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Abstract

Hamiltonian Monte Carlo (HMC) is a Markov
chain Monte Carlo (MCMC) approach that ex-
hibits favourable exploration properties in high-
dimensional models such as neural networks. Un-
fortunately, HMC has limited use in large-data re-
gimes and little work has explored suitable ap-
proaches that aim to preserve the entire Hamilto-
nian. In our work, we introduce a new symmet-
ric integration scheme for split HMC that does
not rely on stochastic gradients. We show that our
new formulation is more efficient than previous
approaches and is easy to implement with a single
GPU. As a result, we are able to perform full HMC
over common deep learning architectures using
entire data sets. In addition, when we compare
with stochastic gradient MCMC, we show that our
method achieves better performance in both accur-
acy and uncertainty quantification. Our approach
demonstrates HMC as a feasible option when con-
sidering inference schemes for large-scale machine
learning problems.

1 INTRODUCTION

To this day, Hamiltonian Monte Carlo remains the gold
standard for inference in Bayesian Neural Networks (BNNs)
[Duane et al., 1987, Neal, 1995]. However, the challenge of
scaling HMC to applications involving large data sets limits
its wide-scale use. Instead, approaches that utilise stochastic
gradients are preferred due to their ability to better scale
with data set size. The challenge for these stochastic gradient
approaches is often finding a compromise between scalabil-
ity and the modelling of uncertainty. However, if we cannot
afford to compromise on uncertainty performance, then any
feasible way of performing HMC would be extremely at-
tractive. This would allow us to leverage the properties of

HMC in modern deep learning architectures that are already
starting to play a key part in safety-critical applications such
as in medical diagnosis [Leibig et al., 2017], self-driving
vehicles [Filos et al., 2020], and disaster response [Lu et al.,
2020].

The two common approaches for performing Bayesian in-
ference in large-scale models are stochastic variational in-
ference (e.g. Graves [2011], Blundell et al. [2015], Gal
and Ghahramani [2016]) and Markov chain Monte Carlo
(MCMC). The latter MCMC approach only became prac-
tical for large data with the introduction of Stochastic Gradi-
ent Langevin Dynamics (SGLD) [Welling and Teh, 2011].
The appeal of MCMC (including the stochastic gradient vari-
ant) is that once the samples have converged to the target
distribution, we can be confident that we are sampling from
the distribution of interest and not from an approximate
variational distribution. As a result there now exist multiple
stochastic gradient MCMC schemes for inference in BNNs
[Chen et al., 2014, Ding et al., 2014, Zhang et al., 2020].
In comparison to traditional implementations of MCMC,
stochastic gradient approaches avoid using both a full likeli-
hood model as well as a Metropolis-Hastings step. Instead,
they tend to use a decaying learning rate and an approx-
imation of the full likelihood. In contrast, we look to the
original formulation of HMC and augment the Hamiltonian
such that we can perform HMC over entire data sets.

In this work, we introduce a novel symmetric splitting integ-
ration scheme for HMC that is more robust than previous
approaches and easy to implement as part of a Python pack-
age.1 Our approach allows us to take advantage of the super-
ior high-dimensional exploration of HMC, by letting chains
with long trajectory lengths explore the parameter space of
neural networks. We show how we are able to perform HMC
without stochastic approximations, and achieve results that
are more robust to large data sets. In addition to improving
on previous proposed splitting formulations, we introduce a

1For the code, please refer to https://github.com/
AdamCobb/hamiltorch.
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 realistic application of vehicle classification from acoustic
data and show our novel symmetric split HMC inference
scheme is also able to outperform its stochastic counterparts.
In particular, our extensive analysis of uncertainty quanti-
fication shows the value of our approach over the stochastic
MCMC baselines. In summary, our contributions are as
follows:

• We introduce a new symmetric integration scheme for
split HMC that does not rely on stochastic gradients.

• Our approach outperforms all previous proposed split-
ting schemes by achieving a larger effective sample
size and a higher acceptance rate.

• We include a real-world example where our symmet-
ric split scheme for HMC is able to provide better
uncertainty estimates compared to SGD, SGLD, and
SGHMC.

• We show that preserving the full Hamiltonian is still a
viable option, even when it is necessary to split the data
into smaller batches (e.g. due to memory limitations).

