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Abstract

We provide a new convergence analysis of stochas-
tic gradient Langevin dynamics (SGLD) for sam-
pling from a class of distributions that can be non-
log-concave. At the core of our approach is a novel
conductance analysis of SGLD using an auxiliary
time-reversible Markov Chain. Under certain con-
ditions on the target distribution, we prove that
Õ(d4ε−2) stochastic gradient evaluations suffice
to guarantee ε-sampling error in terms of the total
variation distance, where d is the problem dimen-
sion. This improves existing results on the conver-
gence rate of SGLD [Raginsky et al., 2017, Xu
et al., 2018]. We further show that provided an
additional Hessian Lipschitz condition on the log-
density function, SGLD is guaranteed to achieve
ε-sampling error within Õ(d15/4ε−3/2) stochastic
gradient evaluations. Our proof technique provides
a new way to study the convergence of Langevin
based algorithms, and sheds some light on the de-
sign of fast stochastic gradient based sampling al-
gorithms.

1 INTRODUCTION

We study the problem of sampling from a target distribu-
tion using Langevin dynamics [Langevin, 1908] based al-
gorithms. Mathematically, Langevin dynamics (a.k.a., over-
damped Langevin dynamics) is defined by the following
stochastic differential equation (SDE)

dX(t) = −∇f
(
X(t)

)
dt+

√
2β−1dB(t), (1.1)

where β > 0 is called the inverse temperature parameter and
B(t) ∈ Rd is the Brownian motion at time t. It has been
proved in Chiang et al. [1987], Roberts and Tweedie [1996]
that under certain conditions on the drift term −∇f(X(t)),
the Langevin dynamics will converge to a unique stationary

distribution π(dx) ∝ e−βf(x)dx. To approximately sample
from such a target distribution π, we can apply the Euler-
Maruyama discretization onto (1.1), leading to the Langevin
Monte Carlo algorithm (LMC), which iteratively updates
the parameter xk as follows

xk+1 = xk − η∇f(xk) +
√

2ηβ−1 · εk, (1.2)

where k = 0, 1, . . . denotes the time step, {εk}k=0,1,... are
i.i.d. standard Gaussian random vectors in Rd, and η > 0 is
the step size of the discretization.

In large scale machine learning problems that involve a large
amount of training data, the log-density function f(x) can
be typically formulated as the average of the log-density
functions over all the training data points, i.e., f(x) =
n−1

∑n
i=1 fi(x)1, where n is the size of training dataset and

fi(x) denotes the log-density function for the i-th training
data point. In these problems, the computation of the full
gradient over the entire dataset can be very time-consuming.
In order to save the cost of gradient computation, one can
replace the full gradient ∇f(x) with a stochastic gradient
computed only over a small subset of the dataset, which
gives rise to stochastic gradient Langevin dynamics (SGLD)
[Welling and Teh, 2011].

When the target distribution π is log-concave, SGLD prov-
ably converges to π at a sublinear rate in 2-Wasserstein
distance [Dalalyan and Karagulyan, 2019, Dalalyan, 2017a,
Wang et al., 2019]. However, it becomes much more chal-
lenging to establish the convergence of SGLD when the
target distribution is not log-concave. When the negative
log-density function f(x) is smooth and dissipative, the
global convergence guarantee of SGLD has been firstly es-
tablished in Raginsky et al. [2017]2 via the optimal control

1In some cases, the log-density function f(x) is formulated as
the sum of the log-density functions for training data points instead
of the average. To cover these cases, we can simply transform the
temperature parameter β → nβ and thus the target distribution
remains the same.

2Although this paper mainly focuses on the convergence anal-
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 theory and further improved in Xu et al. [2018] by a di-
rect analysis of the ergodicity of LMC. Nonetheless, these
two works require extremely large mini-batch size (e.g.,
B = Ω(ε−4)) to ensure sufficiently small sampling error,
which is prohibitively large or even unrealistic compared
with the practical setting. Zhang et al. [2017] studied the
hitting time of SGLD for nonconvex optimization, but can
only provide the convergence guarantee for finding a local
minimum rather than converging to the target distribution.
Recently, Chau et al. [2019], Zhang et al. [2019] studied
the global convergence of SGLD for nonconvex stochas-
tic optimization problems and proved faster convergence
rates than those in Raginsky et al. [2017], Xu et al. [2018].
However, their convergence results require an additional
Lipschitz condition in terms of the input data (rather than
the model parameter) on the stochastic gradients, which
restricts their applications to a small class of SGLD-based
sampling problems.

In this paper, we consider the same setting in Raginsky et al.
[2017], Xu et al. [2018] and aim to establish faster con-
vergence rates for SGLD with an arbitrary mini-batch size.
In particular, we provide a new convergence analysis for
SGLD based on an auxiliary time-reversible Markov chain
called Metropolized SGLD [Zhang et al., 2017], which is
constructed by adding a Metropolis-Hasting step to SGLD3.
The key idea is that as long as the transition kernel of the
constructed Metropolized SGLD chain is sufficiently close
to that of SGLD, we can prove the convergence of SGLD to
the target distribution. Compared with existing proof tech-
niques that typically take LMC or Langevin dynamics as
an auxiliary sequence, the advantage of using Metropolized
SGLD as the auxiliary sequence is that it is closer to SGLD
in distribution as its transition distribution also covers the
randomness of stochastic gradients, thus can better char-
acterize the convergence behavior of SGLD and lead to
sharper convergence guarantees. To sum up, we highlight
our main contributions as follows:

• We provide a new convergence analysis of SGLD for
sampling a large class of distributions that can be non-
log-concave. In contrast to Raginsky et al. [2017], Xu
et al. [2018] that require a very large mini-batch size, our
convergence guarantee holds for an arbitrary choice of
mini-batch size.

