class-pairwise hamming
distances (denoted as d̂p,q). Using d̂p,q, they optimize to
obtain codebooks which attain these distance values. This
can be easily incorporated in our formulation by changing
the objective function (11) in IP3 to the following:

min
xi

∑
(p,q)∈{1,...,k}2|p<q

|dp,qH (xi)− d̂p,q|. (13)

For more details regarding the data-distribution criteria, re-
fer to appendix C.2 in SM. Before concluding this section,
we establish a connection between the optimal objective
function value of IP3 (denoted as f∗) and Plotkin’s bound
as follows:

Proposition 1. Plotkin’s Bound is an upper bound to IP3:
f∗ ≤ b kL

2(K−1)c.

 Table 1: Reducing the size of the constraint set |Sinfp | in IP2 by finding the Edge Clique Cover of Ginfp .

No. of classes
k

No. of Columns
2k−1 − 1

ρ
No. of constraints
|Sinf

p |
No. of constraints

|ECC(Ginf
p)| (Reduced)

Reduction
Factor

Time Taken
(in sec.)

10 511 3 11,475 695 16 0.146
11 1,023 3 28,105 1,404 20 0.208
12 2,047 4 236,313 8,165 28 0.991
13 4,095 4 610,006 18,472 33 2.573
14 8,191 4 1,543,815 41,088 37 7.390
15 16,383 5 12,040,770 44,916 268 58.957
16 32,767 5 31,783,020 91,304 348 249.53
17 65,535 5 82,441,772 185,661 444 935.76
18 131,071 6 616,094,535 1,073,248 574 10075.8

18 131,071 6 616,094,535
5,952,906 + 622,604

= 6,575,510 93
16251.667 + 4977.376

= 21229.04

Recall from (2), the minimum Hamming distance between
any two rows is analytically upper bounded by Plotkin’s
bound. Mathematically, we can write:

min {d1,2H (xi), . . . , d
k−1,k
H (xi)} ≤

⌊ kL

2(K − 1)

⌋
, implying

max
xi

min {d1,2H (xi), . . . , d
k−1,k
H (xi)}︸ ︷︷ ︸

(obj. function of IP3)

≤
⌊ kL

2(K − 1)

⌋
.

(14)

This connection enables us to determine the solution qual-
ity (optimality gap) for large k, when exactly solving IP3
becomes challenging, as discussed in the next section.

5 EXPERIMENTS

We run all our experiments on a machine with a single
1080Ti Nvidia GPU, Intel Core i7-6800K CPU and 128 GB
RAM. We use Gurobi-v9.1 as our IP solver. Our code is
available at https://github.com/SamarthGM/IP_ECOC.

Our first set of computational experiments focus on solving
IP3 which uses the edge-clique-cover approach to reduce
the constraint set Sinfp . Table 1 shows the reduction in size
of set Sinfp as the number of classes k increases. Notably, for
k ≥ 15 we achieve a reduction of more than two orders of
magnitude, which demonstrates the advantage of using our
approach. The last row in Table 1 shows the performance
of generating the edge-cover on two different subgraphs
obtained after partitioning the original graph, thus validating
lemma 3.

Thanks to the reduced constraint set, we can now solve
IP3 and obtain the optimality gap for different instances as
shown in Table 2. Here fbest denotes the objective function
value of the best solution and “Best Bound” denotes the
tightest upper bound, both obtained by solving IP3 using
Gurobi. In most cases, we obtain an optimal solution or a rel-
atively small optimality gap. Thus, our formulation is tight
and enables Gurobi to terminate quickly without exploring
a large branch-and-bound tree. These results demonstrate

that our approach to codebook design indeed provides low
optimality gaps.

