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Abstract

This paper studies probability distributions of
penultimate activations of classification networks.
We show that, when a classification network is
trained with the cross-entropy loss, its final classi-
fication layer forms a Generative-Discriminative
pair with a generative classifier based on a specific
distribution of penultimate activations. More im-
portantly, the distribution is parameterized by the
weights of the final fully-connected layer, and can
be considered as a generative model that synthe-
sizes the penultimate activations without feeding
input data. We empirically demonstrate that this
generative model enables stable knowledge dis-
tillation in the presence of domain shift, and can
transfer knowledge from a classifier to variational
autoencoders and generative adversarial networks
for class-conditional image generation.

1 INTRODUCTION

Deep neural networks have achieved remarkable success in
image classification [10, 13]. In most of these networks, an
input image is first processed by multiple layers of neurons,
whose final output, called penultimate activations, is in turn
fed to the last fully connected layer that conducts classifica-
tion. These networks are typically trained in an end-to-end
manner by minimizing the cross-entropy loss. The penulti-
mate activations are the deepest image representation of the
networks and have proven to be useful for various purposes
besides classification such as image retrieval [45], semantic
segmentation [26], and general image description of unseen
classes [35].

This paper studies the penultimate activations of classifica-
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tion networks through a generative model. We derive this
model by exploiting a dual relationship between the activa-
tions and the final classification layer weights, which results
from the common practice of applying softmax to the output
of a linear layer. Because of this, penultimate activations
are determined entirely by their preceding layers, and they
interact with the final classification layer in a predetermined
way. Using this fixed interaction, we can approximately re-
cover information about penultimate activations using only
the final layer’s weights.

Because this generative model only uses final layer weights,
it yields a compact representation of inter-class affinity with
many potential applications. It can serve as a lightweight
knowledge transfer protocol, especially compared to previ-
ous frameworks requiring feeding data through networks.
Additionally, because our representation of class relations
does not directly use data, it is more robust to domain shift
and is potentially suitable for transferring knowledge in
privacy-sensitive scenarios. This representation’s simple
structure also enables transfer to learning modalities beyond
supervised classification, such as serving as an effective
data-driven prior for class-conditional generative models.
Furthermore, our model encodes information beyond the
decision boundaries in the activation space, which has vari-
ous potential applications, including anomaly detection and
uncertainty estimation.

We experimentally demonstrate that our generative model
of penultimate activations can be used for practical appli-
cations such as Knowledge Distillation (KD) [1, 12] and
class-conditional image generation [4, 16, 24]. For KD, our
model allows us to distill knowledge from a teacher net-
work without feeding images forward through the teacher
by generating its activations directly; this new approach to
KD is complementary to the standard one [12] and more
robust against domain shift between teacher and student.
We also show that our model of penultimate activations in
a trained classifier can be used as a data-dependent prior
for a class-conditional image generation model, resulting in
higher-quality synthetic images compared to those of vanilla
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 models.

The remainder of this paper is organized as follows. In sec-
tion 2, we analyze penultimate activations of classification
networks and derive their probabilistic model. After review-
ing previous work related to our model of penultimate activa-
tions in section 3, we apply our model to KD and conditional
image generation in section 4. We then conclude this paper
with a discussion about limitations and future directions of
our method in section 5.

2 DISTRIBUTIONS OF PENULTIMATE
ACTIVATIONS

Consider a standard neural network that classifies data of
c different classes with ground-truth labels i. We assume a
balanced dataset where p(i) = 1

c for all classes i = 1, . . . , c.
We denote penultimate activations of the network by a ∈ Rd

and weights of the final fully-connected layer for classifica-
tion by W ∈ Rd×c; this layer produces logits W>a ∈ Rc.
We denote columns of W by w1, . . . ,wc ∈ Rd, and repre-
sent projections of a,w1, · · · ,wc onto the unit hypersphere
Sd−1 using upper bars:

a
def
=

a

‖a‖
, wi

def
=

wi

‖wi‖
. (1)

2.1 ANALYSIS OF CROSS-ENTROPY LOSS

We analyze how the common practice of minimizing cross-
entropy loss affects the distribution of penultimate activa-
tions. Our analysis reveals a close connection between the
cross-entropy loss and a specific distribution of normalized
penultimate activations, which can be described using only
W, the last classification layer’s parameters.