• We prove that SGLD can achieve ε-sampling error in
total variation distance within Õ(d4β2ρ−4ε−2) stochastic
gradient evaluations, where d is the problem dimension, β
is the inverse temperature parameter, and ρ is the Cheeger
constant (See Definition 4.2) of a truncated version of
the target distribution. We also prove the convergence of

ysis of SGLD for nonconvex optimization, part of its theoretical
results also reveal the convergence rate for sampling from a target
distribution.

3This Markov chain is practically intractable and is only used
for the sake of theoretical analysis.

SGLD under the measure of polynomial growth functions,
which suggests that the number of required stochastic
gradient evaluations is Õ(ε−2). This improves the state-
of-the-art result proved in Xu et al. [2018] by a factor of
Õ(ε−3).

• We further establish sharper convergence guarantees for
SGLD under an additional Hessian Lipschitz condition
on the negative log density function f(x). We show that
Õ(d15/4β7/4ρ−7/2ε−3/2) stochastic gradient evaluations
suffice to achieve ε-sampling error in total variation dis-
tance. Our proof technique is much simpler and more
intuitive than existing analysis for proving the conver-
gence of Langevin algorithms under the Hessian Lipschitz
condition [Dalalyan and Karagulyan, 2019, Mou et al.,
2019, Vempala and Wibisono, 2019], which can be of
independent interest.

Notation. We use the notation x ∧ y and x ∨ y to de-
note min{x, y} and max{x, y} respectively. We denote by
B(u, r) the Euclidean of radius r > 0 centered at u ∈ Rd.
For any distribution µ and set A, we use µ(A) to denote the
probability measure of A under the distribution µ. For any
two distributions µ and ν, we use ‖µ−ν‖TV andDKL(µ, ν)
to denote the total variation distance and Kullback–Leibler
divergence between µ and ν respectively. For u,v ∈ Rd,
we use Tu(v) to denote the probability of transiting to v
after one step SGLD update from u. Similarly, Tu(A) and
TA′(A) are the probabilities of transiting to a set A ⊆ Rd
after one step SGLD update starting from u and the set
A′ respectively. For any two sequences {an} and {bn}, we
denote an = O(bn) and an = Ω(bn) if an ≤ C1bn or
an ≥ C2bn for some absolute constants C1 and C2. We use
notations Õ(·) and Ω̃(·) to hide polylogarithmic factors in
O(·) and Ω(·) respectively.

2 RELATED WORK

Markov Chain Monte Carlo (MCMC) methods, such as ran-
dom walk Metropolis [Mengersen et al., 1996], ball walk
[Lovász and Simonovits, 1990], hit-and-run [Smith, 1984]
and Langevin algorithms [Parisi, 1981], have been exten-
sively studied for sampling from a target distribution, and
widely used in many machine learning applications. There
are a large number of works focusing on developing fast
MCMC algorithms and establishing sharp theoretical guar-
antees. We will review the most related works among them
due to the space limit.

Langevin dynamics (1.1) based algorithms have recently
aroused as a promising method for accurate and efficient
Bayesian sampling in both theory and practice [Welling
and Teh, 2011, Dalalyan, 2017b]. The non-asymptotic con-
vergence rate of LMC has been extensively investigated in
the literature when the target distribution is strongly log-
concave [Durmus and Moulines, 2016, Dalalyan, 2017b,



 Durmus et al., 2017b], weakly log-concave [Dalalyan,
2017a, Mangoubi and Vishnoi, 2019], and non-log-concave
but admits certain good isoperimetric properties [Raginsky
et al., 2017, Ma et al., 2018, Lee et al., 2018, Xu et al.,
2018, Vempala and Wibisono, 2019], to mention a few. The
stochastic variant of LMC, i.e., SGLD, is often studied to-
gether in the above literature and the convex/nonconvex
optimization field [Raginsky et al., 2017, Zhang et al., 2017,
Xu et al., 2018, Gao et al., 2018, Chen et al., 2019a, Deng
et al., 2020]. Another important Langevin based algorithm
is the Metropolis Adjusted Langevin Algorithms (MALA)
[Roberts and Tweedie, 1996], which is developed by intro-
ducing a Metropolis-Hasting step into LMC. Theoretically,
it has been proved that MALA converges to the target dis-
tribution at a linear rate for sampling from both strongly
log-concave [Dwivedi et al., 2018] and non-log-concave
[Bou-Rabee and Hairer, 2013] distributions.

