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Abstract

Conventional methods in causal effect inference
typically rely on specifying a valid set of control
variables. When this set is unknown or misspeci-
fied, inferences will be erroneous. We propose a
method for inferring average causal effects when
all potential confounders are observed, but the
control variables are unknown. When the data-
generating process belongs to the class of acyclical
linear structural causal models, we prove that the
method yields asymptotically valid confidence in-
tervals. Our results build upon a smooth character-
ization of linear directed acyclic graphs. We verify
the capability of the method to produce valid con-
fidence intervals for average causal effects using
synthetic data, even when the appropriate specifi-
cation of control variables is unknown.

1 INTRODUCTION

When applied researchers aim to assess the causal effect
of some policy or exposure, they must often infer it from
observational data. This requires controlling for variations in
the outcome of interest that arise from confounding factors.
After selecting a set of control variables, inferences are
often drawn using regression models. But selecting a valid
control variable set is in general hard and the use of invalid
sets produces misleading inferences, see. e.g., Carlson and
Wu [2012], Bernerth and Aguinis [2016]. It is therefore of
practical interest to infer causal effects without relying on
the researcher to specify the control variables among all
observed variables.

In this paper, we will develop such an inferential method un-
der the assumption that there is no unobserved confounding.
The method infers average causal effects using asymptotic
confidence intervals and obviates the need for specifying
control variables.

Consider a random outcome variable y observed after an
intervention on another scalar x. We denote the unknown
conditional distribution of outcomes under such an interven-
tion as

y ∼ p̃(y|x)

We consider the scalars x and y to be of zero mean, i.e.
Ẽ[x] = Ẽ[y] = 0, where the tilde denotes that the expecta-
tion is taken with respect to the interventional distribution p̃.
The conditional mean function Ẽ[y|x] describes the effect of
the intervention and can be summarized by the distribution
parameter

γ :=
C̃ov[x, y]

Ṽar[x]
≡ arg min

γ̄
Ẽ
[(
Ẽ[y|x]− γ̄x

)2]
(1)

Thus γx is an optimal linear approximation of the condi-
tional mean function. When the conditional mean function
is linear, the parameter is the average causal effect of the
intervention, i.e., γ ≡ ∂

∂x Ẽ[y|x] [Angrist and Pischke, 2009,
Pearl, 2009].

The task is to infer γ using data from a different, observa-
tional distribution

(xi, yi, zi) ∼ p(x, y, z), i = 1, . . . , n (2)

where z is a vector of additional random variables. A stan-
dard procedure to infer γ is to use the partial regression
coefficient

β :=
Cov[x̄, ȳ]

Var[x̄]
, (3)

where x̄ and ȳ are adjusted according to

x̄ := x− Cov[x, z̄] Cov[z̄]−1z̄

ȳ := y − Cov[y, z̄] Cov[z̄]−1z̄,
(4)

where z̄ ⊆ z is a set of control variables using the terminol-
ogy in much of regression analysis. If this set were valid, the
noncausal association between x and y can be blocked. Then
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 β = γ when the data-generating process is well-described
by a linear model [Angrist and Pischke, 2009, Pearl, 2009].
See [Peters et al., 2017, ch. 6.6] for a general definition of
valid control variables using structural causal models (SCM).
Throughout the paper, we will assume that at least one valid
subset of z exists but that it is unknown. If a specified z̄
contains invalid controls, the resulting inferences become
erroneous as the following example illustrates.

Example: Invalid control variables Consider a data-
generating process with a causal structure as illustrated in
Figure 1a. Only z2 ⊂ z constitutes a valid control variable,
by blocking the noncausal association between x and y. Nei-
ther ∅ nor z1 are valid. If the causal structure is unknown
or misspecified so that we use z̄ = [z1, z2]> instead of z2,
then inferring β in equation (3) will yield erroneous conclu-
sions about the average causal effect, as shown in Figure 1b.
We also illustrate an alternative methodology developed in
this paper which, by contrast, does not require a correctly
specified causal structure.

Contribution and related work The contribution of this
paper is the development of a confidence interval for the
average causal effect that obviates the need to specify valid
control variables, and we derive its statistical properties.