The column vectors w1, . . . ,wc of W can be interpreted as
c different prototypes, each of which represents a particular
class. The network classifies a datapoint by comparing these
prototypes against its penultimate activations. This interpre-
tation motivates us to derive a probability distribution of
activations of class i using wi. To this end, we first rewrite
the cross-entropy loss in terms of penultimate activations:

Lxent = − log
exp(‖wi‖‖a‖w>i a)∑
j exp(

∥∥wj

∥∥‖a‖w>j a) . (2)

Eq. (2) resembles Bayes’ theorem: Assuming‖a‖ is a con-
stant and‖w‖i are the same for all i, exp(‖wi‖‖a‖w>a)
acts as an unnormalized joint probability for (a, i), and the
denominator is the sum of all possible cases for class j.

The von Mises-Fisher (vMF) distribution, a well-known
distribution in directional statistics, exactly takes this form
of joint probability and is defined as

vMF(x;µ, κ) def
= C(κ) exp(κµ>x), (3)

x a

w

i

N

Figure 1: Plate notation representation of our model’s struc-
ture. We assume that the network is trained to map x to i,
and exploit the structure of the last layer to approximately
reconstruct activations using only weights w and label i.

where µ ∈ Sd−1 is the mean direction, κ ∈ [0,∞) is a
concentration term, and C(κ) is a normalizing constant.
We write the cross-entropy in Eq. (2) in terms of the vMF
distributions:

Lxent = − log
vMF(a;wi,‖wi‖‖a‖)∑
j vMF(a;wj ,

∥∥wj

∥∥‖a‖) . (4)

This motivates the following generative model which jointly
models penultimate activations and labels:

q(a, i) = q(i)q(a|i) = 1

c
vMF(a;wi,‖wi‖‖a‖). (5)

We see that the model q(a, i) forms a Generative-
Discriminative pair [25] with the predictive distribution
of the classification network:

argmax log p(i|a) = argminLxent

≈ argmax log
q(a, i)∑
j q(a, j)

= argmax log q(i|a). (6)

Eq. (6) shows that q(a, i) is closely related to the prediction
of the classification network, and suggests that q(a|i) can be
used as an approximation to the true posterior p(a|i). Our
modeling procedure is shown in Figure 1. Note that while
the network uses data x during training, we do not assume
access to data when approximately inferring activations a.
By experiments in various domains, we will demonstrate
that this simple model can transfer a substantial amount of
information about the learned activation space.

For Eq. (6) to be an exact identity, the concentration param-
eter‖wi‖‖a‖ of each vMF component q(a|i) must be equal.
In the next section, we empirically verify to what extent
this is true in trained classification networks. In addition, to
sample from q(a, i) using only the final layer parameters
W, we treat‖a‖ as a concentration hyperparameter and tune
it using cross-validation on the downstream task.

2.2 EMPIRICAL VERIFICATION OF OUR
MODEL

In the previous section, we have suggested that the nor-
malized activations a for each class follow the von Mises-



 Fisher distribution q(a|i). We qualitatively verify this claim
by visualizing penultimate activations of a classification
network trained on the MNIST dataset [19] and the vMF
distributions derived from its final classification layer in Fig-
ure 2. The classification network consists of 4 convolu-
tion layers followed by the final fully connected layer
that produces 2-dimensional penultimate activations (i.e.,
a,w1, . . . ,wc ∈ R2).

Figure 2 shows that in the early stages of training, normal-
ized penultimate activations are not well aligned with vMF
distributions. However, as training progresses, they become
grouped for each class and follow their corresponding vMF
distributions. This is in line with our analysis, in which we
claimed that the normalized penultimate activations follow
vMF distributions if the network is trained by minimizing
the cross-entropy loss.

2.3 ARE DIRECTIONAL STATISTICS
SUFFICIENT FOR CLASSIFICATION?

Our approach to modeling normalized activations q(a|i)
implicitly assumes that the directional vectors a and wi

hold sufficient information for classification.

This assumption is empirically verified by quantifying
how much the accuracy of trained classification networks
drops when normalizing both a and wi. To this end, we
choose 9 networks pre-trained for the ImageNet classifica-
tion task [32] and measure their performance on the Ima-
geNet validation set. As summarized in Table 1, the per-
formance drop by the normalization is marginal, especially
when the network has more capacity.