Table 2: IP3 Performance for k ≤ 18 (max. time 1800s).

k L fbest
Best

Bound (BB)
Plotkin’s

Bound (PB)
Gap

|fbest − BB|/fbest

10 20 10 10 11 0%
11 22 12 12 12 0%
12 24 12 12 13 0%
13 26 13 14 14 7.69%
14 28 14 15 15 7.14%
15 30 15 16 16 6.67%
16 32 16 17 17 6.25%
17 34 16 18 18 12.2%
18 36 17 19 19 11.8%

Further in Table 2, we observe that for almost all cases,
the analytical Plotkin’s Bound (recall (14)) is same as the
“Best Bound” generated by the solver. Therefore, we can use
Plotkin’s Bound in place of the solver-generated bound to
estimate the gap or solution quality.

Our approach is easily scalable to k > 18, with a minor
modification. Instead of using all the 2k−1 − 1 columns
from the exhaustive codeM, we can use only a subset of
randomly sampled columns (around 2000) fromM and then
formulate and solve IP3 on this much smaller subset. Our
experiments, in Table 3, show that this approach provides
a high quality feasible solution for 18 < k ≤ 50. For most
commonly used datasets, particularly in ECOC literature
[Martin et al., 2018], k ∼ 50 should suffice. An upper
bound can be obtained using the analytical Plotkin’s bound,
thus enabling us to compute the gap. We again achieve
reasonably low gap, thus further validating the tightness and
scalability of our overall approach.

Table 3: IP3 Performance for k > 18 (max. time 1800s).

k L fbest
Plotkin’s

Bound (PB)
Gap

|fbest − PB|/fbest

20 40 19 21 10.5%
25 50 23 26 13%
30 60 27 31 14.8%
35 70 31 36 16.1%
40 75 36 41 13.8%
45 80 40 46 15%
50 100 44 51 15.9%

https://github.com/SamarthGM/IP_ECOC

(a) IP3 generated (b) Sparse (c) 1-vs-All

Figure 4: Decision boundaries of different hypotheses in three different codebooks on 2d dataset [Martin et al., 2018].

We now evaluate the classification performance of our IP-
generated codebooks in both natural and adversarial set-
tings. We compare performance against various standard
codebooks: 1-vs-all [Rifkin and Klautau, 2004] and 1-vs-
1 as well as Sparse and Dense codes generated using the
procedure outlined in Allwein et al. [2000].2

NATURAL CLASSIFICATION PERFORMANCE

Toy Dataset (2d): We generate a synthetic dataset of 10
classes where points in each class are sampled from a 2d
Gaussian distribution. Here we use SVMs with radial basis
function (RBF) kernel as our binary classifier for individual
hypotheses in all our codebooks. Figure 4 shows the decision
boundaries of all hypotheses for three codebooks along with
the training set. The prediction accuracy (average of 50
randomly generated instances) on the test set is reported in
Table 4. Our IP3 generated codebook easily outperforms
other codebooks, and almost matches the accuracy of 1-vs-1.
Note that this codebook only used L = 20 columns while
1-vs-1 used L = 45 columns. This highlights the benefit
of ECOC theory: high accuracy can be achieved with a
carefully chosen compact code-book.

Table 4: Performance on 2d Toy dataset (k = 10).

IP3 Dense
L = 10

Sparse
L = 10

1-vs-All
L = 10

1-vs-1
L = 45L = 10 L = 20

91.76% 92.15% 90.85% 71.3% 84.04% 92.5%

Real-world Datasets (Small/Medium): We evaluate the
performance of different codebooks on small to medium
sized, real-world datasets. We consider Glass, Ecoli and
Yeast datasets taken from UCI repository [Dua and Graff,
2017]. Details such as the number of samples, features and
classes for each dataset are provided in SM. For Dense,
Sparse, and IP generated codebook we set L = 2k. We use
SVMs with Rbf kernel as the binary classifier for training

2Please see appendix E in SM for more details.

different hypotheses in our IP-generated and other code-
books. We randomly set aside 30% of the samples as our
test set and use them to evaluate the performance of differ-
ent codebooks. The final average test set accuracies of 50
random splits of training and test data are reported in Table
5. Our codebook provides best accuracy on all the three
datasets with significant improvement on Glass and Ecoli
datasets.