Our paper is structured as follows. Section 2 describes the
related work. Section 3 covers previous theory on HMC
and split HMC, enabling us to introduce our new approach
of symmetric split HMC in Section 4. In Section 5, we
compare our new scheme to previous splitting approaches,
where we show how our new method scales more efficiently
to large data. In Section 6, we compare symmetric split
HMC with stochastic gradient approaches, demonstrating
its superiority in uncertainty quantification. We then discuss
the implications of our results in Section 7 and conclude is
Section 8.

2 RELATED WORK

Augmenting the Hamiltonian to increase the feasibility of
implementing full HMC is a well-known approach, yet it
has been relatively untouched by the machine learning com-
munity in recent years, with the majority of effort focusing
on stochastic gradient approaches (e.g. Chen et al. [2014],
Ding et al. [2014], Zhang et al. [2020]). However, if we
go back to the original work of Neal [1995], we see the
introduction of splitting according to data subsets. Neal’s
motivation for splitting was to improve exploration by tak-
ing advantage of data sets that are redundant, such that one
can achieve a bigger effective step size. This splitting ap-
proach, which we will refer to as randomised splitting due
to its formulation, was not symmetrical and in subsequent
work, Neal [2011] wrote that “some symmetrical variation ...
might produce better results.” The other appearance of split
HMC in the literature comes from Shahbaba et al. [2014],
where the Hamiltonian was split into two parts, such that
one part was solved for analytically. This splitting approach
facilitated larger step sizes to be taken and improved the

exploration of the sampler. Shahbaba et al. [2014] also in-
troduced the idea of splitting the data into two subsets, one
for data lying near the decision boundary (first inferred by a
MAP approximation) and the other for data far away from
the boundary. This data splitting approach relies on both
the symmetry of the log likelihood in logistic regression
and on the ability to quickly perform a MAP approxima-
tion. Since these works, we are not aware of any further
advances in split HMC that make it feasible to implement
a full Hamiltonian on a single GPU. In Section 5, we will
show that our symmetrical version of split HMC does better
than randomised splitting, as had been predicted by Neal
[2011].

A further challenge that arises in HMC is when the tar-
get distribution’s geometry prevents easy mixing. One can
look to work that aims to alleviate these issues such as the
framework introduced by Girolami and Calderhead [2011]
of Riemannian manifold HMC (RMHMC) or a more scal-
able approach to Bayesian hierarchical models by using the
variant referred to as semi-separable HMC [Zhang and Sut-
ton, 2014]. Another related line of work involves sampling
in a transformed parameter space and then using the in-
verse transform to go back to the original space [Marzouk
et al., 2016]. Recent work by Hoffman et al. [2019] actu-
ally demonstrates that this transformation can result in an
equivalence to RMHMC, where the authors utilise norm-
alising flows as their invertible transformation. Instead of
improving exploration by alleviating the detrimental effects
of bad geometry, another approach is to improve HMC’s
performance by constructing samplers that automatically
tune their hyperparameters [Hoffman and Gelman, 2014,
Betancourt, 2013, Wang et al., 2013]. These adaptations to
HMC all follow a different direction to our work, since they
do not directly address the challenge of scaling to large data
with BNNs. However, these improvements are also comple-
mentary as they have the potential to be combined with our
work in the future.

Stochastic gradient approaches to MCMC have become the
main way to perform MCMC in BNNs since their intro-
duction by Welling and Teh [2011]. While SGLD natur-
ally arises by combining a Robbins-Monro-type algorithm
[Robbins and Monro, 1951] with Langevin dynamics, the
equivalent formulation for HMC (i.e. SGHMC) is more chal-
lenging and requires a limiting Gaussian assumption and the
introduction of a friction term [Chen et al., 2014]. Although
SGHMC has seen wide use in the machine learning com-
munity since its introduction (e.g Springenberg et al. [2016],
Gustafsson et al. [2020]), there are various works that criti-
cise the approach. Bardenet et al. [2014] demonstrate that
relying on a Gaussian noise assumption can result in poor
performance. Betancourt [2015] further criticises the use of
stochastic gradients in HMC, reporting that the only way to
reduce bias with data subsampling is to “subsample twice in
a symmetric composition,” where Betancourt [2015] directly



 refers to Neal [1995] and Shahbaba et al. [2014]. However,
this proposition did not come with an applicable solution,
but instead it came with a call to devise new ways of avoid-
ing stochastic approximations. Despite some of the potential
limitations of stochastic gradient MCMC approaches, there
are now multiple implementations that enable successful
inference in BNNs. For example, a popular direction of re-
search has been to propose approaches that aim to cover
multiple modes in the posterior, which has been motivated
by the success of using deep ensembles [Lakshminarayanan
et al., 2017, Ashukha et al., 2020]. Therefore, we now see
schemes employing cyclic learning rates [Zhang et al., 2020]
and utilising thermostats [Ding et al., 2014, Leimkuhler and
Shang, 2016] to attain improved performance. As a final
note, these approaches avoid relying on the Metropolis-
Hastings step and instead decrease their step sizes to zero to
ensure that they converge to the target distribution.