We additionally provide an informal argument based on de-
grees of freedom for the sufficiency of directional statistics.
First, the norm of a has no effect on the ranking of logits,
thus not affecting the decision boundary in terms of logit
ordering. On the other hand, the norm of wi could change
the decision boundary, but it has little influence on large
networks. Note that the direction vector w accounts for
d − 1 of the d degrees of freedom of the prototype vector
w ∈ Rd. Therefore, the fraction of the information that w
holds about w roughly converges towards 1 as d increases
(limd→∞

d−1
d = 1). Since the dimension d is typically very

large in standard classification networks, we argue that the
statistics of w should hold sufficient information.

Furthermore, the sufficiency of directional statistics has been
confirmed indirectly by the widespread use of hypersphere
embedding in the face recognition literature [7, 21] and the
hardness metric based only on angles between activation
and weight vectors [3]. The fact that hypersphere embedding
works in such domains supports our claim that classification
can be done only with directional information. Our analysis
further suggests that even standard (unnormalized) networks
may store most of their information in directional statistics.
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Figure 2: Visualization of penultimate activations and vMF
distributions derived from a classification network trained
on the MNIST dataset. a of datapoints are represented by
dots, and vMF distributions q(a|i) are drawn by solid lines.

3 RELATED WORK

3.1 UNDERSTANDING DEEP NEURAL
NETWORKS

Understanding what neural networks learn about data has
been a fundamental problem in deep learning. Previous
methods have analyzed classification networks by optimiz-
ing an image to maximally activate a specific neuron [6, 42]
or maximize the predicted probability of a specific class [36].
A similar technique has been used to visualize the entire
feature map of an image [23]. For the same purpose, areas
that most contribute to classification are estimated for each
class through a weighted average of each activation chan-
nel [46]. Our work also belongs to this line of research in
that our model explicitly exhibits the learned class relations
in a classification network.

While these previous methods offer high-level insights into
the characteristics of deep neural network classifiers, they
do not provide a way of using their insights to facilitate the
training of other models. Meanwhile, Yin et al. [41] propose
to synthesize class-conditional images using knowledge of
a trained classifier and exploits the generated images for
knowledge distillation. In contrast, our generative model
can synthesize class-conditional activations without such a
costly image synthesis procedure. We experimentally show
that our method can extract the relationship between classes
while being stable under distribution shift and transfer to
different modalities such as generative modeling.

3.2 GENERATIVE-DISCRIMINATIVE PAIRS

Generative classifiers model the joint probability p(x, y)
while discriminative ones model the conditional probability
p(y|x). If two models belong to the same parametric family
but respectively use the generative and discriminative cri-
teria, the two are said to form a Generative-Discriminative
pair [25, 31]. In this context, the work by Lee et al. [20]
is the most similar to ours conceptually. They propose a
generative model of activations that forms a generative-
discriminative pair with a given classifier, and apply the



 
Table 1: Performance of various classification networks before and after normalizing a and wi in top-1 accuracy on the
ImageNet validation set. R: ResNet [10], D: DenseNet [13], S: ShuffleNet [22], RX: ResNeXt [40].

R-18 R-50 R-101 R-152 D-121 D-201 S-v2 RX-50 RX-101

Original 69.8 76.2 77.4 78.3 74.7 77.2 69.4 77.6 79.3
Normalized 67.1 74.7 76.2 77.5 72.5 75.5 68.4 76.9 78.9

Drop rate -3.9% -1.9% -1.5% -1.1% -2.9% -2.2% -1.5% -0.9% -0.6%

model to detecting out-of-distribution samples and adver-
sarial attacks. We also derive a generative model that ap-
proximately forms a generative-discriminative pair with any
classification networks, yet apply our model to transferring
learned class relations to other networks and tasks.

3.3 LEARNING WITH VMF DISTRIBUTIONS

As the vMF distribution is one of the simplest distributions
for directional data, mixtures of vMFs have been widely
used for clustering directional data [2, 8]. For Bayesian infer-
ence of neural network weights, vMF distributions are used
to model the directional statistics of the weights that are de-
composed into radial and directional components [28]. Also,
vMF embedding spaces have been studied for deep metric
learning [9] since such hypersphere embedding spaces are
more desirable than conventional Euclidean spaces when
their dimension is large. Kumar et al. [18] used vMF dis-
tributions to reduce the large computations involved in nor-
malizing the softmax for a set of words.