To decide the valid control variables among z, typically
requires the causal structure of the data-generating pro-
cess. The problem of learning such structures from data,
aka. causal discovery, has been studied over a few decades
[Spirtes et al., 1993, Pearl, 2009, Peters et al., 2017]. A cen-
tral challenge of the field is to optimize model fitness over
the discrete nature of graphs representing the causal struc-
ture. Zheng et al. [2018] proposed a smooth characterization
of directed acyclic graphs (DAG) which enables conven-
tional optimization methods to be used. See [Yu et al., 2019,
Ke et al., 2020, Brouillard et al., 2020, Zheng et al., 2020,
Kyono and Zhang, 2020] for applications and extentions of
this methodology.

Our method presented herein utilizes that characterization of
DAGs and builds upon the framework of M-estimation. See
e.g. the presentation in [Wooldridge, 2010, ch. 12] or Vaart
[1998] for an introduction. When imposing DAG-constraints,
we find the need to extend the basic M-estimation frame-
work. While the theory of constrained M-estimation has
been approached before [Geyer, 1994, Shapiro, 2000, An-
drews, 1999, Wang, 1996], we show that the assumptions
needed do not hold due to the geometry of the DAG con-
straints. Moreover, alternative characterizations of DAGs,
presented in Wei et al. [2020], would not remedy this prob-
lem.

Therefore we take a different approach, inspired by Stoica
and Ng [1998], to derive the large-sample properties of the
proposed confidence interval and prove its asymptotic va-
lidity. Our theoretical results are corroborated by numerical

experiments, which demonstrate the ability of the method to
correctly infer average causal effects in linear SCMs without
specifying valid control variables.

Lastly we emphasize that while our method builds upon
insights from the causal discovery literature, its task is to
infer the average causal effect and not a causal graph.

2 PROBLEM FORMULATION

We begin by specifying the class models for the data gen-
erating process that we will consider and then proceed to
define the target quantity that we seek to infer from data.

2.1 MODEL CLASS FOR THE
DATA-GENERATING PROCESS

To simplify the notation, we introduce the d-dimensional
data vector v> = (x, y, z>). Suppose the data-generating
process p(v) in (2) belongs to the class of linear SCM. That
is, we can express the data vector as

v = W>v + e, (5)

where is e is zero-mean random variable with a diagonal co-
variance matrix Σ. It is for simplicity assumed to be known
here, although as we point out in Section 3 this assumption
can be relaxed to a certain degree. We let W ∈ Rd×d have
zeros on its diagonal. It can be interpreted as a weighted
directed graph, by letting Wi,j be the weight on the edge
from node i to node j. The matrix W> is sometimes re-
ferred to as the adjacency matrix [Shimizu et al., 2011] or
the autoregressive matrix [Loh and Bühlmann, 2014].

The matrix W is unknown but has certain restrictions. For
SCMs it is common to impose a DAG structure on the graph
specified by W , since such structure significantly clarifies
and simplifies any causal analysis of the model. We will
call W a ‘DAG-matrix’ if the directed graph of the matrix
is acyclical. When W is a DAG-matrix, we can interpret
the entry Wi,j as the expected increase in vi for every unit
increase in vj , holding all other variables constant.

Zheng et al. [2018] introduced the function h(W ) :=
tr exp(W ◦ W ) − d, using the trace of the matrix expo-
nential and the element-wise product ◦, and showed that

W is DAG-matrix⇔ h(W ) = 0

To enable a tractable analysis below, we will also consider
the set of all ε-almost DAG-matrices, defined as

Wε = {W |h(W ) ≤ ε and diag(W ) = 0} (6)

Note that when ε = 0, the set W0 is exactly the set of
DAG-matrices. When ε > 0, cycles are permitted but the
magnitude of their effects are bounded. Below we will pro-
vide bounds on ε that enable a meaningful analysis ofWε.
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Figure 1: Using observational data (2) generated by a linear SCM based on (a), we aim to infer an unknown causal parameter
γ◦ (further details in Section 4.2). The causal structure is here unknown and using z = [z1, z2] as the control variables,
the standard approach based on the ordinary least-squares (OLS) method yields confidence interval Bα,n in (b). Since z is
invalid due to the collider bias induced by z1, the inferences are erroneous. Below we develop an inference method that
yields calibrated confidence intervals Γα,n when the causal structure in (a), and therefore a set of valid control variables, is
unknown.