Despite the existence of a few examples that have employed
data subsampling with full HMC, there is still no widely-
used scheme that can compete with stochastic gradient
MCMC on a large data set. Furthermore, some works in
the field have criticised stochastic gradient approaches and
hinted at symmetric splitting approaches as a possible way
forward. In this paper, we will show that symmetric splitting
does offer a scalable and robust approach for inference in
BNNs.

3 SPLIT HAMILTONIAN MONTE CARLO

In this section we first provide a brief overview of HMC.
We then describe the work by Neal [2011] and Shahbaba
et al. [2014] and conclude by introducing our new variation
of split HMC in Section 4.

3.1 HAMILTONIAN MONTE CARLO

HMC is a gradient-based MCMC sampler that employs
Hamiltonian dynamics to traverse the parameter space of
models. We can use HMC to overcome the challenge of
performing inference in highly complex Bayesian models by
materialising samples from the unnormalised log posterior
via the proportionality,

p(ω|Y,X) ∝ p(Y|X,ω) p(ω),

which is derived from Bayes’ rule. The model is a function
of the parameters, ω ∈ RD, and is defined by the likelihood
p(Y|X,ω) and the prior p(ω), where {X,Y} are the input-
output data pairs. The prior encodes assumptions over the
model parameters before observing any data. To take advant-
age of Hamiltonian dynamics in our Bayesian model, we
can augment our system by introducing a momentum vari-
able p ∈ RD, such that we now have a log joint distribution,
log[p(ω,p)] = log[p(ω|Y,X) p(p)], that is proportional
to the Hamiltonian, H(ω,p). If we let p(p) = N (p|0,M),

where the covariance M denotes the mass matrix, our
Hamiltonian can then be written as:2

H(ω,p) = − log[p(Y|X,ω) p(ω)]︸ ︷︷ ︸
Potential Energy

U(ω)

+ 1/2 p
>M−1p.︸ ︷︷ ︸

Quadratic Kinetic Energy
K(p)

(1)
This form consists of a quadratic kinetic energy term derived
from the log probability distribution of a Gaussian and a
potential energy term, which is our original Bayesian model.
We can then use Hamiltonian dynamics to collect samples
from our posterior distribution, which we know up to a
normalising constant. These equations of motion,

dω

dt
=
∂H

∂p
= M−1p;

dp

dt
= −∂H

∂ω
= ∇ω log[p(Y|X,ω) p(ω)], (2)

determine how trajectories on the parameter space propagate.
However, solving these equations in practice requires sim-
ulation via discrete steps. The Stormer–Verlet or leapfrog
integrator is an integration scheme that ensures reversibility
by being symmetric in its sequencing, as well as being sym-
plectic (which implies volume preservation as is required
for Hamiltonian systems). Therefore we can introduce the
leapfrog integrator by following the series of transforma-
tions:

pt+ε/2 = pt +
ε

2

dp

dt
(ωt), ωt+ε = ωt + ε

dω

dt
(pt+ε/2),

pt+ε = pt+ε/2 +
ε

2

dp

dt
(ωt+ε), (3)

where t is the leapfrog step iteration and ε is the step size.
We can then use this scheme to simulate L steps that closely
approximate the dynamics of the Hamiltonian system. Fur-
thermore, for ease of notation, we can rewrite these trans-
formations as a series of function compositions:

φUε : (ωt,pt)→ (ωt,pt+ε), φ
K
ε : (ωt,pt)→ (ωt+ε,pt),

(4)
such that the overall symmetric mapping of Equation (3)
can be denoted as φUε/2 ◦ φ

K
ε ◦ φUε/2 [Strang, 1968].

Finally, HMC is performed by sampling pt ∼ p(p) and
then using Hamiltonian dynamics, starting from {p,ω}t,
to propose a new pair of parameters {p,ω}t+L. We then
require a Metropolis-Hastings step to either accept or reject
the proposed parameters to correct for any possible error
due to approximating the dynamics with discrete steps. For
further details of HMC, please refer to Neal [2011].