Our use of directional statistics differs from these previous
methods: we use it as a tool for explaining the behavior of
standard classification models rather than for specialized
purposes like building a compact embedding space and
computation reduction.

4 APPLICATIONS

This section demonstrates that our generative model of
penultimate activations can be applied to two practical ap-
plications, KD [1, 12, 30] and class-conditional image gen-
eration [4, 27].

4.1 CLASS-WISE KNOWLEDGE DISTILLATION

This section describes how the generative model of activa-
tions can be used to develop a new algorithm for KD, and
validates its effectiveness.

4.1.1 Algorithm Details

KD is the task of distilling knowledge from a teacher net-
work T to a student network S [12]. Unlike most of the

existing methods, our model enables KD without feeding
data forward through T by directly generating activations of
a certain class. In detail, our model is used to approximate
the average prediction of T per class, which is represented
as the probability of T ’s prediction y given class i and esti-
mated by

pT (y|i) =
∫
pT (a|i)pT (y|a) da ≈

1

N

N∑
j=1

pT (y|aj),

(7)

where we employ Monte Carlo integration since the exact
integral is intractable. Also, each aj is an i.i.d. sample from
vMF(wi, κ), where κ is set to 80 for all experiments by
inspecting the empirical norm of the feature distribution on
a teacher model.

The estimated pT (y|i) in Eq. (7) quantifies the relationship
between two classes y and i that is captured by T , and is
employed as a target for KD in our method. Recall that for
teacher network pT and student network pS , the standard
KD loss [12] is

LKD = −Ei,x∼p(i,x)
y∼pT (y|x)

[
log pS(y|x)

]
, (8)

where y denotes prediction and x and i are data and label,
respectively. This loss is designed to minimize the KL diver-
gence between pT (y|x) and pS(y|x) for each data x. Unlike
this data-wise KD, our approach is a Class-wise KD (CKD)
whose objective is

LCKD = −Ei,x∼p(i,x)
y∼pT (y|i)

[
log pS(y|x)

]
, (9)

where the categorical distribution pT (y|i) is given by Eq. (7).
Note again that while the standard KD objective in Eq. (8)
requires a forward pass through the teacher network T to
compute pT (y|x), ours in Eq. (9) utilizes the pre-computed
distribution pT (y|i) without exploiting T during training
of S. This property of CKD is useful especially when it is
hard to conduct forward propagation through T (e.g., online
learning of S with limited memory and computation power)
or if there is domain shift between training datasets for T
and S as demonstrated by experiments in section 4.1.4. The
overall procedures of the standard KD and our CKD are
described in Algorithm 1 and 2, respectively, where the
main differences between them are colored in red.



 Algorithm 1 Knowledge Distillation [12]

Require: teacher network x 7→ pT (y|x)
Require: student network x 7→ pS(y|x)

1: while not converged do
2: x, i ∼ p(x, i)
3: pT ⇐ pT (y|x)
4: pS ⇐ pS(y|x)
5: LKD ⇐ −pT · log pS
6: end while

Algorithm 2 Class-wise Knowledge Distillation (ours)

Require: teacher network x 7→ pT (y|x)
Require: student network x 7→ pS(y|x)

1: pT (y|i)⇐ 1
N

∑N
j=1 pT (y|aj)

2: while not converged do
3: x, i ∼ p(x, i)
4: pT ⇐ pT (y|i)
5: pS ⇐ pS(y|x)
6: LCKD ⇐ −pT · log pS
7: end while
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Figure 3: Visualization of penultimate activations and their
vMF distributions of teacher and student networks on the
MNIST dataset. a of datapoints are represented by dots and
vMF distributions q(a|i) are drawn by solid lines.

4.1.2 Qualitative Analysis on the Effect of CKD

To investigate which kind of information of T is transferred
to S through KD or CKD, we qualitatively examine penul-
timate activations and their generative models of the three
networks on the MNIST dataset. In this experiment, T con-
sists of 4 convolution layers followed by the final fully
connected layer and produces 2-dimensional penultimate
activations. S has the same architecture but with half the
number of convolution kernels. From the visualization re-
sults in Figure 3, we observe that T and S have the same
cyclic order of classes in the space of their penultimate ac-
tivations. This demonstrates that Eq. (9) encourages S to
follow the inter-class relationships captured by T .

