Uncertainty-aware Sensitivity Analysis Using Rényi Divergences

Topi Paananen1 Michael Riis Andersen2 Aki Vehtari1

1Aalto University, Department of Computer Science, Helsinki Institute for Information Technology
2Technical University of Denmark, Department of Applied Mathematics and Computer Science

Abstract

For nonlinear supervised learning models, assessing the importance of predictor variables or their interactions is not straightforward because importance can vary in the domain of the variables. Importance can be assessed locally with sensitivity analysis using general methods that rely on the model’s predictions or their derivatives. In this work, we extend derivative based sensitivity analysis to a Bayesian setting by differentiating the Rényi divergence of a model’s predictive distribution. By utilising the predictive distribution instead of a point prediction, the model uncertainty is taken into account in a principled way. Our empirical results on simulated and real data sets demonstrate accurate and reliable identification of important variables and interaction effects compared to alternative methods.

1 INTRODUCTION

Identifying important features and interactions from complex data sets and models remains a topic of active research. This is a fundamental problem with important applications in many scientific disciplines. Often the goal is to improve understanding of the model, but the identified features and interactions can also be used to build a simpler or more interpretable surrogate model.

For models that can capture nonlinear effects and interactions, the typical approach is to assess the contributions of individual predictors or interactions on the model’s prediction at an individual observation. One approach is sensitivity analysis, which evaluates the change in predictions to small perturbations in the predictor values [Cacuci 2003, Oakley and O’Hagan 2004, Cacuci et al. 2005, Paananen et al. 2019]. For example, the partial derivative of the model’s prediction with respect to the predictors can be a measure of importance [Guyon and Elisseeff 2003]. Since the derivative can vary from positive to negative in the domain of the predictors, most approaches use absolute or squared derivatives averaged from the observations [Ruck et al. 1990, Dorizzi 1996, Czernichow 1996, Refenes and Zapranis 1999, Leray and Gallinari 1999, Sundararajan et al. 2017, Cui et al. 2020]. A similar approach is popular in image classification, where derivatives with respect to each pixel are called saliency maps [Simonyan et al. 2013, Zeiler and Fergus 2014, Guidotti et al. 2018]. The average predictive comparison of Gelman and Pardoe [2007] uses the difference quotient of two predictions without taking the limit. By extending to cross-derivatives with respect to two predictors, one can also measure the interaction effect of predictors [Friedman et al. 2008, Cui et al. 2020]. A
The contributions of this work are summarised as follows. This paper uses the curvature of Rényi divergence between visualisation only. Derivative based sensitivity analysis can be used to assess the local sensitivity of \(f \) to the different predictors \((x_d)_{d=1}^D\). The sensitivity can be quantified by the partial derivative
\[
\frac{\partial f(x^*)}{\partial x_d^*}.
\]
Absolute values of local derivatives can be aggregated over the empirical distribution of \(x \) to obtain a global importance estimate for \(x_d \), the expected absolute derivative [EAD; Leray and Gallinari, 1999; Cui et al., 2020]
\[
\text{EAD}(x_d) = E_{p(x)} \left[\left| \frac{\partial f(x)}{\partial x_d} \right| \right].
\]
Similarly, absolute values of the elements of the Hessian matrix of \(f \), that is, the second derivatives with respect to \(x_d \) and \(x_e \), quantify the sensitivity to the joint interaction effect of \(x_d \) and \(x_e \).

In this section, we present our proposed method, called Rsens, that extends derivative and Hessian based sensitivity analysis methods to a Bayesian setting where the evaluated model not only has a function for point predictions, but a predictive distribution \(p(y^*) \). For now, we only consider predictive distributions that have some parametric form, which can be obtained exactly in closed form or it can be an approximation. Because the predictive distribution is obtained by integrating over uncertainty for the model parameters, it is important to utilise this uncertainty in sensitivity analysis as well. The predictive distribution does not need to be a posterior predictive distribution (i.e. conditioned on data), but in this work we only consider posterior predictive distributions.