3.2 SPLIT HAMILTONIAN MONTE CARLO

The splitting of a Hamiltonian into a sum of its constituent
parts has been previously described by both Leimkuhler

2We are ignoring the constants.



 and Reich [2004] and Sexton and Weingarten [1992]. Its
appearance in HMC in the context of data subsets first came
in Neal [1995], who introduced the randomised splitting
approach.3 The general idea is to split the Hamiltonian into
a sum of Q terms such that

H(ω,p) = H1(ω,p)+H2(ω,p)+ · · ·+HQ(ω,p). (5)

This splitting is especially suited to the scenario, where the
log-likelihood can be written as a sum over the data (i.e.
data is independent), which is almost always the assumption
for BNNs. Therefore Neal [1995] introduced the following
split into M data subsets:

H(ω,p) =

M∑
m=1

[Um(ω)/2 +K(p)/M + Um(ω)/2] ,

(6)
where Um(ω) = − log(p(ω))/M − `m(ω) and `m(ω) =
log p(Ym|Xm,ω) is the log-likelihood over the data subset
{Xm,Ym}. Although the original purpose of this splitting
was not with the intention of scaling to large data sets, its
formulation nicely fits this scenario.

The order of the splitting is important because the sequence
of mappings corresponding the Hamiltonian dynamics of
each Hi must be symmetrical if we are to ensure the overall
transition is reversible i.e. Hi = HQ−i+1. Unfortunately,
the above splitting follows the sequence H3m−2(ω,p) =
H3m(ω,p) = Um(ω)/2 and H3m−1(ω,p) = K(p)/M ,
where Q = 3M , such that the flow follows

φHε = φU1

ε/2 ◦φ
K/M
ε ◦φU1

ε/2 ◦ · · · ◦φ
UM

ε/2 ◦φ
K/M
ε ◦φUM

ε/2 . (7)

This splitting is no longer symmetrical and therefore re-
quires an extra step whereby the ordering of the M subsets
for each iteration is randomised. This randomisation ensures
that the reverse trajectory and the forward trajectory have
the same probability.

Other than randomised splitting, Shahbaba et al. [2014]
introduced the “nested leapfrog", which followed a sym-
metrical formulation. The purpose of their “nested leapfrog”
was to enable parts of the Hamiltonian to be solved either
analytically or more cheaply. For their data splitting ap-
proach, they rely on a MAP approximation that must be
computed in advance. This is then followed by an analysis of
which data lies along the decision boundary. Their depend-
ence on the quality of the MAP approximation as well as
prior analysis of the data makes their approach less feasible
when looking to scale to large data with BNNs. However,
we offer our own data splitting baseline, which we refer to
as naive splitting that is simply a nested leapfrog. This is the
simplest way of building an integration scheme that both
mimics full HMC and is symmetrical, i.e.

φHε = φU1

ε/2 ◦ φ
U2

ε/2 ◦ · · · ◦ φ
K
ε ◦ · · · ◦ φ

U2

ε/2 ◦ φ
U1

ε/2. (8)

3This is explicitly described by Neal [2011, Sec 5.1].

This splitting is equivalent to implementing the original
leapfrog in (3), where we simply evaluate parts of the likeli-
hood in chunks and then sum them.

We have now introduced two baselines that split the Hamilto-
nian according to data subsets. In the next section we will
introduce our new symmetrical alternative that results in a
better-behaved sampling scheme.

4 SYMMETRIC SPLIT HAMILTONIAN
MONTE CARLO

Instead of following previous splitting approaches, we of-
fer a symmetrical alternative that we will show to produce
improved behaviour. We split our Hamiltonian into the
same M data subsets as for randomised splitting, how-
ever we now change the ordering and rescale the kin-
etic energy term by a value depending on the number
of splits. Our symmetrical splitting is structured such
that H2m−1(ω,p) = H2(2M−m)(ω,p) = Um(ω)/2 and
H2j(ω,p) = H2(2M−j)−1(ω,p) = K(p)/D, where
D = (M − 1)× 2, m = 1, . . . ,M , and j = 1, . . . ,M − 1.
As an example the overall transformation for M = 2 would
be written as

φHε = φU1

ε/2 ◦ φ
K/2
ε ◦ φU2

ε/2 ◦ φ
U2

ε/2 ◦ φ
K/2
ε ◦ φU1

ε/2, (9)

where D = 2, and as a further example for M = 3:

φHε = φU1

ε/2 ◦ φ
K/4
ε ◦ φU2

ε/2 ◦ φ
K/4
ε ◦ φU3

ε/2

◦ φU3

ε/2 ◦ φ
K/4
ε ◦ φU2

ε/2 ◦ φ
K/4
ε ◦ φU1

ε/2, (10)

where D = 4. More generally, Algorithm 1 describes the
symmetric split leapfrog scheme.