Given the data-generating process in (5), we can define
an interventional distribution p̃(v) with respect to the first
variable x [Pearl, 2009]: Introduce Z, a matrix with ones on
the diagonal, except the first element, which is zero, i.e.

Z ∈ Rd×d, Zi,j =

{
1 if i = j > 1

0 else
(7)

Next, introduce a new random vector ẽ, with the same sta-
tistical properties as e in (5) for all components, but for its
first component, and let Σ̃ denote its diagonal covariance
matrix. The interventional distribution p̃(v) is then specified
by the model

v = ZW>v + ẽ, (8)

assuming that (I − ZW>) is full rank.

2.2 TARGET QUANTITY

For an interventional distribution given by (8), we observe
the following result.

Lemma 1. The average causal effect of x on y in a linear
SCM with interventional distribution p̃(v) is

γ(W ) =
C̃ov[x, y]

Ṽar[x]
≡
[
(I − ZW>)−1

]
2,1

(9)

where W is a (possibly non-DAG) adjacency matrix.

The syntax [.]2,1 refers to the second row and first column
of a matrix. The proof is a direct computation and given in
the supplementary material.

We are interested in computing the average causal effect

γ◦ = γ(W◦), (10a)

where W◦ is an ε-almost DAG adjacency matrix that opti-
mally fits the observational data using the following crite-
rion,

W◦ := arg min
W∈Wε

E
[
‖Σ−1/2(I −W>)v‖2

]
(10b)

Loh and Bühlmann [2014, corollary 8] show that if the obser-
vational distribution p(z) follows (5) and ε = 0, then (10b)
correctly identifies the unknown matrix. Moreover, Loh and
Bühlmann [2014, theorem 9] proves that identifiability is
obtained even under limited misspecification of the entries
in Cov[e] = Σ. Thus the target quantity γ◦ is defined as the
average causal effect of the optimally fitted linear SCM and
requires no further distributional assumptions.

Our task is to construct a confidence interval Γα,n, that is
using n data points, and has a coverage probability 1 − α
for the quantity γ◦.

3 RESULTS

We present the results in this paper in two parts. First, we
present the confidence interval for γ◦ with an asymptoti-
cally valid coverage probability (Theorem 4). This uses a
general result of equality-constrained M-estimation, which
we subsequently present (Theorem 5, Corollary 6).



 3.1 DERIVATION OF CONFIDENCE INTERVAL

Using the empirical average operator En, we define the
empirical analog of (10b) as

Wn := arg min
W∈Wε

En
[
‖Σ−1/2

(
I −W>

)
v‖2
]

(11)

Using Wn and (9) yields a point estimate of γ◦:

γn := γ(Wn) (12)

For notational simplicity, we reparameterize W , which con-
tains zeros along the diagonal, by vec(W ) = Lθ, where L
is a d2×d(d−1) matrix constructed using a d2×d2 identity
matrix removing columns d(k − 1) + k for k = 1, 2, . . . , d.
Using this parametrization, we formulate the loss function

`θ(v) := (Lθ − vec(I))>
[
Σ−1 ⊗ [vv>]

]
(Lθ − vec(I))

(13)

using the Kronecker product ⊗, and we write

θ◦ = arg min
h(mat(Lθ))≤ε

E[`θ(v)] (14)

θn = arg min
h(mat(Lθ))≤ε

En[`θ(v)] (15)

equivalently to (10b) and (11).

While setting ε = 0 yields exact DAG-matrices, it also ren-
ders the problem ill-suited for inference. The set W0 is
nonconvex, has an empty interior, and constraint qualifi-
cation does not hold (see Lemma 3 in the supplementary
material). Therefore, convex optimization methods, barrier
methods, and any method based on first-order optimality
will be invalid. Asymptotic analysis of M-estimation typi-
cally requires convexity of the tangent cone at the optimum,
and that the optimal point is stationary even under the un-
constrained formulation [Geyer, 1994, Shapiro, 2000], but
neither of these assumptions are fulfilled at most points in
the set W0. To provide a tractable analysis, we consider
ε > 0 below and expect almost-identification when ε is
small. We start with a technical lemma.