To formulate a derivative based sensitivity measure for a model with a predictive distribution, we need a suitable functional of the predictive distribution, which to differentiate. We choose a family of statistical divergences called Rényi divergences due to their convenient properties, which we discuss later in this section. Rényi divergence of order \(\alpha \) is defined for two probability mass functions \(P = (p_1, \ldots, p_n) \) and \(Q = (q_1, \ldots, q_n) \) as
\[
\mathcal{D}_\alpha[P||Q] = \frac{1}{\alpha - 1} \log \left(\sum_{i=1}^n \frac{p_i^\alpha}{q_i^{\alpha - 1}} \right)
\]
when \(0 < \alpha < 1 \) or \(1 < \alpha < \infty \) [Rényi et al., 1961; Van Erven and Harremos, 2014]. The definition generalises to continuous spaces by replacing the probabilities by densities and the sum by an integral. The divergences for values \(\alpha = 0, 1 \), and \(\infty \) are obtained as limits. The most well-known Rényi divergence is the Kullback-Leibler divergence which is obtained in the limit \(\alpha \to 1 \) [Kullback and Leibler, 1951].

Let us consider a model with a predictive distribution parametrised by a vector \(\lambda^* = (\lambda_1^*, \ldots, \lambda_M^*) \), which depends on \(x^* \). Let us denote the predictive distribution for \(y \)

2 UNCERTAINTY-AWARE SENSITIVITY

Consider a supervised learning model trained on data \((X, y)\), where \(X \in \mathbb{R}^{N \times D} \) is the design matrix and \(y \in \mathbb{R}^N \) is the vector of target observations. Let us denote the prediction function of the model for the target variable \(y \) as \(f(x^*) \). Derivative based sensitivity analysis can be used to assess

closely related approach for sensitivity analysis is to directly estimate the contribution of predictor main effects or interactions to the variance of the target variable [Homma and Saltelli, 1996; Oakley and O’Hagan, 2004; Saltelli, 2002].

Recently, approaches that evaluate the differences of predictions in permuted training observations have gained popularity in machine learning. For example, [Fisher et al., 2019] permute the observations of a single predictor, and examine the loss in predictive ability compared to the original data. Shapley values use permutations to assess the average marginal contribution of a predictor to a specific observation [Shapley, 1953; Štrumbelj and Kononenko, 2014]. Lundberg et al. [2018] extended this approach to evaluate second-order interactions based on the Shapley interaction index [Fujimoto et al., 2006; Friedman et al., 2008] and [Greenwell et al., 2018] use permutations and partial dependence functions [Friedman, 2001] to construct statistics that measure the strength of pairwise interactions. The individual conditional expectation plots of [Goldstein et al., 2015] can also be used to identify interactions, but they rely on visualisation only.

This paper uses the curvature of Rényi divergence between predictive distributions to construct a uncertainty-aware sensitivity measure. Similar ideas have been used for measuring the sensitivity of Bayesian inference to the choice of prior [Al-Labadi et al., 2021]. Moreover, [Dupuis et al., 2020] use Rényi divergence to measure the sensitivity of rare event probabilities.

The contributions of this work are summarised as follows. First, we present a novel method that generalises derivative and Hessian based sensitivity analysis to a Bayesian setting for models with a parametric predictive distribution or its approximation. Instead of using the first or second derivatives of the mean prediction of the model, we instead differentiate the Rényi divergence between two predictive distributions that coincide with each other, which takes into account the epistemic uncertainty of the predictions. Figure 1 gives an illustration of this method. Second, we show that our method is an analytical generalisation and extension of a previous finite difference method [Paananen et al., 2019]. Third, we show empirically that our proposed method can improve the accuracy of sensitivity analysis in situations where the used model has significant predictive uncertainty. Code for our method is freely available at https://github.com/topipa/rsens_paper.
We define R-sens, an uncertainty-aware sensitivity measure conditional on predictor values x^* as

$$p(y^*) = p(y^*|\lambda^*(x^*)).$$

Keeping x^* fixed, we denote the Rényi divergence of order α between two predictive distributions as a function of x^{**} as

$$\mathcal{D}_\alpha[p(x^{**})] \equiv \mathcal{D}_\alpha[p(y^*|\lambda^*(x^{**}))].$$