Algorithm 1 Symmetric Split Leapfrog Scheme
Inputs: p0, ω0, ε, L,M

1: D = 2× (M − 1) . Set the scaling factor for the
parameter update step.

2: for l in 1, . . . , L do
3: for m in 1, . . . ,M do
4: p = p+ ε

2
dp
dt (m)

(ω)

5: if m < M then
6: ω = ω + ε

D
dω
dt (p)

7: end if
8: end for
9: for m in M, . . . , 1 do . Note the reversal of the

loop indexing.
10: p = p+ ε

2
dp
dt (m)

(ω)

11: if m > 1 then
12: ω = ω + ε

D
dω
dt (p)

13: end if
14: end for
15: end for



 Unlike randomised splitting, our integrator is symmetrical
and leads to a discretisation that is now reversible such that
setting p = −p results in the original ω. This property
of reversibility is sufficient for ensuring the Markov chain
converges to the target distribution [Robert and Casella,
2013, Page 244].

We can then implement symmetric split HMC by replacing
HMC’s original leapfrog integrator with Algorithm 1. This
replacement provides the ability to operate sequentially on
smaller individual batches of the data set, rather than re-
quiring operations over the entire data. A key motivation
for operating over batches arises from hardware constraints.
For example, one may want to perform HMC on a GPU
with limited memory (as is the case for BNNs). To complete
the algorithm, the only additional requirement is that the
Metropolis-Hastings step must also be calculated in batches
to ensure its memory footprint is no more than that of the
new integration scheme.

5 COMPARISON TO OTHER SPLITTING
APPROACHES

We now compare our new approach to both randomised
splitting and naive splitting. We also include full HMC
as a comparison for when memory-constraints allow for
operations over the entire data set.

5.1 LOGISTIC REGRESSION EXAMPLE

We start with a simple logistic regression example where the
posterior is log-concave. For this example, we compare the
three splitting approaches of naive split HMC, randomised
split HMC, and symmetric split HMC. We use the MNIST
data set [LeCun et al., 1998] and run 5 HMC chains for each
inference scheme. Each chain is run for 3000 iterations, with
a trajectory length ofL = 20 and a step size of ε = 6×10−4.
For the splitting approaches, the data is split into 10 subsets,
each of 4,800 digits.

Table 1 displays the results, where all approaches use the
same hyperparameters. Our symmetric split HMC achieves
both the highest acceptance rate and the highest mean ef-
fective sample size (Mean ESS). The table also includes full
HMC and displays the Mean ESS normalised by the time
taken. The main result is that our new splitting approach
does better at exploring the target distribution compared to
the alternative splitting approaches by materialising fewer
correlated samples.

5.2 BNN REGRESSION EXAMPLE

We now illustrate the regression performance for a Bayesian
neural network model, where we use the simple 1D data
set from Izmailov et al. [2019] and set the architecture

Table 1: Logistic regression example calculated over 5 HMC
chains. The Mean ESS was calculated using Pyro’s in-built
function [Bingham et al., 2019] and averaging over the
parameters. The Mean ESS / sec comes from dividing by
the wall-clock time. The acceptance rate is reported with
its standard deviations. A higher Mean ESS and a higher
acceptance rate, demonstrate the better mixing performance
from symmetric split HMC.

Inference Scheme Acc. Rate
Mean
ESS

Mean ESS
/ sec

Full HMC 0.87± 0.01 68.7 0.211
Naive Split HMC 0.87± 0.01 68.7 0.018
Rand. Split HMC 0.45± 0.01 38.4 0.010
Sym. Split HMC 0.96± 0.01 75.0 0.021

to a fully connected NN with 3 hidden layers of 100
units. Our model uses a Gaussian likelihood p(Y|X,ω) =
N (f(X;ω), τ−1I), where the output precision, τ , must be
fitted to characterise the inherent noise (aleatoric uncer-
tainty) in the data. We implement a Gaussian process model
with a Matérn 3/2 kernel to learn this output precision
with GPyTorch [Gardner et al., 2018].4 For the splitting
approaches we section the data into four subsets of 100
training points each. All other hyperparameters are kept
constant across the approaches to enable a fair comparison
(L = 30, ε = 5e−4, M = I, and p(ω) = N (0, I)).5

All inference schemes achieve comparable test log-
likelihood scores (squared errors) and plateau after
200/1000 samples are collected. However the acceptance
rates across the schemes vary considerably, which can be
seen from the results of Table 2. These results are calculated
for ten randomly initialised HMC chains and show the mean
and standard deviation for the acceptance rate, as well as
the mean ESS.