Lemma 2. The minimizer θ◦ in (14) is bounded. If it is also
unique, then there is a value of ε? such that the minimum is
obtained at the boundary h(mat(Lθ◦)) = ε for all ε < ε?.

Proof. First, assume that the mimimizer of (14) is not
bounded. In that case, there is a sequence of feasible points
tn such that ‖tn‖ → ∞, and E[`tn(v)] is decreasing. This
is not possible, since `t(v) is a positive definite quadratic
in t. We have established the boundedness ‖θ◦‖ < B, for
some B.

Let Q = Σ−1 ⊗ E[vv>], i.e. a Kronecker product of two
positive definite matrices and it follows that Q is positive
definite. Then the objective function of (14) is a positive

definite quadratic with a global minimum given by the sta-
tionary point θ? =: (Q1/2L)†Q1/2 vec(I) where † denotes
the Moore-Penrose inverse. When ε = ∞, then θ? is a
feasible point to the minimization problem in (14).

Define ε? = h(mat(Lθ?)) and consider (14) for any ε ∈
(0, ε?). Observe that {θ | ‖θ‖ ≤ B and h(mat(Lθ)) ≤ ε} is
compact, the objective function has no stationary points
on the feasible set, and ‖θ◦‖ < B. Conclude that
h(mat(Lθ◦)) = ε.

Lemma 3. Assume the solution to (14) is unique, and that
ε < ε? as in Lemma 2. Then the asymptotic distribution of
θn can be described by

√
nJ−1/2

n (θn − θ◦) d→ N (0, I) (16)

The estimated covariance of the estimator is de-
fined as Jn = K−1

n ΠnJnΠnK
−1
n , where Kn =

L>
[
Σ−1 ⊗ En

[
vv>

]]
L, Πn is a projection matrix with

respect to the orthogonal complement of ∇θh(mat(Lθn))
and Jn = L>J̃nL.

We may compute Πn = I − (qq>)/(q>q) and q =
L> vec(2Wn◦(exp[Wn◦Wn])>). Furthermore, the matrix
J̃n has the expression

(J̃n)d(j−1)+i,d(l−1)+k =

d∑
q,r,o,p=1

{(
En [vivqvovk]−

En [vivq]En [vovk]
)
Σ−1
j,rΣ−1

p,l (W − I)q,r(W − I)o,p

}
(17)

Proof. By consistency of M-estimation, (15) will be a con-
sistent estimator for (14). Adding the redundant ‖θ‖ ≤ B-
constraint in Lemma 2 makes the feasible set compact and
thus fulfills the technical conditions [Wooldridge, 2010,
Theorem 12.2].

By Lemma 2, we know that the minimum will be obtained at
the boundary, in the limit n→∞. We can therefore impose
equality constraints in the minimization:

θn = arg min
h(mat(Lθ))=ε

En[`θ(v)] (18)

Now apply Corollary 6 derived below. It states the for-
mula for confidence intervals under equality-constrained
M-estimation using plug-in estimators of data covariance
and cross-moments. The derivation of the expressions for
J̃n,Kn and Πn from (13) are direct computations presented
in the supplementary material as Lemma 5. Technical con-
ditions are presented in Lemma 6.

We can now state our main result for inferring the average
causal effect γ◦.



 Theorem 4. The confidence interval

Γα,n =

{
γ ∈ R

∣∣∣∣ 1n (γ − γn)2

∇γ(θn)>Jn∇γ(θn))
≤ χ2

1,α

}
(19)

has asymptotic coverage probability

lim
n→∞

P(γ◦ ∈ Γα,n) = 1− α, (20)

where χ2
1,α denotes the (1− α) quantile of the chi-squared

distribution with 1 degree of freedom.