We formalise the sensitivity of the predictive distribution to a change in a single predictor variable by differentiating the Rényi divergence in the limit when the distributions coincide, that is when $x^{**} = x^*$. However, because Rényi divergences obtain their minimum value when the two distributions coincide, the first derivative at this point is always zero. Hence, we formulate the uncertainty-aware sensitivity measure and is thus more easily interpretable and computationally cheaper. We define R-sens$_2$, the uncertainty-aware sensitivity measure for the interaction effect between variables x_d and x_e as

$$\text{R-sens}_2(x^*, (x_d, x_e), \alpha) \equiv \sqrt{\alpha \left(\frac{\partial^2 \lambda^*(x^*)}{\partial x_d^* \partial x_e^*} \right)^T \mathcal{I}(\lambda^*(x^*)) \left(\frac{\partial^2 \lambda^*(x^*)}{\partial x_d^* \partial x_e^*} \right)}.$$

In the supplementary material, we show the full equation and an illustration of the benefit of equation (5) compared to the full fourth derivative.

2.2 LOCATION-SCALE FAMILY

For distributions in the location-scale family ($p(y|\lambda_1, \lambda_2) = g((y - \lambda_1)/\lambda_2)/\lambda_2$), the Fisher information of the location parameter λ_1 depends only on the scale parameter λ_2, but not the location parameter itself [Shao 2006, Ch.3, Ex. 20]. This has two implications. First, if the predictive distribution is in the location-scale family, the R-sens and R-sens$_2$ measures are direct extensions to the absolute derivative or absolute Hessian of the mean prediction. The extension is twofold, as they introduce the derivative of the scale parameter with respect to the location parameter itself [Shao, 2006, Ch.3, Ex. 20]. Other families of divergences may provide different results and serve as an interesting direction for future research.
mean prediction. Here, we have to assume that the Fisher information exists and converges to the Fisher information of the limiting distribution.

2.3 ILLUSTRATIVE EXAMPLE

To illustrate the effects of the different components in equation (4), we analyse a Bayesian linear regression model as an example. We use the standard Gaussian likelihood with noise variance \(\sigma^2 \) and denote the regression coefficients as \(\beta \). Using an improper uniform prior on \((\beta, \log \sigma) \), integrating over the uncertainty about all the parameters makes the posterior predictive distribution at any point \(x^* \) (treated as a row vector)

\[
p(y^* | X, y) = \text{Student-t}(E[y^*], \text{Var}[y^*], \nu),
\]

where

\[
E[y^*] = x^* \hat{\beta},
\]

\[
\text{Var}[y^*] = s^2 (1 + x^*(X^T X)^{-1} x^{*T}),
\]

\[
\nu = N - D,
\]

\[
\hat{\beta} = (X^T X)^{-1} X^T y,
\]

\[
s^2 = \frac{(y - X\hat{\beta})^T (y - X\hat{\beta})}{N - D}.
\]

Here, \(\nu \) represents the degrees of freedom, \(N \) and \(D \) are the number of observations and predictor variables, respectively, and \(\hat{\beta} \) are the maximum likelihood estimates of the regression coefficients. The derivative of \(\nu \) with respect to \(x^*_d \) is zero, and the derivatives of the other two parameters of \(p(y^* | X, y) \) are

\[
\frac{\partial E[y^*]}{\partial x^*_d} = \beta_d,
\]

\[
\frac{\partial \text{Var}[y^*]}{\partial x^*_d} = 2 s^2 [(X^T X)^{-1} x^{*T}]_d = 2 s^2 V_d.
\]

Multiplying these with the Fisher information matrix of the Student-\(t \) predictive distribution, the R-sens sensitivity measure for the predictor \(x_d \) from equation (4) evaluates to

\[
\text{R-sens}(x^*, x_d, \alpha = 1) = \frac{(\nu + 1) \beta_d^2 + 2 \nu s^4 V_d^2 \text{Var}[y^*]}{(\nu + 3) \text{Var}[y^*]}.
\]

(6)

The two summands have the following interpretations: In the absence of the second term, the measure would be proportional to \(|\beta_d| \) divided by the standard deviation of the predictive distribution. The first term thus measures the absolute derivative of the mean prediction, but predictions with high uncertainty are given less weight. Also the second term in equation (6) quantifies the amount of uncertainty in the predictive distribution, but in a different way. Even if \(\beta_d \) would be exactly zero, the second summand is nonzero as long as there is uncertainty about the model parameters that causes the predictive uncertainty to vary with respect to \(x^* \). There are thus two separate mechanisms that include epistemic uncertainty in the sensitivity analysis [O’Hagan 2004, Kendall and Gal 2017]. As \(N \) (and hence also \(\nu \)) approaches infinity and the posterior uncertainty vanishes, the R-sens measures for both variables approach a constant proportional to \(|\beta_d| \).