Beyond first-order MCMC methods, there has also emerged
extensive work on high-order MCMC methods. One pop-
ular algorithm among them is Hamiltonian Monte Carlo
(HMC) [Neal et al., 2011], which introduces a Hamilto-
nian momentum and leapfrog integrator to accelerate the
mixing rate. From the theoretical perspective, Durmus et al.
[2017a] established general conditions under which HMC
can be guaranteed to be geometrically ergodic. Mangoubi
and Vishnoi [2018, 2019] proved the convergence rate of
HMC for sampling both log-concave and non-log-concave
distributions. Bou-Rabee et al. [2018], Chen et al. [2019b]
studied the convergence of Metropolized HMC (MHMC)
for sampling strongly log-concave distributions. Another
important high-order MCMC method are built upon the
underdamped Langevin dynamics, which incorporates the
velocity into the Langevin dynamics (1.1). For continuous-
time underdamped Langevin dynamics, its mixing rate has
been studied in Eberle [2016], Eberle et al. [2017]. The
convergence of its discrete version has also been widely
studied for sampling from both log-concave [Chen et al.,
2017, Zou et al., 2018] and non-log-concave distributions
[Chen et al., 2015, Cheng et al., 2018, Gao et al., 2018, Zou
et al., 2019b].

3 REVIEW OF THE SGLD ALGORITHM

For the completeness, we present the SGLD algorithm
[Welling and Teh, 2011] in Algorithm 1, which is built upon
the Euler-Maruyama discretization of the continuous-time
Langevin dynamics (1.1) while using mini-batch stochastic
gradient in each iteration.

In the k-th iteration, SGLD samples a mini-batch of data
points without replacement, denoted by I , and computes the
stochastic gradient at the current iterate xk, i.e., g(xk, I) =
1/B

∑
i∈I ∇fi(xk), where B = |I| is the mini-batch size.

Based on the stochastic gradient, the model parameter is

Algorithm 1 Stochastic Gradient Langevin Dynamics
(SGLD)

input: step size η; mini-batch sizeB; inverse temperature
parameter β;
Randomly draw x0 from initial distribution µ0.
for k = 0, 1, . . . ,K do

Randomly pick a subset I from {1, . . . , n} of size
|I| = B; randomly draw εk ∼ N(0, I)
Compute the stochastic gradient g(xk, I) =
1/B

∑
i∈I ∇fi(xk)

Update: xk+1 = xk − ηg(xk, I) +
√

2η/βεk
end for
output: xK

updated using the following rule,

xk+1 = xk − ηg(xk, I) +
√

2η/β · εk,

where εk is randomly drawn from a standard normal distri-
bution N(0, I) and η > 0 is the step size.

4 MAIN RESULTS

In this section, we present our main theoretical results. We
start with the following two definitions. The first one quan-
tifies the goodness of the initial distribution compared with
the target distribution, and the second one characterizes the
isoperimetric profile of a given distribution. Both defini-
tions are widely used in the convergence analysis of MCMC
methods [Lovász and Simonovits, 1993, Vempala, 2007,
Dwivedi et al., 2018, Mangoubi and Vishnoi, 2019].

Definition 4.1 (λ-warm start). Let ν be a distribution on
Ω. We say the initial distribution µ0 is a λ-warm start with
respect to ν if

sup
A:A⊆Ω

µ0(A)

ν(A)
≤ λ.

Definition 4.2 (Cheeger constant). Let µ be a probability
measure on Ω. We say µ satisfies the isoperimetric inequality
with Cheeger constant ρ if for any A ∈ Ω, it holds that

lim inf
h→0+

µ(Ah)− µ(A)

h
≥ ρmin

{
µ(A), 1− µ(A)

}
,

where Ah = {x ∈ Ω : ∃y ∈ A, ‖x− y‖2 ≤ h}.

Next, we introduce some common assumptions on the neg-
ative log density function f(x) and stochastic gradients
g(x, I).

Assumption 4.3 (Dissipativeness). There are absolute con-
stants m > 0 and b ≥ 0 such that

〈∇f(x),x〉 ≥ m‖x‖22 − b, for all x ∈ Rd.



 This assumption has been conventionally made in the con-
vergence analysis for sampling form non-log-concave distri-
butions [Raginsky et al., 2017, Xu et al., 2018, Zou et al.,
2019a]. Basically, this assumption implies that the log den-
sity function f(x) grows like a quadratic function when x
is outside a ball centered at the origin. Note that a strongly
convex function f(x) simply satisfies Assumption 4.3, but
not vice versa.

Assumption 4.4 (Smoothness). There exists a positive con-
stant L such that for any x,y ∈ Rd and all functions fi(x),

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2.

This assumption has also been made in many prior works
[Raginsky et al., 2017, Zhang et al., 2017, Xu et al., 2018].

We now define the following function that will be repeatedly
used in the subsequent theoretical results:

R̄(z) =

[
max

{
625d log(4/z)

mβ
,

4d log(4L/m) + 4βb

mβ
,

4d+ 8
√
d log(1/z) + 8 log(1/z)

mβ

}]1/2

.

(4.1)

Based on all aforementioned assumptions, we present the
convergence result of SGLD in the following theorem.