Proof. Define γ(θ) as the value of γ(mat(Lθ)) in (9).

The gradient ∇γ(θn) may be computed on closed form by
differentiating (9), obtaining

[∇θγ(θ)]k = − ([MZ ⊗ I]L)d+1,k (21)

where M = (I −ZW )−1. The computation is mostly keep-
ing track of indices, and presented in supplementary materi-
als as Lemma 7. Using the delta method with equation (21)
together with Lemma 3, we establish asymptotic normality.
Form the Wald statistic for γn, and we may finally define a
confidence interval Γα,n.

3.2 M-ESTIMATION ASYMPTOTICS UNDER
EQUALITY CONSTRAINTS

Next we derive a general result for the asymptotics of of
equality-constrained M-estimation. The key observation is
borrowed from Stoica and Ng [1998]: that we can project
onto the (generalized) score onto the active constraints.
We apply this insight to the more general M-estimation
framework and derive complete asymptotic distribution of
equality-constrained M-estimators.

In this section 3.2 the function ` is not necessarily the same
function as defined in (13) but we use the same symbol to
ease the mapping between the general result and its applica-
tion.

Theorem 5. Assume that technical conditions for consis-
tency of M-estimation holds [Wooldridge, 2010, Theorem
12.2]), as well as

• The loss function `θ(v) is two times continously diffren-
tiable in v.

• Θ := {θ ∈ Rp | g(θ) = 0} for some vector-valued
constraint function g such that Θ is bounded.

• The Jacobian matrix∇g(θn) has full rank for all n.

• En
[
∇2`θ(v)

]
is invertible for all θ.

• θ◦ is the unique minimizer of E[`θ(v)]

Introduce the definitions J◦ := Cov[∇`θ◦(v)], K◦ :=
E[∇2`θ◦(v)] and Π◦ is an orthogonal projector in the com-
plement of the range of the jacobian∇g(θ◦). Then we can
establish the convergence

√
n(θn − θ◦) d→ N (0,K−1

◦ Π◦J◦Π◦K
−1
◦ ).

Proof. Uniform weak law of large numbers holds, and Θ
must be compact since bounded and closed, so we have that
θ◦ is consistently estimated by θn

Let Qn be a matrix whose orthonormal columns spans the
range of∇g(θn) (as in e.g. QR factorization). Construct an
orthogonal matrix [Qn Un]. Now, Qn is a ON basis for the
normal of the feasible set Θ, and Un is a ON basis for the
tangent cone of Θ as θn.

Begin by a mean-value expansion of En [∇`θn(v)].

En[∇`θn(v)] = En[∇`θ◦(v)] + En[∇2`θ̃(v)](θn − θ◦)
(22)

We have that I = [Qn Un]

[
Q>n
U>n

]

[Qn Un]

[
Q>n
U>n

]
En[∇`θn(v)] (23)

= [Qn Un]

[
Q>n
U>n

]
En[∇`θ◦(v)] + En[∇2`θ̃(v)](θn − θ◦)

(24)

By definition U>n ∇g(θn) = 0, and from first order op-
timality conditions ∇`θn is in the range of ∇g(θn), so
U>n ∇`θn = 0.

Rearranging, and using the assumption of invertibility of
En[∇2`θ̃(v)], we get

(θn − θ◦) = (25)

En
[
∇2`θ̃(v)

]−1
[Qn Un]

[
Q>n (En [∇`θn(v)−∇`θ◦(v)])

−U>n En [∇`θ◦(v)]

]
(26)

Next, we will analyze a certain subexpression separately.
Introduce Π◦ = U◦U>◦ and Πn = UnU

>
n .

√
nΠnEn [∇`θ◦(v)] = (27)

Πn

√
n (En [∇`θ◦(v)]− E [∇`θ◦(v)]) + Πn

√
nE [∇`θ◦(v)]

(28)

The first term converges to N (0,Π◦J◦Π◦) in distribution.
The second term converges to zero in probability, so

√
nΠnEn [∇`θ◦(v)]

d→ N (0,Π◦J◦Π◦) (29)



 Finally, we can take the limit of equation (25).