To visualise the effects of the two terms in equation (6), we simulated 10 observations from a linear model with two predictor variables \(x_1 \) and \(x_2 \) whose true regression coefficients are \(\beta_1 = 1 \) and \(\beta_2 = 0 \). The predictor variables are independent and normally distributed with zero mean and standard deviation one, and the simulated noise standard deviation is \(\sigma_{\text{true}} = 0.5 \). The R-sens sensitivities for both variables are shown in the bottom part of Figure 2 with solid lines. The dashed lines represent the contribution of the \(\partial E[y^*]/\partial x^*_d \) term, i.e., R-sens if \(\partial \text{Var}[y^*]/\partial x^*_d \) were zero, whereas the dotted line represents R-sens if \(\partial E[y^*]/\partial x^*_d \) were zero. The red color depicts the predictive distribution \(p(y|x_1, x_2 = 0) \) (top) and R-sens (bottom) for \(x_1 \). The R-sens value is dominated by the contribution from the first summand in equation (6), where the Fisher information weighs down the sensitivity at the edges of the data because of the larger uncertainty. The blue color shows the predictive distribution \(p(y|x_2, x_1 = 0) \) and R-sens for \(x_2 \). Now the first summand in equation (6) is almost zero because \(\beta_2 \) is small. In this case, the second term dominates because there is still a significant amount of epistemic uncertainty in the model. Comparing R-sens for \(x_1 \) and \(x_2 \) illustrates the two different ways that R-sens takes uncertainty into account.

Figure 2: Top: Predictive distributions \(p(y|x_1, x_2 = 0) \) (red) and \(p(y|x_2, x_1 = 0) \) (blue) for the linear regression model in Section 2.3. Bottom: R-sens uncertainty-aware sensitivity measure for \(x_1 \) (red) and \(x_2 \) (blue). The dashed and dotted lines show the contributions of the two summands in equation (6).

Note that R-sens is model-agnostic in the sense that it does not take into account the fact that the prediction function is constrained to be linear in the example above. In addition, the different terms in equation (4) may not have such clear...
interpretations for other likelihoods or models. For example, in a binary classification task, the posterior predictive distribution can be considered a Bernoulli distribution which has only a single parameter. Nevertheless, the principle of taking into account the uncertainty through the predictive distribution still holds.

2.4 APPLICABILITY

The requirements for using the proposed R-sens and R-sens 2 methods are that we must have an analytical representation of the predictive distribution conditioned on the predictor variables, and that the derivatives of its parameters with respect to the predictors must be available. This somewhat restricts their applicability, but computational tools such as automatic differentiation make practical implementation easier [Baydin et al., 2018]. There are no restrictions to the support of the predictive distribution, and the methods are thus applicable to many learning tasks. However, because the methods adjust sensitivity based on the model uncertainty, the results may be misleading if the model lacks proper uncertainty quantification. We thus recommend using the methods for probabilistic models where the uncertainty is properly taken into consideration. In practice, the methods are most useful when the number of observations is relatively small and there is a lot of uncertainty about the parameters of the model.

Because the proposed methods measure the importance of predictor variables locally, they are most useful for nonlinear and complex models. For example, they can be useful for sensitivity analysis with Gaussian process models, which can represent flexible nonlinear functions with interactions, but still have good uncertainty quantification [O’Hagan, 1978; MacKay, 1998; Neal, 1998; Rasmussen and Williams, 2006]. Moreover, the predictive distribution is available in a parametric form, although for certain likelihoods some approximations are required. In the supplementary material we show the derivatives required for the R-sens and R-sens 2 methods for Gaussian processes and commonly used likelihoods.

The added computational expense of the R-sens and R-sens 2 methods compared to just differentiating the mean prediction depends on the used model. For many models, the cost is not significant compared to the cost of inference.

2.4.1 Global Measures

For assessing the global importance of predictor variables or pairs of variables, the local R-sens and R-sens 2 sensitivity measures can be aggregated over the empirical distribution of the predictors similarly to EAD in equation (1). By using the global measures, the predictor variables or pairwise interactions can be ranked by global importance. This approach is also taken in the experiments of Section 3.