Table 5: Performance of various codebooks on different
real-world (small) datasets.

IP3 Dense Sparse 1-vs-all 1-vs-1
Glass 65.13% 62.86% 57.78% 55.29% 56.52%
Ecoli 79.4% 76.91% 76.18% 69.57% 74.04%
Yeast 53.5% 52.88% 45.27% 46.62% 51.34%

We now evaluate the performance of different codebooks on
real-world image datasets: MNIST and CIFAR10.

MNIST: We run two set of experiments: In the first set,
we use SVMs (with both Linear and Rbf kernel) on PCA-
transformed MNIST dataset (using 25 principal compo-
nents). In the second set, we use binary Convolutional Neu-
ral Networks (CNNs) to train different hypotheses in our
codebooks. Tables 6 and 7 provide the test set accuracy (av-
eraged over 5 runs) of different codebooks from both sets
of experiments.

Table 6: Performance of different codebooks using SVM on
PCA transformed MNIST dataset.

IP3 Dense Sparse 1-vs-all 1-vs-1
Linear 80.37% 75.74% 68.87% 76.82% 92.01%
Rbf 97.59% 97.5% 79.18% 96.95% 98.01%

Table 7: Performance of Different Codebooks with binary
CNN on MNIST dataset.

IP3 Dense Sparse 1-vs-all 1-vs-1Normalized Raw
98.84% 98.8% 95.05% 84.17% 98.65 94.51%

 We observe that in the case of Linear kernel our IP3 code-
book outperforms all other codebooks except for 1-vs-1,
which achieves relatively higher accuracy of around 92%.
This is due to fact that the individual hypotheses of different
codebooks (except 1-vs-1) are solving much harder prob-
lems with highly non-linear decision boundaries. On the
contrary, 1-vs-1 solves only natural classification problems,
where a linear separator can be expected to do well. In using
non-linear Rbf-kernel, both IP3 codebook and 1-vs-1 code-
book achieve similar accuracy. On the other hand, when
using CNNs our IP3 codebook provides best performance,
indicating the benefit of using powerful binary classifiers in
ECOC approach.

CIFAR10: Since running SVMs on this dataset is compu-
tationally expensive, we resort to CNNs here. In particular,
we use ResNet18 [He et al., 2015] as our binary classifier to
train the individual hypotheses in different codebooks. As
shown in Table 8 (averaged over 5 runs), IP3 achieves the
best performance. Note that our experiments on CIFAR10
should be viewed only in terms of evaluating the relative
performance of different codebooks. We are aware that mod-
ern multi-output CNNs have achieved an accuracy of around
95% (or higher) on CIFAR10 dataset. However, recall that
in this work our goal is to highlight the benefit of using
ECOCs when working with binary classifiers.

Table 8: Performance of Different Codebooks with binary
CNN (ResNet18) on CIFAR10 dataset.

IP3 Dense Sparse 1-vs-all 1-vs-1Normalized Raw
76.25% 75.47% 68.15% 61.53% 71.25% 68.76%

ADVERSARIAL ROBUSTNESS

We now evaluate the robustness of different codebooks
against white-box attacks.3 For further comparison, we also
evaluate the robustness of a naturally trained multiclass
CNN with our IP-generated codebook in the final layer –
this is somewhat similar to the recent approach by Verma
and Swami [2019].4 In contrast to their approach, all our
binary hypotheses are naturally trained, i.e. without any ad-
versarial training. We first discuss how to obtain the class
probability estimates that are necessary to evaluate the ad-
versarial robustness.

Recall from section 2 the procedure of assigning a class to an
input x̃ using Hamming decoding. However, this decoding
scheme in itself does not provide us with class probability
estimates, which are essential for evaluating the robustness
of an ECOC-based classifier with respect to white-box at-
tacks [Madry et al., 2018, Goodfellow et al., 2015]. Particu-

3Different attacks including white-box attacks are discussed in
appendix H in supplementary material (SM).