√
n(θn − θ◦) =

√
n [En

[
∇2`θ̃(v)

]−1︸ ︷︷ ︸
p→K−1

QnQ
>
n︸ ︷︷ ︸

p→Q◦Q>◦

(En (∇`θn(v)]− En [∇`θ◦(v)])︸ ︷︷ ︸
p→0

− [En
[
∇2`θ̃(v)

]−1︸ ︷︷ ︸
p→K−1
◦

√
nΠnEn [∇`θ◦(v)]︸ ︷︷ ︸
d→N (0,Π◦J◦Π◦)

(30)

For all terms converging in probability we have been using
the uniform weak law of large numbers, so we rely on com-
pactness of Θ, and the suitable smoothness of the functions
depending on v. We need, for example, the continuity of
matrix inversion, QR factorization and orthogonal comple-
ments. W e use Slutskys theorem to multiply the terms.

Finally we see
√
n(θn − θ◦) d→ N (0,K−1

◦ Π◦J◦Π◦K−1
◦ )

Corollary 6. The asymptotic distribution of Theorem 5
can be reformulated by standardizing it, and plugging in
estimates (e.g. Kn) in the place of the population optimal
expressions (e.g. K◦).

√
nJ−1/2

n (θn − θ◦) d→ N (0, I).

with the introduction of

Jn := K−1
n ΠnJnΠnK

−1
n

Kn := En
[
∇2`θn(v)

]
Jn := En[∇`θn(v)∇`θn(v)>]−En[∇`θn(v)]En[∇`θn(v)]>

Proof. This follows from the consistency of plug-in-
estimators [Wooldridge, 2010, Theorem 12.2].

4 NUMERICAL ILLUSTRATIONS

In the following experiments, data was generated using
a linear SCM (5) with a matrix W that is either fixed or
random. For random DAG-matrices, we follow Yu et al.
[2019, section 4.1]: Let d be the number of nodes in a
SCM. Let k be the expected number of edges in a randomly
generated DAG. Let M be a random strictly subtriangular
matrix where entries are drawn Bernoulli(2k/(d− 1)). Let
P be a random permutation matrix. Let C be uniformly
drawn from the interval [0.5, 2], and setW = P>(C◦M)P .

The random vector e in (5) has elements with unit variance
and are drawn independently as either Normal(0,1), Exp(1)
or Gumbel(0,6/π2)). Data was also centered before any
other processing.

Throughout all runs, the nominal miscoverage level was set
to α = 5% and ε = 10−7.

Remark. In the supplementary material, we study deviations
from the linear data model, in which case the average causal
effect (10a) of the optimal linear model is still defined.
Remark. In all cases when the data generator is a lin-
ear SCM with Gaussian noise, we apply Isserlis’ theorem
to equation (17), En [vivqvovk] − En [vivq]En [vovk] =
En [vivo]En [vqvk] + En [vivk]En [vqvo]. This reduction
is especially helpful in high dimensions, when d is large.

4.1 NUMERICAL SEARCH METHOD

In the examples below, we construct the confidence interval
(19) by numerically solving problem (15). Here we use the
augmented Lagrangian method [Nocedal and Wright, 2006],
but other search methods are possible as well.

We define the augmented Lagrangian and the equality con-
verted constraint as

L(θ, s, α, ρ) = En [`θ(v)] + αc(θ, s) +
ρ

2
c(θ, s)2 (31)

c(θ, s) = h(mat(Lθ)) + s2 − ε

The method alternates between the minimization over primal
variables (θ,s) and maximization over dual variables (α),
starting from a few initialization points, as explicated in
Algorithm 1.

Algorithm 1: Augmented Lagrangian Method

Input: θ0,s0,ρ0, α0, g, µ,L,η,ρmax,c
Output: θn

1 k = 0

33 while c(θk, sk) > η and ρ < ρmax do
55 θk+1, sk+1 = arg minθ,s L(θ, s, αk, ρk)

6 αk+1 = αk + ρkc(θk+1, sk+1)

7 if c(θk+1, sk+1) > gc(θk, sk) then
8 ρk+1 = µρk

9 else
10 ρk+1 = ρk

11 k = k + 1

12 return θn = θk+1

The minimization problem on line 5 is solved via
the L-BFGS-B-implementation in the python library
scipy.optimize, which in turn utilizes the 3.0 version
of the FORTRAN library of Zhu et al. [1997]. Since this
is a local minimizer, we use the previous optimal primal
variables θk, sk as the starting point.