2.5 FINITE DIFFERENCE APPROXIMATION

[Paananen et al., 2019] propose a sensitivity analysis method abbreviated KL, which is a finite difference like method that evaluates the Kullback-Leibler divergence of predictive distributions when the predictor variables are perturbed. If we set $\alpha = 1$ (where Réný divergence equals the Kullback-Leibler divergence), we show that the KL method is approximately equivalent to the second order Taylor approximation of R-sens

$$R\text{-sens}(x^*, x_d, \alpha = 1) \approx \sqrt{2D_1[p(y^*|\lambda(x^*))][p(y^*|\lambda(x^*))]}$$

Here, x^{**} is equivalent to x^* with predictor x_d perturbed, and D_1 denotes the Kullback-Leibler divergence. We show the full derivation in the supplementary material. The benefit of the finite difference approximation is its generality, as it requires only an analytical representation of the predictive distribution but not the derivatives of its parameters with respect to the predictors. However, using R-sens avoids numerical errors related to finite difference and is easier because the selection of the perturbation size is avoided. For an appropriately chosen perturbation, the two equations produce practically identical results up to a small numerical error.

Our proposed R-sens 2 measure is not directly approximable with finite differences in the same way as R-sens. This is because it would require second-order finite differences, but the first-order finite difference using Kullback-Leibler divergence already reduces the predictive distribution into a single number. [Kihimaki et al., 2010] perturb two predictor variables at a time with a unit length perturbation and measure the change in predictions by Kullback-Leibler divergence. For an infinitesimal perturbation this would be equivalent to a directional derivative instead of the cross-derivative in the R-sens 2 method that is required to properly assess interaction effects.

3 EXPERIMENTS

In this section, we demonstrate the practical utility of the methods discussed in Section 2 for identifying important predictor variables and interactions in nonlinear models. First, we evaluate different variable importance methods on simulated data using a hypothetical predictive function. This way we can control the quality of the model fit and limit the comparison strictly to the variable importance methods. Second, we will use Gaussian process models to evaluate ranking of main effects and interactions on both simulated and real data.

We compare the R-sens and R-sens 2 measures to several alternative variable importance methods: 1) Expected absolute derivative (EAD) or expected absolute Hessian (EAH),
which correspond to R-sens and R-sens₂ without predictive uncertainty [Cui et al., 2020]. 2) Absolute expected derivative (AED) or absolute expected Hessian (AEH) that take the expectation over x inside the absolute value [Cui et al., 2020]. 3) Average predictive comparison (APC) [Gelman and Pardoe, 2007], 4) Shapley values [Shapley, 1953; Strumbelj and Kononenko, 2014; Lundberg et al., 2018]. 5) Partial dependence based importance (PDI) [Greenwell et al., 2018], 6) Permutation feature importance (PFI) [Fisher et al., 2019], 7) Variance of the predictive mean (VAR) [Paananen et al., 2019], and 8) H-statistic [Friedman et al., 2008]. We omit comparison to the KL method of Paananen et al. [2019]. This simulates a situation where the model is correct where the uncertainty is small, but is biased at the edges of the data where the uncertainty is larger.

In Table 1 we show the results of different ranking methods for 6 different functions \(f_{true}(x) \). Here, the distributions \(p_{x_i} \) of the predictors are independent Student-\(r_3 \) distributions. In the supplementary material, we show the results of the experiment with three alternative distributions \(p_{x_i} \). The results are generated from 500 independent repetitions. In each repetition, the 10 predictors are ranked in importance from 1 to 10. For each data realisation, we compute the average error in the ranks across the predictors with respect to the true ranking, and compare that error to the ranking error of R-sens. A negative number thus means that the error is on average smaller than for R-sens. Table 1 reports the mean and 95% uncertainty intervals of the comparative ranking errors across the 500 independent data realisations.

The top section of Table 1 shows the ranking errors when using the ground-truth predictions function. R-sens and AED are almost equivalent in many cases, but R-sens is significantly better for functions that have a large derivative in the tails of the data (\(x^3 \) and \(x \exp(-x) \)). Both R-sens and AED outperform the other methods in most cases. AED does well for functions that are monotonic, but it fails badly for non-monotonic functions. This is expected because the derivative of these functions varies from positive to negative.