4Please refer to appendix I in SM for more details.

larly, we need probability estimates to compute the adver-
sarial loss function. Also, we need to be able to compute the
gradients of the loss-function with respect to input x̃.

We adopt the procedure of calculating the class probability
estimates for general codebooks, as proposed in Zadrozny
[2002], Hastie and Tibshirani [1998]. After evaluating an
input x̃ on each binary classifier, we obtain a probability
estimate (or score5), denoted rl(x̃), for each column l (i.e.,
binary classifier) inM. Let I denote the set of classes for
which M(·, l) = 1 and J denote the set of classes for
whichM(·, l) = −1. Then the class probability estimate
for i ∈ {1, . . . k} on an input x̃ is given as follows:

p̂i(x̃) =
∑

l:M(i,l)=1

rl(x̃) +
∑

l:M(i,l)=−1

(1− rl(x̃)) , (15)

where differentiability with respect to x̃ is maintained. Note
that in (15), rl(x̃) is the class score or logit of the individual
binary classifier and therefore represents raw estimates.

Using these estimates, we can compute a loss function
(e.g, cross-entropy Loss) and then generate white-box PGD-
attacks [Madry et al., 2018] to evaluate the robustness of the
overall classifier. Note that we use the same differentiable
class scores (or decoding scheme) for both prediction and
to generate a white-box attack in order to prevent gradient-
obfuscation [Athalye et al., 2018, Carlini et al., 2019, Tramer
et al., 2020]. For all our experiments, we work with pertur-
bations based on l∞-norm. In particular, for a given input
x′, the allowed set of perturbations are given by set:

Q(x′) = {x ∈ Rd
∣∣ ||x− x′||∞ ≤ ε ; x′l ≤ x ≤ x′u},

where x′l and x′u are the domain dependent bounds. For
example, for image data x′l = 0 and x′u = 255.

MNIST: We run an l∞-norm based 100-step PGD attack
(with 5 different seeds) over multiple values of ε on differ-
ent codebooks; Table 9 summarizes these results. In terms
of the overall performance, our IP3-generated codebook
significantly outperforms all other codebooks except the
Dense codebook. In this codebook, different pairs of code-
words have different Hamming distances, ranging from 8-14.
On the other hand, in IP3, all codeword pairs have iden-
tical Hamming distance of 10 as a result of the max-min
objective function (11). This disparity in performance can
be addressed by incorporating the underlying data distri-
bution (via class pair similarity measures) using the objec-
tive function (13). However, note that efficiently computing
similarity measures for large image datasets is in itself a
research problem. In the next set of experiments, we discuss
that the performance of Dense codebook deteriorates as the
data-distribution changes.

5Class scores can be easily converted into probabilities using
sigmoid non-linearity.

Table 9: Adversarial Accuracy of Nominally Trained Code-
books on MNIST.

ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.3
IP3 95.46% 83.6% 57.67% 29.96% 12.99% 4.81%

1-vs-1 84.48% 59.17% 25.57 % 7.91% 2.36 % 0.66%
1-vs-All 93.64% 70.74% 30.89% 6.74% 1.87% 0.86%
Sparse 86.12% 58.67% 22.65% 5.4% 0.63% 0.01%
Dense 95.17% 84.08% 62.95% 43.54% 28.6% 16.34%

Multiclass 94.35% 70.29% 21.72% 2.19 % 0.04 % 0.0%

CIFAR10: We evaluate the robustness of different code-
books on CIFAR10 by running 30-step PGD attack (with 5
different seeds); see Table 10. In this case, our IP3 code-
book outperforms all other codebooks including Dense code-
book. Note that the underlying data-distribution has changed
as we moved from MNIST to CIFAR10 dataset, and Dense
codebook now shows lower performance than IP3, particu-
larly for larger perturbations of ε = 4/255 and ε = 8/255.

Table 10: Adversarial Accuracy of Nominally Trained Code-
books on CIFAR10.