Our symmetric splitting scheme achieves a higher accept-
ance rate than both randomised split HMC and naive split
HMC for the same step size and trajectory length. These
results further demonstrate that our new splitting approach
provides a better effective sample size than the previous
splitting approaches whilst also keeping a higher accept-
ance rate. In addition, we also provide the performance of
full HMC and the mean ESS normalised by the time taken.
Unsurprisingly, full HMC is more efficient in terms of wall-
clock time, however in scenarios where splitting is necessary
our new approach provides the better performance. An ex-
ample of symmetric split HMC can be seen in Figure 1,
where the credible intervals appropriately widen outside the
range of the data.

4In practice, τ can be learnt using cross validation as is the
case for higher-dimensional problems.

5These hyperparameters achieve a well-calibrated perform-
ance. For full HMC 30.5 % of the data lies outside the 1σ credible
interval and 3.5 % for the 2σ interval.
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Figure 1: BNN regression example demonstrating the per-
formance of symmetric HMC. A higher acceptance rate
leads to better exploration and an increased epistemic uncer-
tainty outside the range of the data.

Table 2: The BNN regression example calculated over 10
HMC chains. The Mean ESS was calculated by taking an
average over the network’s parameters (ω ∈ R10401). The
acceptance rate is reported with its standard deviations. A
higher mean ESS and a higher acceptance rate, demonstrate
the better mixing performance from symmetric split HMC.

Inference Scheme Acc. Rate
Mean
ESS

Mean ESS
/ sec

Full HMC 0.71± 0.07 9.27 0.0584
Naive Split HMC 0.68± 0.06 9.13 0.0082
Rand. Split HMC 0.75± 0.06 9.78 0.0087
Sym. Split HMC 0.89± 0.05 10.01 0.0089

5.3 BNN CLASSIFICATION EXAMPLE

We offer a further example to compare all four approaches
where the difficulty of the task requires a larger model with
two convolutional layers followed by two fully connected
layers. This model has 38,390 parameters. Our classification
example uses the Fashion MNIST (FMNIST) data set [Xiao
et al., 2017], which we divide into a training set of 48,000
images and a validation set of 12,000 images. For the split
HMC approaches, the training set is further split into three
subsets of 16,000. As for both the regression example and
the logistic regression example, all hyperparameters are set
to the same values (L = 30, ε = 2e−5, M = 0.01I, and
p(ω) = N (0, I)).

The results of this experiment can be seen in Table 3, where
symmetric split HMC achieves both a higher acceptance
rate and higher mean effective sample size. This result is
consistent with the previous examples. In addition, we also
display the negative log-likelihood (NLL) and accuracy for
each solution. Our splitting approach achieves improved
accuracy and NLL compared to all other inference schemes.
We also display the shortest wall-clock time of the all the
chains for each method to indicate the cost in time.

In this example, we see the advantage of using a splitting

approach for tackling larger data tasks. For our specific hard-
ware configuration (CPU: Intel i7-9750H; GPU: GeForce
RTX 2080 with Max-Q), the maximum GPU memory usage
with full HMC (using 48,000 training images) is 7,928 MB
out of the available 7,982 MB. As a result, by splitting the
data into three subsets, it would be possible to extend the
current training set to 144,000 training images without re-
quiring a change in hardware. Therefore splitting makes it
possible to perform HMC over larger data sets, without the
need for relying on stochastic subsampling.

6 SCALING HMC TO VEHICLE
CLASSIFICATION FROM ACOUSTIC
SENSORS

We will now show that our novel symmetric splitting ap-
proach facilitates applications to real-world scenarios, where
the size of the data prevents the use of classical HMC. In our
real-world example, the objective of the task is to detect and
classify vehicles from their acoustic microphone recordings.