Theorem 4.5. For any ε ∈ (0, 1), let π∗ ∝ e−βf(x) 1
(
x ∈

B(0, R)
)

be the truncated target distribution in Ω = B(0, R)
with R = R̄(εK−1/12), and ρ be the Cheeger constant of
π∗. Under Assumptions 4.3 and 4.4, we suppose P(‖x0‖2 ≤
R/2) ≤ ε/16, and set the step size as η = Õ(ρ2d−2β−1 ∧
B2ρ2d−4β−1), then for any λ-warm start with respect to π,
the output of Algorithm 1 satisfies

‖µSGLD
K − π‖TV ≤ λ(1− C0η)K +

C1η
1/2

B
+ C2η

1/2 +
ε

2
,

where C0 = Õ
(
ρ2β−1

)
, C1 = Õ

(
Rdρ−1β3/2

)
and C2 =

Õ
(
dρ−1β1/2

)
are problem-dependent constants.

Theorem 4.5 shows that the total variation distance between
the distributions µSGLD

K and π can be upper bounded by
the sum of four terms. Specifically, the first term corre-
sponds to the sampling error of Metropolized SGLD, which
converges to zero at a linear rate. The second and third
terms correspond to the approximation error between SGLD
and Metropolized SGLD, which is in the order of O(η1/2).
Moreover, the third the third term corresponds to the vari-
ance of stochastic gradients, which decreases when increas-
ing the mini-batch size B. The last term can be understood
as an approximation error that comes from the technical
proof.

Remark 4.6. For a general non-log-concave distribution, it
is difficult to prove a tight bound on the Cheeger constant ρ.

One possible lower bound of ρ can be obtained via Buser’s
inequality [Buser, 1982, Ledoux, 1994], which shows that
the Cheeger constant ρ can be lower bounded by Ω(d−1/2cp)
under Assumption 4.4, where cp is the Poincaré constant of
the distribution π?. Moreover, Bakry et al. [2008] gave a sim-
ple lower bound of cp, showing that cp ≥ e−βOscRf/(2R2),
where OscRf = supx∈B(0,R) f(x) − infx∈B(0,R) f(x) ≤
LR2/2. Assuming R = Õ(d1/2), this further implies that
ρ = Ω(d−1) · e−O(R2) = e−Õ(d). In addition, better lower
bounds of ρ can be proved when the target distribution
enjoys better properties. When the target distribution is a
mixture of strongly log-concave distributions, the lower
bound of ρ can be improved to 1/poly(d) [Lee et al., 2018].
Strengthening Assumption 4.3 to a local nonconvexity con-
dition yields ρ = e−O(L) [Ma et al., 2018]. The lower
bound of Cheeger constant has been extensively studied
for log-concave distributions [Kannan et al., 1995, Lee and
Vempala, 2017, Chen, 2021], among them Lee and Vempala
[2017] proved that the Cheeger constant ρ can be lower
bounded by ρ = Ω

(
1/(Tr(Σ2))1/4

)
, where Σ is the covari-

ance matrix of the distribution π?. When the target distri-
bution is m-strongly log-concave, based on Cousins and
Vempala [2014], Dwivedi et al. [2018], it can be shown that
ρ = Ω(

√
m).

Note that the upper bound of the sampling error proved in
Theorem 4.5 relies on the step size, mini-batch size, and
the goodness of the initialization (i.e., λ). In order to guar-
antee ε-sampling error of SGLD, we need to specify the
choices of these hyper-parameters. In particular, we present
the iteration complexity of SGLD in the following corollary.

Corollary 4.7. Under the same assumptions made in
Theorem 4.5, consider Gaussian initialization µ0 =
N
(
0, I/(2βL)

)
, then for any mini-batch size B ≤ n and

ε ∈ (0, 1), if set the step size and maximum iteration number
as

η = Õ

(
ρ2ε2

d2β
∧ B

2ρ2ε2

d4β

)
,

K = Õ

(
d3β2

ρ4ε2
∨ d5β2

B2ρ4ε2

)
,

SGLD can achieve an ε sampling error in total variation
distance.

It is worth noting that the iteration complexity in Corol-
lary 4.7 holds for any mini-batch size 1 ≤ B ≤ n, as
opposed to Raginsky et al. [2017], Xu et al. [2018] that
require the mini-batch size to be poly(ε−1) in order to guar-
antee vanishing sampling error. Moreover, if we set the
mini-batch size to be B = O(d), the number of stochastic
gradient evaluations needed to achieve ε-sampling error is
K ·B = Õ(d4β2ρ−4ε−2).

Based on Corollary 4.7, we further show prove the con-
vergence of SGLD under the measure of any polynomial



 growth function.

Corollary 4.8. Under the same assumptions and hyper-
parameter configurations as in Corollary 4.7, let h(x) be
a polynomial growth function with degree D, i.e., h(x) ≤
C(1 + ‖x‖D2 ) for some constant C, and K be defined in
Corollary 4.7, then the output of SGLD satisfies

E[h(xK)]− E[h(xπ)] ≤ C ′ε,

where xπ ∼ π denotes the random vector sampled from π
and C ′ = Õ

(
dD/2

)
is a problem-dependent constant.