ε = 2/255 ε = 4/255 ε = 8/255
IP3 24.04% 19.24% 16.48%

1-vs-1 4.65% 0.11% 0.0 %
1-vs-All 2.83% 0.14% 0.0%
Sparse 5.05% 0.08% 0.0%
Dense 24.2% 12.79% 11.63%

Multiclass 15.46% 2.55% 0.27%

Importantly, the adversarial accuracy achieved by our IP3
is by no means trivial as under the exactly same setting
other codebooks like 1-vs-1, 1-vs-All, Sparse do not show
any robustness. In similar setting, a Multiclass CNN of
similar network capacity also does not provide any robust-
ness to adversarial perturbations. This demonstrates a rather
impressive capability of ECOCs to handle adversarial pertur-
bations even though the individual binary hypotheses are all
nominally trained. Thus, our approach provides robustness-
by-design, without making any specific assumptions about
the adversary model in the design of codebook.

6 CONCLUSION AND FUTURE WORK

Our computational results demonstrate the merits of our op-
timal codebook design approach. Importantly, our IP-based
formulation achieves small optimality gaps while main-
taining tractability. This is possible mainly due the graph-
theoretic structure the we exploited in applying the edge-
clique-cover, which substantially reduced the constraint set
of original IP formulation. In the nominal setting, our IP-
generated compact codebooks outperform commonly used
large codebooks on most datasets.

Furthermore, in the adversarial setting, our IP-generated
codebooks achieve non-trivial robustness. This is surprising
due to three reasons: (1) We do not employ any adversarial
training; (2) Most other codebooks (except Dense) do not

exhibit any robustness even when they use more than twice
the number of columns; (3) The robustness that we obtain
is not simply because of the large network capacity. To the
best of our knowledge, we are the first ones to report that
adversarial robustness can be achieved by a careful code-
book design approach, while only using nominally trained
classifiers.

Our results provide guidance for further research in the use
of ECOCs for robust classification. We plan to study the
effect of robustifying individual hypotheses with adversarial
training. This could involve using a combination of nomi-
nally and adversarially trained hypotheses.

We believe that our approach avoids over-estimation of
adversarial accuracy following Athalye et al. [2018] and
Tramer et al. [2020], however our approach should be eval-
uated against other attacks such as decision-based attacks
[Brendel et al., 2017]. To generate guarantees on adversarial
accuracy of our ECOC based approach, extensions of our
work within the framework of certifiable defenses [Wong
and Kolter, 2018], [Zhang et al., 2019] are also desirable.

Acknowledgements

We sincerely thank all the reviewers for their constructive
and helpful feedback. The second author acknowledges sup-
port from AFSOR grant FA9550-19-1-0263.

 References

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Re-
ducing multiclass to binary: A unifying approach for mar-
gin classifiers. Journal of Machine Learning Research, 1:
113–141, 2000.

Alper Atamtürk, George Nemhauser, and Martin Savels-
bergh. Conflict graphs in solving integer programming
problems. European Journal of Operational Research,
121:40–55, 02 2000.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples. In Proceedings of
the 35th International Conference on Machine Learning,
ICML, July 2018.

Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. 12 2017.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland
Brendel, Jonas Rauber, Dimitris Tsipras, Ian J. Goodfel-
low, Aleksander Madry, and Alexey Kurakin. On eval-
uating adversarial robustness. CoRR, abs/1902.06705,
2019.

Alessio Conte, Roberto Grossi, and Andrea Marino. Clique
Covering of Large Real-World Networks. In 31st An-
nual ACM Symposium on Applied Computing (SAC 2016),
pages 1134–1139, Pisa, Italy, April 2016. ACM.

Koby Crammer and Yoram Singer. On the learnability and
design of output codes for multiclass problems. Machine
Learning, 47(2):201–233, May 2002. ISSN 1573-0565.

Thomas G. Dietterich and Ghulum Bakiri. Solving multi-
class learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2(1):263–286,
January 1995. ISSN 1076-9757.