In the bottom section of Table 1 when the model’s predictions are imperfect, the difference in the ranking errors of R-sens and AED is significantly larger in favour of R-sens. R-sens is also consistently better than the alternative methods with just a few exceptions. This shows that the uncertainty-aware sensitivity can be more reliable when there is a significant amount of uncertainty. In the supplementary material, we repeat the experiment with three alternative distributions \(p_{x_i} \), including independent and correlated normal distributions. These results have similar conclusions: R-sens is mostly similar to AED, but better in specific situations.

3.2 SIMULATED INDIVIDUAL AND PAIRWISE EFFECTS

In the second experiment, we study how accurately different methods evaluate interactions when the model has both main effects and interaction effects. We simulate 12 predictors and 8 main effects with different shapes and strengths, and three equally important pairwise interaction effects which are simply the product of the two predictors, i.e. \(x d x_e \). These are chosen such that the predictors of the first interaction do not have main effects, one of the predictors in the second interaction has a main effect, and both predictors of the third interaction have a main effect. To study how many observations the different methods require to reliably detect the true interactions in the data, we generate data with different

\[x_i \sim p_{x_i}(x_i), \quad i = 1, \ldots, 10, \]
\[y = f_{true}(x) = \sum_{i=1}^{10} A_i f_{true,i}(x_i) + \varepsilon. \]

The shape of each effect \(f_{true,i}(x_i) \) is the same for all \(i \), but they have different strengths varying from \(A_1 = 1 \) to \(A_{10} = 10 \). We consider 6 different experiments with different function shapes. By considering only a single effect shape for each experiment, we can unambiguously define the true importance of each predictor. We also repeat the experiment with 4 different distributions for the predictors.

When evaluating the ranking methods, we first use the true data generating function \(f_{true}(x) \) as the mean prediction of the model. To simulate the uncertainty of the prediction model, we set the predictive distribution as Gaussian whose variance increases quadratically as distance from the mean of the data increases. Using the true data generating function allows us to strictly compare the ranking methods without being obfuscated by a non-optimal model fit. Because all of the compared methods use the mean prediction for ranking the predictors, using the true data generating function does not favour any single method over the others.

To consider the effect of taking uncertainty into account in the ranking, we also consider an imperfect version of the ground-truth model, where each term \(A_i f_{true,i}(x_i) \) is multiplied with a term \((A_{bias,i} |x_i|^3 + 1) \) where \(A_{bias,i} \) is drawn from a normal distribution with mean 0 and standard deviation 0.02. This simulates a situation where the importance of each predictor is drawn from a normal distribution with mean 0 and standard deviation 0.02. This simulates a situation where the model is correct where the uncertainty is small, but is biased at the edges of the data where the uncertainty is larger.
whereas the PD method over-emphasizes the variable pair

Table 1: Average relative errors in rankings compared to R-sens and 95% uncertainty intervals from 500 data realisations in the simulated example of Section 3.1. A negative value indicates better ranking than R-sens.

<table>
<thead>
<tr>
<th>Ground-truth models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function $f_{true,i}(x)$</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>x^2</td>
</tr>
<tr>
<td>$x + \cos(3x)$</td>
</tr>
<tr>
<td>$\sin(3x)$</td>
</tr>
<tr>
<td>$x \exp(-x)$</td>
</tr>
<tr>
<td>$\exp(-x^2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imperfect models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function $f_{true,i}(x)$</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>x^3</td>
</tr>
<tr>
<td>$x + \cos(3x)$</td>
</tr>
<tr>
<td>$\sin(3x)$</td>
</tr>
<tr>
<td>$x \exp(-x)$</td>
</tr>
<tr>
<td>$\exp(-x^2)$</td>
</tr>
</tbody>
</table>

numbers of observations ranging from 50 to 300.

In Figure 3 we plot the importance values averaged from 50 simulations for the three interacting variable pairs as well as three variable pairs without an interaction effect. The solid lines represent pairs with a true interaction, and the dotted lines are pairs without an interaction. In the left plot, both variables in the pairs have a main effect. In the middle plot, only one variable in the pairs has a main effect, and in the right plot neither variable has a main effect. For each of the 50 simulations, the interaction importance values are scaled so that the maximum given by each method is one. Thus, the ideal value is 1 for the solid lines and 0 for the dotted lines.