4.1.3 Network Compression through KD

The effectiveness of CKD is first evaluated on the CIFAR-
100 dataset [17] in the scenario of network compression. We

Table 2: Top-1 test accuracy of the student networks on the
CIFAR-100 dataset. Results are averaged over 5 runs.

Method Accuracy

Teacher (WRN-40-2) 75.61

Student (WRN-16-2) 73.26

FitNet [30] 73.58
KD [12] 74.92
AT [43] 74.08
RKD [29] 73.35
SP [39] 73.83
VID [1] 74.11
CRD [38] 75.48

CKD (ours) 74.32
CKD + KD (ours) 75.21

adopt WRN-40-2 as T and WRN-16-2 as S, both of which
are introduced by [44], and follow the experimental protocol
for network compression proposed in [38]. Follwing [12],
we set the temperature for the KD loss to 4 for all exper-
iments. The results of CKD are quantified and compared
to other distillation methods in Table 2. CKD outperforms
most previous methods such as RKD [29], SP [39], and
VID [1]. These results demonstrate that CKD is capable of
extracting useful knowledge from T . In addition, CKD and
the standard KD [12] are complementary to each other and
the performance is further enhanced by integrating them.

4.1.4 KD in the Presence of Domain Shift

Most KD techniques assume that T and S are trained with
the same dataset or, at least, on the same domain. However,
this assumption does not always hold in real-world settings,
e.g., when the dataset used to train T is not available due
to privacy issues or when we train S using streaming data
that may be corrupted by various noises. In those cases,
the quality of knowledge extracted from T in a data-wise
manner may be degraded since T assumes a data distribution
different from what S observes.

We argue that our CKD is more robust against such a domain
shift issue since it performs KD without taking input data
explicitly. We evaluate CKD and compare it to the standard
KD [12] on the CIFAR-100 dataset [17] while simulating
domain shift. Specifically, we consider two different types of
domain shift: photometric transform and downsampling. For
the photometric transform, we randomly alter brightness,
contrast, and saturation of input image with five different de-
grees ∈ {0, 0.2, 0.4, 0.6, 0.8} of alteration, where 0 means
we use the original image without noise. Also, for image
downsampling, we reduce input image resolution with three
different rates (×0.75,×0.5,×0.25) using nearest-neighbor
interpolation. T is trained on the original dataset while S



 
Table 3: Top-1 test accuracy of the student networks on the CIFAR-100 dataset with various degrees of photometric transform
and image downsampling. Results are averaged over 5 runs.

Photometric Transform Downsampling

0.0 0.2 0.4 0.6 0.8 ×1.0 ×0.75 ×0.5 ×0.25

Label 73.26 73.29 72.97 72.39 71.53 73.26 70.15 63.64 49.00
KD 74.92 74.34 71.92 65.68 51.35 74.92 68.52 45.84 20.27

CKD (ours) 74.32 74.18 73.98 73.61 72.47 74.32 71.24 64.55 49.72

is trained on its domain-shifted versions. We use the same
architectures as in section 4.1.3, using WRN-40-2 as T and
WRN-16-2 as S.

Experimental results are summarized in Table 3. CKD con-
sistently enhances the performance of the baseline using
only ground-truth labels (“Label”). On the other hand, the
standard KD (“KD”) deteriorates when the domain shift is
significant. We believe this result is mainly because the stan-
dard KD strongly depends on the data distribution. On the
other hand, the knowledge captured by CKD is still useful in
the presence of domain shift since it extracts inter-class rela-
tionships directly from the weights of the final classification
layer rather than relying on the data.

4.2 CONDITIONAL IMAGE GENERATION WITH
HYPERSPHERICAL VAE

We use our generative model of penultimate activations to
enhance class-conditional generative models. Such models
generate data x using a latent variable z together with a
class label i. While previous methods typically use the con-
catenated vector [z; i] as an input to the decoder network, we
propose to instead use our learned model of activations as
the distribution of z given the label: p(z|i) = q(a|i). In this
section, this idea is applied to Hyperspherical Variational
Auto-Encoder (HVAE) [4], a latent variable model which
performs inference using a vMF latent distribution.