The parameters have default values set to θ0 = 0, s0 = 10,
ρ0 = 1, α0 = 0, g = 1/4, µ = 2, η = 10−12, ρmax = 1020.
Note that η must be significantly smaller than ε, which in
turn should be smaller than ε?. Thus it is advisable to verify
that the choice of η is sufficiently small in a given problem.
The threshold ρmax is introduced for numerical stability.



 The augmented Lagrangian method is guaranteed to find
a local minimizer θn, under a certain set of assumptions
[Nocedal and Wright, 2006, Theorem 17.6]. One of these
is constraint qualification at the minimizer, in this case de-
manding ∇c(θ∗, s∗) 6= 0 at the optimal primal variables
θ∗, s∗. For ε = 0 this do not hold, but it does so for ε > 0,
see Lemma 3 in the supplementary material for a proof.
Finding the minimum for ε→ 0 will thus require ρ→∞,
and we have introduced the stop condition ρmax on line 3
for practical reasons.

To compute γ◦ we replace En[..] in (31) with E[..], which
has a closed-form expression.

4.2 BASELINE COMPARISON

We first compare the proposed confidence interval Γn,α in
(19) with a standard OLS-based confidence intervalBn,α for
(3) that is computed using HC0 standard errors [Wooldridge,
2010]. To use OLS we must specify a set of control variables,
which we take to be z. When this set is valid, we expect
Γn,α and Bn,α to be similar. When the set is invalid, we
expect them to diverge.

We use the linear Gaussian data model with the matrix in
(5) set to be either

W ′ =


0 0 1 0
0 0 1 0
0 0 0 0
1 1 0 0

 or W ′′ =

 0 0.4 0
0 0 0

0.7 0.2 0



The graph of W ′ is illustrated in Figure 1a, while Figure 1b
demonstrates the ability of Γn,α to correctly infer γ◦ without
specifying a set of control variables. By contrast, Bn,α is
clearly biased from incorrectly controlling for the collider
z1.

Corresponding results for W ′′ are shown in Figure 2. As
expected, the resulting intervals Γn,α and Bn,α are virtually
identical since z constitutes a valid set of control variables.

4.3 CALIBRATION AND NORMALITY

To assess the calibration of Γα,n, we set n to be 102 or 104

and generate repeated datasets from a linear Gaussian data
model with matrix

W =


0 −2 1.6 0
0 0 0 0
0 1.2 0 −0.5
0 0 0 0


corresponding to a graph illustrated in Figure 3.

The coverage probability P(γ◦ ∈ Γα,n) was estimated to be
94.6% and 94.9% for n = 102 and 104, respectively, using
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Figure 2: (1 − α)-confidence intervals for γ◦ computed
under a linear Gaussian SCM with matrix W ′′, for which z
is valid control variable.

z1

x

y

z2

Figure 3: Causal structure of W in experiment for Calibra-
tion and Normality check, where z = [z1, z2] is not a valid
set of control variables.

1000 Monte Carlo simulations. This is close to 1−α = 95%
and corroborates Theorem 4. Figure 4 supports the result
further by showing a Normality plot for the point estimate
γn over all Monte Carlo simulations.

4.4 COMPARISON WITH A CAUSAL DISCOVERY
METHOD

We compare our method with an alternative method of in-
ferring the average causal effect by learning a linear SCM
adjacency matrix W using DirectLiNGAM [Shimizu et al.,
2011, Hyvärinen and Smith, 2013]. Then we can compute
bootstrap confidence intervals, although they lack theoret-
ical coverage guarantees. We used the official python im-
plementation, version 1.5.1 from PyPI https://pypi.
org/project/lingam/1.5.1/.