Figure 3 shows that even when increasing the number of observations, the HS method over-emphasizes the variable pair where neither variable has a main effect (right plot), whereas the PD method over-emphasizes the variable pair where both variables have a main effect (left plot). The other methods correctly identify the interactions as equally relevant when increasing the number of observations. For the true interactions (solid lines), EAD and R-sens2 are almost indistinguishable, but R-sens2 gives higher importance to the nonexistent interactions (dotted lines) when there is significant uncertainty because the number of observations is small.

3.3 BENCHMARK DATA SETS

In real data experiments, we focus on assessing the performance of the pairwise interaction method R-sens2, because the experiments of Paananen et al. [2019] already demonstrate the effectiveness of (the finite difference approxima-

We compare the performance of the models using cross-validation with 50 random splits into training and test sets, and log predictive density as the utility function. The number of training observations used is 500, and the pairwise interactions are identified with R-sens2 and 5 other methods. Based on these, models with only 0 to 5 pairwise interaction terms are fitted again, and their predictive performance is evaluated on the test data.
The mean log predictive densities (MLPDs) across different test splits as well as 95% uncertainty intervals of the means are shown in Figure 4. The figure shows the that in the Bike sharing data, modelling only the three strongest pairwise interactions increases the out-of-sample predictive performance to the level of the model with all possible interactions. R-sens2 does equally well compared to EAH, which both identify more important interactions on average than the competing methods. In the Concrete data set, adding even 5 pairwise interactions does not reach the performance of the model with all interactions. In this data there are no significant differences between the methods, except for HS which is clearly worse than the rest.

We also evaluate the stability of the interaction rankings by computing the variability in the rankings across 100 Bootstrap samples of the data. Table 2 shows the entropy in the rankings of each method across the Bootstrap samples. In both data sets, R-sens2 and EAH have smaller entropies than the competing methods, meaning that their rankings are more stable.

Table 2: Variability in rankings across different Bootstrap samples of the benchmark data sets.

<table>
<thead>
<tr>
<th>Data</th>
<th>R-sens2</th>
<th>EAH</th>
<th>AEH</th>
<th>PD</th>
<th>HS</th>
<th>SHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>1.86</td>
<td>1.80</td>
<td>1.99</td>
<td>2.04</td>
<td>2.26</td>
<td>1.90</td>
</tr>
<tr>
<td>Bike</td>
<td>1.61</td>
<td>1.63</td>
<td>2.28</td>
<td>2.16</td>
<td>2.61</td>
<td>2.58</td>
</tr>
</tbody>
</table>

4 CONCLUSION

In this work, we presented an uncertainty-aware sensitivity analysis method that is based on differentiating Rényi divergences of predictive distributions. We showed that the method takes model uncertainty into account in a principled way and generalises to different likelihoods. For likelihoods in the location-scale family, the method is a direct extension to the absolute derivative or absolute Hessian of the mean prediction which are non-Bayesian sensitivity measures. Even though the method generalises to different predictive distributions, we recommend using it for models that have well calibrated uncertainty. The proposed method requires an analytical representation of the predictive distribution of the model, which is not available for all models. This could be generalised further, which is a possible direction for future research.

We demonstrated empirically that the method can reliably identify main effects as well as interactions in nonlinear models for complex data sets. In a controlled simulation
setting, we showed that using uncertainty-aware sensitivity is beneficial in the presence of uncertainty when the used model may be wrong. Moreover, the proposed methods were equally good or better than previous derivative based sensitivity analysis methods in all of the tested cases. We can thus recommend using uncertainty-aware sensitivity analysis in modelling situations with little data and/or lots of uncertainty. We also demonstrated with two real data sets that our proposed method identifies pairwise interactions in nonlinear models that, when added to a model, improve its predictive performance. In addition, the ranking of the interactions between different Bootstrap samples of the data has less variation compared to many alternative variable importance methods.

Acknowledgements

We thank Alejandro Catalina and Kunal Ghosh for their helpful comments, and Mostafa Abdelrahman for GPyTorch and autodiff implementations. We thank the anonymous reviewers for helpful comments to improve the manuscript. We also acknowledge the computational resources provided by the Aalto Science-IT project and support by the Academy of Finland Flagship programme: Finnish Center for Artificial Intelligence, FCAI.

References

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20(177):1–81, 2019.