Remark 4.9. Similar results have been presented in Sato
and Nakagawa [2014], Chen et al. [2015], Vollmer et al.
[2016], Erdogdu et al. [2018]. However, Sato and Naka-
gawa [2014] only analyzed the finite-time approximation
error between SGLD and the SDE (1.1) rather than the con-
vergence to the target distribution. The convergence results
in Chen et al. [2015], Vollmer et al. [2016], Erdogdu et al.
[2018] also differ from ours as their guarantees are made
on the sample path average rather than the last iterate. In
addition, these works assume that the Poisson equation solu-
tion of the SDE (1.1) has polynomially bounded i-th order
derivative (i ∈ {2, 3, 4}), which is not required in our result.

Let us consider a special case that h(·) = f(·), which was
studied in Raginsky et al. [2017], Xu et al. [2018]. As-
sumption 4.4 implies that h(x) is a quadratic growth func-
tion. Then Corollary 4.8 shows that in order to guarantee
E[f(xk)]− E[f(xπ)] ≤ ε, SGLD requires Õ(ε−2) stochas-
tic gradient evaluations. In contrast, in order to achieve the
same error, Raginsky et al. [2017], Xu et al. [2018] require
Õ(ε−8) and Õ(ε−5) stochastic gradient evaluations respec-
tively, both of which are worse than ours.

5 IMPROVED CONVERGENCE RATES
UNDER HESSIAN LIPSCHITZ
CONDITION

In this section, we will show that the convergence rate of
SGLD can be improved if the log density function addi-
tionally satisfies the Hessian Lipschitz condition, which is
defined as follows.

Assumption 5.1 (Hessian Lipschitz). There exists a posi-
tive constant H such that for any x,y ∈ Rd, it holds that∥∥∇2f(x)−∇2f(y)

∥∥
op ≤ H‖x− y‖2.

This assumption has been made in many recent papers to
prove faster convergence rate of LMC [Dalalyan and Karag-
ulyan, 2019, Vempala and Wibisono, 2019, Mou et al., 2019]
for sampling from both log-concave and non-log-concave
distributions.

With this additional assumption, we state the convergence
result of SGLD in the following theorem.

Theorem 5.2. For any ε ∈ (0, 1), let π∗ ∝ e−βf(x) 1
(
x ∈

B(0, R)
)

be the truncated target distribution in Ω = B(0, R)
with R = R̄(εK−1/12), and ρ be the Cheeger con-
stant of π∗. Under Assumptions 4.3, 4.4, and 5.1, sup-
pose P(‖x0‖2 ≤ R/2) ≤ ε/16. Setting the step size
η = Õ

(
ρ2d−2β−1B2 ∧ ρ/(d3/2 + dβ1/2)

)
, then for any

λ-warm start with respect to π, the output of Algorithm 1
satisfies

‖µSGLD
K − π‖TV ≤ λ(1− C0η)K +

C1η
1/2

B
+ C2η +

ε

2
,

where C0 = O(β−1ρ2), C1 = Õ(R2dρ−1β3/2) and
C2 = Õ(d3/2ρ−1 + Rd1/2βρ−1) are problem-dependent
constants.

The four terms in Theorems 5.2 have the same meaning as
those in Theorem 4.5. Compared with the convergence result
in Theorem 4.5, the improvement brought by Hessian Lips-
chitz condition lies in the approximation error between the
transition distributions of SGLD and Metropolized SGLD,
which is improved from O(η1/2) to O

(
B−1η1/2 + η

)
.

Dalalyan and Karagulyan [2019], Mou et al. [2019], Vem-
pala and Wibisono [2019] also improved the convergence
rate of LMC using the Hessian Lipschitz condition. How-
ever, Dalalyan and Karagulyan [2019] only focused on
strongly log-concave distributions and the theoretical re-
sults in Mou et al. [2019], Vempala and Wibisono [2019]
cannot be easily extended to SGLD.

Corollary 5.3. Under the same assumptions made in
Theorem 5.2, consider Gaussian initialization µ0 =
N
(
0, I/(2βL)

)
, then for any mini-batch size B ≤ n, if

set the step size and maximum iteration number as

η = Õ

(
ρ2B2ε2

d2β
∧ ρε

d3/2 + dβ1/2

)
,

K = Õ

(
d5β2

ρ4B2ε2
+
d5/2β + d2β3/2

ρ3ε

)
,

SGLD can achieve an ε sampling error in terms of total
variation distance.

Note that the required number of stochastic gradient evalu-
ations is K ·B = Õ

(
d5β2/(Bρ4ε2) +Bd5/2β3/2/(ρ3ε)

)
.

Therefore, if setting the mini-batch size as B =
Õ
(
[d5/2β1/2ρε]1/2

)
, it can be derived that the gradient com-

plexity of SGLD is Õ(d15/4β7/4ρ−7/2ε−3/2). This strictly
improves the stochastic gradient complexity (i.e., number
of stochastic gradient evaluations to achieve ε-sampling
error) of SGLD without Assumption 5.1 by a factor of
Õ(d1/4β1/4ρ−1/2ε−1/2).