6.1 THE DATA SET

The data consists of 223 audio recordings from the Acoustic-
seismic Classification Identification Data Set (ACIDS).
ACIDS was originally used by Hurd and Pham [2002] for
harmonic feature extraction of ground vehicles for acoustic
classification, identification, direction of arrival estimation
and beamforming, but in this work we focus on acoustic
classification. There are nine classes of vehicles, where each
vehicle is recorded via a triangular array of three micro-
phones.6

In order to take advantage of the data structure from the three
microphone sources, we transform each full time-series
recording into the frequency domain using a short time
Fourier transform (STFT), using the Scikit-learn default
settings of scipy.signal.spectrogram [Pedregosa
et al., 2011]. We randomly shuffle the recordings into eight
cross-validation splits, where one is kept for hyperparameter
optimisation. Once the audio recordings are divided, they
are split into smaller (≈ 10 s) chunks. We then work with
the log power spectral density and build our training data
by concatenating corresponding time chunks from all three
microphones together into one spectrogram (e.g. see Figure
1 in Appendix A.1). Finally, the data is normalised using the
mean and standard deviation of the log amplitude across the
entire training data for each cross-validation split.

6.2 BASELINES

We compare symmetric split HMC with Stochastic Gradient
Descent (SGD), SGLD and SGHMC. All inference scheme

6Audio was recorded at a sampling rate of 1025.641 Hz.



 
Table 3: The BNN classification example calculated over 10 HMC chains. The ESS was calculated using Pyro’s in-built
function [Bingham et al., 2019], followed by taking an average over the network’s parameters (ω ∈ R38390). The acceptance
rate, NLL, and accuracy are reported with their standard deviations. The minimum time taken for a chain is also reported. A
higher mean ESS and a higher acceptance rate, demonstrate the better mixing performance of symmetric split HMC. We
also see that our symmetric splitting approach results in improved NLL and accuracy.

Inference Scheme Acc. Rate Mean ESS Accuracy NLL Min. Wall-Clock Time

Full HMC 0.76± 0.06 6.26 89.82± 0.22 0.282± 0.007 1 hour, 18 minutes
Naive Split HMC 0.72± 0.11 6.21 89.76± 0.15 0.283± 0.005 3 hours, 13 minutes
Randomised Split HMC 0.66± 0.06 6.24 89.83± 0.39 0.282± 0.009 3 hours, 12 minutes
Symmetric Split HMC 0.89± 0.02 6.37 89.97± 0.27 0.276± 0.009 2 hours 58 minutes

Table 4: Vehicle classification results from acoustic data.
Our symmetric split inference scheme outperforms in accur-
acy, NLL, and Brier score. The standard deviations are over
seven randomised train-test splits.

Method Accuracy NLL Brier Score

SGD 80.3± 3.1 0.72± 0.15 0.297± 0.052
SGLD 78.6± 3.3 0.69± 0.10 0.307± 0.043
SGHMC 82.6± 3.1 0.59± 0.11 0.252± 0.042
NSS HMC 84.4± 2.1 0.51± 0.05 0.228± 0.027

hyperparameters are optimised via Bayesian optimisation
using BoTorch [Balandat et al., 2019], adapted from the
URSABench tool [Vadera et al., 2020].

We use a neural network model that consists of four con-
volutional layers with max-pooling, followed by a fully-
connected last layer. Importantly, we use Scaled Exponential
Linear Units (SELUs) as the activation function [Klambauer
et al., 2017], which we find yields an improvement over
commonly-used alternatives such as rectified linear units.
This is also seen by Heek and Kalchbrenner [2019] for their
stochastic gradient MCMC approach.

6.3 CLASSIFICATION RESULTS

Table 4 displays the results of the experiment. We compare
the four inference approaches and report their accuracy, Neg-
ative Log-Likelihood (NLL), and Brier score [Brier, 1950],
the last of which can be used to measure calibration perform-
ance. In our experimental set-up, we randomly allocate the
data into seven train-test splits and provide mean and stand-
ard deviations in Table 4. We note that a different initial
split was used for hyperparameter optimisation. The result
is that symmetric split HMC achieves an overall better per-
formance compared to the stochastic gradient approaches.
This demonstrates that one can perform HMC without using
a stochastic gradient approximation on a single GPU and
still achieve better accuracy and calibration.7

7We note that for our hardware, it was only possible to run full
HMC on our GPU with 53 % of the training data.

6.4 UNCERTAINTY QUANTIFICATION

In addition to reporting the results in Table 4, we analyse
the behaviour of the uncertainty across all cross-validation
splits. We will focus on two ways to analyse the quality of
these results. First, we will focus on the predictive entropy
as the proxy for uncertainty because this is directly related
to the softmax outputs and is therefore the most likely to be
used in practice. The posterior predictive entropy for each
test datum x∗ is given by the entropy of the expectation
over the predictive distribution with respect to the posterior,
H[Eω[p(y

∗|x∗,ω)]], which we will refer to via H̃.