We generate a random adjacency matrix W for a graph on
d = 10 nodes and k = 1, but with the random seed set to the
lowest nonnegative integer that yielded a nonzero γ to make
the comparison interesting. We use n = 104 observations.

For LiNGAM, we computed the confidence interval (CI)
using 100 bootstrap samples. For a comparable evaluation of
its coverage, we considered the target quantity γ◦ to be the
effect obtained when using LiNGAM with a large numbere

https://pypi.org/project/lingam/1.5.1/
https://pypi.org/project/lingam/1.5.1/
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Figure 4: Normal probability plot for realizations of γn.
Approximate normality is achieved even under moderate
sample sizes.

Table 1: Comparison of empirical coverage rate (CR) and the
average width of the Confidence Interval (CI) for LiNGAM
Bootstrap CI and the CI Γα,n proposed in this article. The
nominal CR was set to exceed 1− α = 95%

Noise Method CR Avg CI width Avg γn

Normal LiNGAM 100% 2.01 0.64
our 99% 0.15 1.79

Exp LiNGAM 92% 0.08 1.77
our 100% 0.54 1.79

Gumbel LiNGAM 85% 0.07 1.77
our 100% 0.46 1.79

of data points (n′ = 106). 100 Monte Carlo runs were used
and the results are presented in Table 1.

The results show that when data is Gaussian, our proposed
method yields both well-calibrated and tighter CIs, than
LiNGAM method which has a very wide CI. This expected
as LiNGAM was designed for non-Gaussian data. Indeed,
for the non-Gaussian examples, LiNGAM produces tighter
CIs but they all undercover. By constrast, our method pro-
duces more conservative CIs that do not undercover and
yield consistent inferences.

4.5 SENSITIVITY WITH RESPECT TO DAG
TOLERANCE

Let γ◦(ε) denote the average causal effect (10a) when
setting a specific value ε in (10b). When data-generating
process is given by a linear SCM(5), we have that the
approximation gap |γ − γ◦(0)| = 0, where γ is given
by (9). The gap should decrease with ε such that ideally
limε→0 |γ − γ◦(ε)| = 0 and, moreover. An analytical study
is, however, beyond the scope of the tools considered herein
and we therefore resort to a numerical sensitivity study.

First, we generate random DAG-matrices W . For every W ,
we form the numerically approximation γ̂◦(ε) by replacing

10−8 10−6 10−4 10−2 100 102
10−10

10−5

100

ε

|γ
−

γ̂
◦(
ε)
|

Figure 5: The error between γ (9) for a randomly generated
matrix W and the numerically evaluated γ̂◦(ε) from (10a)
and (10b), over a range of ε. Each solid line corresponds to
the error for a randomly drawn matrix, with a corresponding
value of ε? shown as a vertical grey dashed line. For ε .
10−7 the numerical precision of our numerical solver limits
the precision of the results.

En with the closed for expression for E in (31). In Fig-
ure 5, we illustrate the approximation gap |γ − γ̂◦(ε)|. As
expected the gap decreases sharply with ε, until we reach
finite precision effects arising mainly from the L-BFGS-B
implementation.

For some of the random matrices, we notice that when ε >
ε? we obtain unreliable approximations. A more detailed
discussion is provided in Section 1.2.1 in the supplementary
material.

In the work of Ng et al. [2020], it is shown that the con-
vergence guarantees for augmented Lagrangian method do
not hold and that its precision is finite as it terminates when
the quadratic penalty ρ approaches infinity — in agreement
both with our theoretical and experimental results.

5 CONCLUSION

We have developed a method that is capable of inferring
average causal effects without the need to specify valid
control variables, when the data-generating process can be
described by a linear SCM. The methodology is based on
characterizing DAG-structures, which involve combinatorial
constraints, using a continuously differentiable constraint.
By considering a class of almost-DAG matrices, we derive
an asymptotically valid confidence interval building on a
theory of equality-constrained M-estimation. The theoretical
results were further corroborated in numerical studies with
synthetic data.

Further research includes developing numerical search meth-
ods that are better tailored to approximate the constrained
M-estimator upon which the confidence interval is based.
Another research direction is the study of the properties of
(10b) when ε ∈ (0, ε?).
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