This section first describes HVAE and its variant for con-
ditional image generation, then illustrates how our model
of activations is integrated with HVAE and improves the
quality of generated images. The efficacy of our method is
demonstrated on the MNIST dataset.

Baseline 1: Hyperspherical VAE (HVAE). HVAE is a
latent variable model, which first computes the latent vari-
able z ∈ Sd of a given datapoint x using an encoder q(z|x),
then reconstructs x from z by a stochastic decoder p(x|z).
HVAE assumes that p(z) is a uniform distribution on the
unit hypersphere Sd. Accordingly, the encoder of HVAE is
trained by maximizing the following lower bound of the
evidence, usually called the ELBO:

Eq(z|x)[log p(x|z)]−DKL(q(z|x) || p(z)). (10)

Baseline 2: HVAE Conditioned by Concatenation
(HVAE-C). A straightforward way to extend HVAE to
take class label i into account is to concatenate i to
the end of the latent vector z. We call this conditioned
HVAE model HVAE-C. Whereas HVAE assumes that x
is generated from z alone, i.e., p(x, z) = p(z)p(x|z),
HVAE-C assumes that x is generated from both z and i,
i.e., p(x, z, i) = p(i)p(z)p(x|z, i). We train HVAE-C by
maximizing the following lower bound of the evidence con-
sidering i:

Eq(z|x,i)
[
log p(x|i, z) + log p(i)

]
−DKL(q(z|x) || p(z)).

(11)

Ours: HVAE Conditioned by Learned Prior (HVAE-L).
Recall from section 2.1 that one can utilize the weights
of the last fully connected layer of a classification net-
work to model a distribution of penultimate activations for
a specific class i. We employ this activation distribution
conditioned on class i as a learned prior for z of HVAE.
This method is similar to HVAE-C in that the class infor-
mation is involved in the process of generating x, but the
two models differ in the way to integrate the information.
Unlike HVAE-C, HVAE-L generates x from z alone, yet
the distribution of z is determined by class label i, i.e.,
p(x, z, i) = p(i)p(z|i)p(x|z). Accordingly, it is trained by
optimizing the following objective:

Eq(z|x,i)
[
log p(x|z) + log p(i)

]
−DKL(q(z|x) || p(z|i)).

(12)

Also, the above objective differs from that of Eq. (10) since
the two models assume different generation procedures.

We compare our model (HVAE-L) against the two baselines
(HVAE and HVAE-C) on the MNIST image generation task.
Our experimental setup, including network architecture and
hyperparameters, follows that of [4]. Specifically, both of
the encoder and decoder of these models consist of three
fully connected layers, whose output dimensions are 768−
256−128−dimension of z−128−256−768. In addition,
we ensure that the dimensionality of the latent vector z is
the same for all the models. The prior distribution p(z|i) of
HVAE-L is derived from an MNIST classification network,
whose architecture is the same with that of the encoder; the
concentration parameter κ of the prior distribution is set to



 
Table 4: Comparison on the MNIST generative modeling task. Results are averaged over 5 runs.

Log-Likelihood ELBO

Dimension of z 3 5 10 20 3 5 10 20

HVAE −122.0 −107.4 −93.6 −90.9 −124.0 −111.3 −98.0 −96.3
HVAE-C −124.9 −110.7 −93.3 −89.7 −127.6 −114.3 −97.6 −95.3

HVAE-L (ours) −119.4 −105.2 −90.5 −87.9 −123.0 −109.1 −95.1 −93.3

Figure 4: Visualization of the latent space of HVAE-L by
interpolating between centers of different classes.

20. All the networks including the classification network are
optimized by the Adam optimizer [15] with a learning rate
of 1e−3 and mini-batches of 64 images.