6 PROOF OUTLINE

In this section, we will sketch the proof of the main results
(Theorem 4.5). The missing proofs for the other theorems,



 corollaries and lemmas are deferred to the appendix. We
first highlight the key proof technique and its novelty and
difference compared with prior works. Then we will go over
each of the key steps in detail.

6.1 PROOF TECHNIQUE AND NOVELTY

Proof Technique. Our proof relies on two sequences
(green arrows in Figure 1): Projected SGLD (xProj-SGLD

k ) and
Metropolized SGLD (xMH

k ). Projected SGLD is constructed
by adding an accept/reject step to the standard SGLD al-
gorithm, which was first studied in Zhang et al. [2017].
Metropolized SGLD is a “virtual” sequence constructed
by further adding a Metropolis Hasting step into Projected
SGLD (the Metropolis Hasting step is computationally in-
tractable so that Metropolized SGLD is not a practical al-
gorithm and we only use it for theoretical analysis). Due to
such Metropolis Hasting step, Metropolized SGLD is a time-
reversible Markov chain and thus enjoys good conductance
properties. Based on these two auxiliary sequences, we will
prove the convergence of SGLD following three steps: (1)
show that the output of Projected SGLD is close to that of
SGLD in distribution (see Lemma 6.1); (2) show that the
transition distribution of Projected SGLD is close to that of
Metropolized SGLD (see Lemma 6.2); and (3) prove the
convergence of Projected SGLD based on the conductance
of Metropolized SGLD (see Lemma 6.4).

Technical Novelty. In order to prove the convergence rate
of SGLD, prior works [Raginsky et al., 2017, Xu et al.,
2018] typically make use of the LMC iterates xLMC

k and de-
compose the sampling error of SGLD (the error between
xk and xπ) into two parts: (1) the error between SGLD iter-
ates and LMC iterates; and (2) the sampling error of LMC
(though Raginsky et al. [2017], Xu et al. [2018] bound the
sampling error of xLMC

k in different ways). We illustrate the
roadmap of different proof techniques in Figure 1. Note that
their results on the error between xk and xLMC

k diverge as
k increases, due to the uncertainty of stochastic gradients.
This suggests that LMC may not be a good enough auxiliary
chain for studying SGLD. In contrast, our constructed aux-
iliary sequences (i.e., Projected SGLD and Metropolized
SGLD) are closer to SGLD since they also cover the ran-
domness of stochastic gradients (this randomness can be
included as part of the transition distribution, see Section
6.3 for more details). Therefore, our proof technique can
lead to a sharper convergence analysis than those in Ra-
ginsky et al. [2017], Xu et al. [2018], which consequently
gives a faster convergence rate of SGLD for sampling from
non-log-concave distributions.

We would also like to point out that while the construction of
Metropolized SGLD follows the same spirit of Zhang et al.
[2017], it has a different goal and thus the corresponding
analysis is not the same. Specifically, Zhang et al. [2017]

xk x⇡xMH

k

xLMC

k

xLMC

k

xLD

t

x⇡LMC

<latexit sha1_base64="9MhPbHbMEbe02jvX1Eg/vLAXmes="></latexit>

xProj-SGLD

k

Figure 1: Illustration of the analysis framework of SGLD in
different works: Raginsky et al. (2017), Xu et al. (2018),
this work. The goal is to prove the convergence of SGLD
iterates xk to the point following the target distribution xπ .
Note that, xLMC

k , xProj-SGLD

k and xMH
k denote the k-th iterates of

LMC, Proj-SGLD, and Metropolized SGLD respectively;
xLD
t denotes the solution of (1.1) at time t; xπLMC denotes the

point following the stationary distribution of LMC.

only characterizes the hitting time of SGLD to a certain set
by lower bounding the restricted conductance of SGLD, but
does not prove its convergence to π. In contrast, we focus
on the ability of SGLD for sampling from a certain target
distribution. Thus we not only need to analyze the conduc-
tance of SGLD, but also need to bound the approximation
error between the distribution of xk and the target one (see
Lemma 6.4 and B.3 and their proofs for more details), which
is more challenging. As a consequence, we prove that the
sampling error of SGLD to the target distribution can be
upper bounded by O(

√
η), while the analysis in Zhang et al.

[2017] can only give O(1) sampling error.

6.2 PROJECTED SGLD AND ITS EQUIVALENCE
TO SGLD

Projected SGLD is constructed by adding an extra step in
Algorithm 2 with the following accept/reject rule:

xk+1 =

{
xk+1 xk+1 ∈ B(xk, r) ∩ B(0, R);

xk otherwise.
(6.1)

This step ensures each new iterate xk+1 does not go too far
away from the current iterate and all iterates are restricted in
a (relatively) large region B(0, R). The entire algorithm is
summarized in Algorithm 2. Due to the above accept/reject
rule, Projected SGLD is slightly different from the standard
SGLD algorithm (see Algorithm 1). However, we can show
that Projected SGLD is nearly the same as SGLD given
proper choices of R and r. In particular, in the following
lemma, we will show that the total variance distance be-
tween the distributions of the outputs of both algorithms can
be arbitrarily small.