Dheeru Dua and Casey Graff. UCI machine learning reposi-
tory, 2017.

Tianshi Gao and D. Koller. Discriminative learning of re-
laxed hierarchy for large-scale visual recognition. In In-
ternational Conference on Computer Vision, pages 2072–
2079, 2011.

Michael R. Garey and David S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
1990.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015.

Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Nieder-
meier. Data reduction and exact algorithms for clique
cover. ACM J. Exp. Algorithmics, 13, February 2009.
ISSN 1084-6654.

G. Griffin and P. Perona. Learning and using taxonomies
for fast visual categorization. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8,
2008.

Venkatesan Guruswami and Amit Sahai. Multiclass learn-
ing, boosting, and error-correcting codes. In Proceed-
ings of the Twelfth Annual Conference on Computational
Learning Theory, COLT’99, pages 145–155, 1999.

Trevor Hastie and Robert Tibshirani. Classification by
pairwise coupling. In Advances in Neural Information
Processing Systems 10, NIPS ’97, pages 507–513, Cam-
bridge, MA, USA, 1998. MIT Press. ISBN 0-262-10076-
2.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

E. Kellerman. Determination of keyword conflict. IBM
Technical Disclosure Bulletin, 16(2):544–546, 1973.

L. T. Kou, L. Stockmeyer, and C. Wong. Covering edges by
cliques with regard to keyword conflicts and intersection
graphs. Commun. ACM, 21:135–139, 1978.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 5 2015. ISSN
0028-0836.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. ArXiv,
abs/1706.06083, 2018.

Miguel Ángel Bautista Martin, Oriol Pujol, Fernando De la
Torre, and Sergio Escalera. Error-correcting factorization.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 40(10):2388–2401, Oct 2018.

Manfred W. Padberg. On the facial structure of set packing
polyhedra. Math. Program., 5(1):199–215, December
1973. ISSN 0025-5610.

Morris Plotkin. Binary codes with specified minimum dis-
tance. IRE Trans. Inf. Theory, 6(4):445–450, 1960.

Oriol Pujol, Petia Radeva, and Jordi Vitria. Discriminant
ecoc: A heuristic method for application dependent de-
sign of error correcting output codes. IEEE Transactions
on Pattern Analysis and Machine Intelligence., 28(6):
1007–1012, June 2006. ISSN 0162-8828.

 Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all
classification. Journal of Machine Learning Research, 5:
101–141, 2004.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.
One pixel attack for fooling deep neural networks. IEEE
Transactions on Evolutionary Computation, 23:828–841,
2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fer-
gus. Intriguing properties of neural networks. CoRR,
abs/1312.6199, 2013.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and
Aleksander Madry. On adaptive attacks to adversarial
example defenses, 2020.

Gunjan Verma and Ananthram Swami. Error correcting out-
put codes improve probability estimation and adversarial
robustness of deep neural networks. In Advances in Neu-
ral Information Processing Systems 32, pages 8646–8656.
2019.

Eric Wong and Zico Kolter. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5286–5295. PMLR, July 2018.

Xiao Zhang, Lin Liang, and Heung-Yeung Shum. Spec-
tral error correcting output codes for efficient multiclass
recognition. In 2009 IEEE 12th International Conference
on Computer Vision, pages 1111–1118, 2009.

Bianca Zadrozny. Reducing multiclass to binary by coupling
probability estimates. In Advances in Neural Information
Processing Systems 14, pages 1041–1048. MIT Press,
2002.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane S.
Boning, and Cho-Jui Hsieh. Towards stable and effi-
cient training of verifiably robust neural networks. CoRR,
abs/1906.06316, 2019.

B. Zhao and E. P. Xing. Sparse output coding for large-
scale visual recognition. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3350–
3357, 2013.

	Introduction
	ECOC for Classification
	Codebook Design Criteria
	Integer Programming Formulation
	Experiments
	Conclusion and Future Work