The performance of our model is summarized and compared
with that of the two baselines in Table 4, where HVAE-L
outperforms both baselines. This result demonstrates that
q(a|i), the vMF distributions of class-conditional activa-
tions can serve as a useful prior for class-conditional image
generation of HVAE. Specifically, we conjecture that the im-
provement by HVAE-L arises from the following properties
of the prior. First, the prior is derived from a classification
network trained using examples of all classes, thus is aware
of the affinity between different classes as well as variations
within each class. Second, the prior represents class identity
and appearance variation jointly within a single latent space.
These two properties allow HVAE-L to exploit the latent
space more flexibly and effectively. In contrast, HVAE-C
cannot take these advantages since it treats class labels as
independent symbols and disentangles them from appear-
ance variations. The advantage of our prior model is also
demonstrated qualitatively in Figure 4 and Figure 5, where

(a)

(b)

Figure 5: Visualization of the latent spaces. (a) HVAE-C.
(b) HVAE-L. For HVAE-C, input latent vectors are sampled
through interpolation between class codes of 1 and 2 while
fixing z. On the other hand, input latent vectors for HVAE-L
are computed by interpolation between two points sampled
from p(z|i = 1) and p(z|i = 2), respectively.

images generated by HVAE-L are more smoothly and nat-
urally interpolated between different classes in the latent
space than those of HVAE-C.

4.3 CONDITIONAL IMAGE GENERATION WITH
GANS

In this section, our generative model of penultimate ac-
tivations is utilized as a class-conditional prior for con-
ditional Generative Adversarial Networks (cGANs) [24].
Most cGANs independently sample a class label i and a
latent vector indicating a specific appearance of the class
[24, 27]. On the other hand, our cGAN variant samples a
single latent vector z, which represents class identity and ap-
pearance jointly, from p(z|i) = q(a|i), the vMF distribution
of class-conditional activations derived in section 2.1.

Our method is incorporated with SNGAN [24] imple-
mented by [34], and compared to the original SNGAN on a
class-conditional image generation task using the CIFAR10
dataset [17]. The only difference between SNGAN and our
variant is that we replace the input Gaussian noise z of
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Figure 6: Qualitative conditional image generation results using GAN variants on the CIFAR10 dataset.

Table 5: Comparison on the CIFAR10 generative modeling
task. Results are averaged over 5 runs.

z IS (↑) FID 5k (↓)
Gaussian 8.406 18.867
vMF 8.511 18.764

SNGAN with our vMF noise for label i, and the input for
conditional batch normalization [5] is still i. The vMF dis-
tributions used to sample the latent vectors are derived from
the WRN-40-2 network [44] trained on the same dataset.
Latent vectors of all methods are 128-dimensional, and we
multiply 10 to latent vectors sampled from our vMF mod-
els to match their norm to that of baseline methods. We
directly follow the evaluation protocol of [34]. The only
additional hyperparameter was the concentration parameter
κ of the vMF distribution, which we set to 5 based on initial
experiments.

The quality of generated images is measured in two different
metrics, Inception Score (IS) [33] and Frechet Inception
Distance (FID 5k) [11]. IS measures the certainty in class
prediction along with the diversity between different classes,
while FID 5k quantifies the dissimilarity between activations
of real and generated images. Both metrics are based on the
ImageNet-pretrained Inception-v3 network [37].

The quantitative results in Table 5 show that our model
outperforms the baseline, particularly in the IS metric. We
argue that this improvement comes from the advantages of
the learned prior p(z|i) = q(a|i) that allow the decoder to
utilize the latent space more effectively while considering
the affinity between classes and class-specific appearance
variations, as discussed in section 4.2. The qualitative results

in Figure 6 demonstrate that our method tends to generate
images with more diverse instances and backgrounds while
keeping their class identity.

5 DISCUSSION

Our core contribution is a simple generative model of ac-
tivations that forms a generative-discriminative pair with
the given classification network. We believe our approach
provides insight into how even the design of a single layer
can impose an inductive bias on a model that guides how
and where knowledge is stored. We show that it is possi-
ble to exploit such structures to efficiently extract useful
information from a trained model. While our derivation in
section 2.1 is specific to the typical design of using matrix
multiplication in the final layer (i.e., l = W>a), it could be
extended to analyze other multiplicative interactions [14],
including Mahalanobis metric learning, gating mechanisms,
and self-attention.

Our approach may be useful in many other applications.
For example, beyond our mild domain shift setting in sec-
tion 4.1.4, CKD may also have benefits in a more severe
domain adaptation setting where one wishes to transfer in-
formation between different domains. Also, the density func-
tions q(a|i) may be used as a decision criterion for anomaly
detection, and their relative overlap may help estimate or cal-
ibrate the uncertainty of classification networks. We believe
these are all exciting directions for future research.
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