Lemma 6.1. Let µSGLD
K and µProj-SGLD

K be the distributions
of the outputs of the standard SGLD algorithm and the
projected SGLD algorithm. For any ε ∈ (0, 1), set

R = R̄(εK−1/4), r =
√

2ηd/β
(
2 +

√
2 log(8K/ε)/d

)
.



 Algorithm 2 Projected SGLD

input: step size η; mini-batch sizeB; inverse temperature
parameter β; radius R, r;
Randomly draw x0 from initial distribution µ0.
for k = 0, 1, . . . ,K do

Randomly pick a subset I from {1, . . . , n} of size
|I| = B; randomly draw εk ∼ N(0, I)
Compute the stochastic gradient g(xk, I) =
1/B

∑
i∈I ∇fi(xk)

Update: xk+1 = xk − ηg(xk, I) +
√

2η/βεk
if xk+1 6∈ B(xk, r) ∩ B(0, R) then

xk+1 = xk
end if

end for
output: xK

Suppose P(‖x0‖2 ≤ R/2) ≤ ε/16 and setting η ≤ (LR +
G)−2β−1d, then we have∥∥µSGLD

K − µProj-SGLD
K

∥∥
TV
≤ ε

4
.

6.3 CONSTRUCTION OF METROPOLIZED SGLD

Projected SGLD will approximately generate samples from
the following truncated target distribution since it restricts
all iterates to the region Ω := B(0, R),

π?(dx) =

{
e−βf(x)∫

Ω
e−βf(y)dydx x ∈ Ω;

0 otherwise.
(6.2)

Then we will characterize the convergence of Projected
SGLD to π∗. In particular, we will introduce an useful aux-
iliary Markov chain called Metropolized SGLD, i.e., SGLD
with a Metropolis-Hasting step. We will first give the tran-
sition distribution of the Markov chain corresponding to
Projected SGLD.

Transition distribution of Projected SGLD. Let g
(
x, I

)
be the stochastic gradient computed at the point x, where I
denotes the mini-batch of data points queried in the stochas-
tic gradient computation. Then it is clear that Algorithm 2
can be described as a Markov process. More specifically,
let u and w be the starting point and the point obtained
after one-step iteration of Algorithm 2, the Markov chain
in this iteration can be formed as u → v → w, where v
is generated based on the following conditional probability
density function,

P (v|u) = EI [P (v|u, I)]

= EI
[

1

(4πη/β)d/2
exp

(
− ‖v − u + ηg(u, I)‖22

4η/β

)∣∣∣∣u],
(6.3)

which is exactly the transition probability of standard SGLD
(i.e., without any accept/reject step). Let R > 0 be a tunable

radius and recall that Ω = B(0, R), the process v→ w can
be formulated as

w =

{
v v ∈ B(u, r) ∩ Ω;

u otherwise.
(6.4)

Let p(u) = Pv∼P (·|u)[v ∈ B(u, r) ∩ Ω] be the acceptance
probability in (6.4), and Q(w|u) be the conditional PDF
that describes u→ w, we have

Q(w|u) = (1− p(u))δu(w)

+ P (w|u) · 1
[
w ∈ B(u, r) ∩ Ω

]
,

where P (w|u) is computed by replacing v with w in (6.3).
Similar to Zhang et al. [2017], Dwivedi et al. [2018], we con-
sider the 1/2-lazy version of the above Markov process, i.e.,
a Markov process with the following transition distribution

Tu(w) =
1

2
δu(w) +

1

2
Q(w|u), (6.5)

where δu(·) is the Dirac-delta distribution at u. However,
it is difficult to directly prove the ergodicity of the Markov
process with transition distribution Tu(w), and it is also
hard to tell whether its stationary distribution exists or not.
Besides, SGLD is known to be asymptotically biased [Teh
et al., 2016, Vollmer et al., 2016], which does not converge
to the target distribution π even when it runs for infinite steps.
It remains unclear whether Projected SGLD can converge
to the target distribution given the formula of its transition
distribution.

Metropolized SGLD. In order to quantify the sampling
error for the output of Projected SGLD in Algorithm 2 and
prove its convergence, we follow the idea of Zhang et al.
[2017], which constructs an auxiliary Markov process by
adding an extra Metropolis-Hasting correction step into
Algorithm 2. We call it Metropolized SGLD. Given the
starting point u, let w be the candidate state generated from
the distribution Tu(·). Metropolized SGLD will accept the
candidate w with the following probability,

αu(w) = min

{
1,
Tw(u)

Tu(w)
· exp

[
− β

(
f(w)− f(u)

)]}
.

Let T ?u (·) denote the transition distribution of such auxiliary
Markov process, i.e.,

T ?u (w) = (1− αu(w))δ(u) + αu(w)Tu(w),

which is time-reversible and easy to verify. Due to this
Metropolis-Hastings correction step, the Markov chain can
converge to a unique stationary distribution π? ∝ e−βf(x) ·
1(x ∈ Ω) [Zhang et al., 2017]. It is worth pointing out
that Metropolized SGLD cannot be implemented in practice
since we are only allowed to query a subset of the training
data in each iteration of SGLD, thus we are not be able
to exactly calculate the accept probability αu(w), which



 involves the expectation computation over the stochastic
mini-batch of data points. Nevertheless, we will only use
this auxiliary Markov chain in our theoretical analysis to
show the convergence of Algorithm 2.

We will further show that the transition distribution of Pro-
jected SGLD (Tu(·)) can be δ-close to that of Metropolized
SGLD (T ∗u (·)) for some small quantity δ governed by η,
which is provided in the following lemma.

Lemma 6.2. Under Assumption 4.4, let G =
maxi∈[n] ‖∇fi(0)‖2, and set r =

√
10ηd/β

(
1 +√

log(8K/ε)/d
)
, where K is the total number of iterations

of Projected SGLD. Then there exists a constant

δ =
[
10Ldη + 10L(LR+G)d1/2β1/2η3/2

+ 12β(LR+G)2dη/B + 2β2(LR+G)4η2/B
]

·
(
1 +

√
log(8K/ε)/d

)2
such that for any set A ⊆ Ω and any point u ∈ Ω,

(1− δ)T ?u (A) ≤ Tu(A) ≤ (1 + δ)T ?u (A). (6.6)

6.4 CONVERGENCE OF PROJECTED SGLD

In this part, we will characterize the convergence of Pro-
jected SGLD, which consists of two steps: (1) given the
δ-closeness result in Lemma 6.2, we prove that Projected
SGLD can converge to the truncated target distribution π?

up to some approximation error determined by δ; and (2)
we prove that with a proper choice of the truncation radius
R, the total variation distance between π? and the target
distribution π can be sufficiently small.

Convergence of Projected SGLD to π?. We first pro-
vide the definition of the conductance for a time-reversible
Markov chain as follows.

Definition 6.3 (Conductance). The conductance of a time-
reversible Markov chain with transition distribution T ?u (·)
and stationary distribution π? is defined by,

φ := inf
A:A⊆Ω,π?(A)∈(0,1)

∫
A T

?
u (Ω\A)π?(du)

min{π?(A), π?(Ω\A)}
,

where Ω is the support of the state of the Markov chain.

In Lemma 6.2, we have already shown that the transition
distribution of Algorithm 2, i.e., Tu(·) is δ-close to that of
Metropolized SGLD, i.e., T ?u (·), for some small quantity
δ. Besides, from Lovász and Simonovits [1993], Vempala
[2007], we know that a time-reversible Markov chain can
converge to its stationary distribution at a linear rate depend-
ing on its conductance. Therefore, we aim to characterize
the convergence rate of Tu(·) based on the ergodicity of
T ?u (·). We utilize the conductance parameter of T ?u (·), de-
noted by φ, and establish the convergence of Tu(·) in total
variation distance in the following lemma.

Lemma 6.4. Let µProj-SGLD
K be the distribution of the output

of Algorithm 2. Under Assumption 4.4, if Tu(·) is δ-close
to T ?u (·) with δ ≤ min{1 −

√
2/2, φ/16}, then for any λ-

warm start initial distribution with respect to π?, it holds
that

‖µProj-SGLD
K − π?‖TV ≤ λ

(
1− φ2/8

)K
+ 16δ/φ.

Lemma 6.4 shows that Projected SGLD converges to π?

in total variance distance with approximation error up to
16δ/φ. The next step is to characterize the conductance
parameter φ and reveal its dependency on the problem de-
pendent parameters, which we state in the following lemma.

Lemma 6.5. Under Assumptions 4.3 and 4.4, if the step
size satisfies η ≤

[
35(Ld + (LR + G)2βd/B)

]−1 ∧
[25β(LR + G)2]−1, there exists an absolute constant c0
such that

φ ≥ c0ρ
√
η/β,

where ρ is the Cheeger constant of the distribution π?.

Bounding the difference between π and π?. Lemmas 6.4
and 6.5 together guarantee that Algorithm 2 converges to
the truncated target distribution π?. Thus the last thing re-
maining to be done is ensuring that π? is sufficiently close
to π. The following lemma characterizes the total variation
distance between the target distribution π and its truncated
version π∗ in B(0, R).

Lemma 6.6. For any ε ∈ (0, 1), set R = R̄(ε/12) and let
Ω = B(0, R) and π? be the truncated target distribution in
Ω. Then the total variation distance between π? and π can
be upper bounded by ‖π? − π‖TV ≤ ε/4.

Proof of Theorem 4.5. The rest proof of Theorem 4.5 is
straightforward by combining Lemmas 6.1, 6.4, and 6.6
using the triangle inequality. We defer the detailed proof to
Appendix A.

7 CONCLUSION

In this paper, we proved a faster convergence rate of SGLD
for sampling from a broad class of distributions that can be
non-log-concave. In particular, we developed a new proof
technique for characterizing the convergence of SGLD. Dif-
ferent from the existing works that mainly study the con-
vergence of SGLD based on full-gradient based Markov
chain suchs as LMC or continuous Langevin dynamics, the
key of our proof technique relies on two auxiliary Markov
chains: Projected SGLD and Metropolized SGLD, which
can better capture the behavior of SGLD since they also
cover the randomness of the stochastic gradients. Our proof
technique is of independent technical interest and can be po-
tentially adapted to study the convergence of other stochastic
gradient-based sampling algorithms.
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