We can then plot the empirical cumulative distribution func-
tion (CDF) of all erroneous predictions across all cross-
validation splits, as shown in Figure 2. It is desirable for
a model to make predictions with high H̃, when the pre-
dictions are wrong, which is the case for the misclassified
data in Figure 2. Curves that follow this desirable behaviour
remain close to the bottom right corner of the graph. Our
new approach of symmetric split HMC behaves closer to
the ideal behaviour in comparison to the baselines. This im-
proved behaviour can be seen from the purple curve, which
falls closer to the x-axis than the other curves.

The second way that we will assess uncertainty is by relying
on the mutual information (MI) between the predictions and
model posterior. The MI can help distinguish between data
uncertainty and model uncertainty, whereby our interest lies
in the model uncertainty. Data points with high MI indicate
that the model is uncertain due to the disagreement between
the samples (this is in comparison to a model that is confid-
ent in its uncertainty, which would result in low MI). In the
literature, the use of MI for uncertainty quantification can be
seen in works by Houlsby et al. [2011] and Gal et al. [2017]
using Bayesian Active Learning by Disagreement (BALD)
and via knowledge uncertainty in works by Depeweg et al.
[2017] and Malinin et al. [2020].

To analyse MI, in Figure 3, we display “confusion-style”
matrices for the top performing inference schemes accord-
ing to Table 4, SGHMC and symmetric split HMC. Each
square in the matrix contains the average MI over all the data
corresponding to that square across all the cross-validation
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Figure 2: Cumulative posterior predictive entropy of mis-
classified data points. This plot shows that symmetric split
HMC makes fewer high confidence errors than the other
competing approaches. This is shown by the purple curve
falling closer to the x-axis than the other curves. Curves
which fall close to the x-axis mean that the probability of a
low-entropy prediction is lower.

splits. Low values along the diagonal are desirable because
they correspond to confident predictions for correct clas-
sifications. However, low values on the off-diagonals are
especially undesirable as they correspond to errors that were
predicted with high confidence. When we compare SGHMC
of Figure 3a to symmetric split HMC of Figure 3b, we
see the advantages of our approach. The values on the off-
diagonals for SGHMC indicate that the model is overly
confident when making errors. Furthermore, there is a large
level of overlap between the diagonal and off-diagonal val-
ues for the MI. This overlap makes it hard to use model
uncertainty to distinguish the errors from the correct predic-
tions. In comparison, our symmetric split approach shows
little overlap between the off-diagonal values and the diagon-
als. This near-separability can help to distinguish erroneous
predictions by their high uncertainty.

7 DISCUSSION

There are many challenges associated with performing
HMC over large hierarchical models such as BNNs. Our
work makes strides in the right direction but there are fur-
ther areas to explore. As alluded to in Section 2, there are
techniques that can be employed to improve hyperpara-
meter optimisation. For example, in this paper we have
assumed the mass matrix to be diagonal with one scaling
factor, which may not be an optimal choice. Future work to
design mass matrices, such as metrics derived by Girolami
and Calderhead [2011] or Hoffman et al. [2019], may fur-
ther improve the current method. Another challenge with
MCMC approaches is knowing when enough samples have
been collected such that the samples provide a good rep-
resentation of the target distribution. In high-dimensional
models like neural networks, chains may take a long time
to converge and it is important to build reliable metrics for
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Figure 3: “Confusion-style” matrix showing average mutual
information per category. Each square corresponds to the
MI averaged over the number of test data corresponding to
that box (boxes containing no data are blank). The diagonals
(highlighted in red) indicate average MI over correct classi-
fications, where low values are desirable. The off-diagonals
indicate the average MI for erroneous predictions, where
high values are desirable. (a) The matrix for SGHMC shows
low MI everywhere, which is especially noticeable over
the misclassifications. (b) Symmetric split HMC is more
uncertain over its erroneous predictions and the difference
between diagonals and off-diagonals is more obvious.

convergence such as observing the effective sample size,
plotting the log-posterior density of the samples, and plot-
ting the cumulative accuracy (e.g. see Appendix A.4).

8 CONCLUSION

In this work we have shown the advantage of preserving
the entire Hamiltonian for performing inference in Bayesian
neural networks. In Section 5 we provided two classification
tasks and one regression task. We showed symmetric split
HMC is better suited to inference in BNNs compared to pre-
vious splitting approaches. These previous approaches did
not have the same efficiencies as our novel symmetric split
integration scheme. We then provided a real-world applica-
tion in Section 6, where we compared symmetric split HMC
with two stochastic gradient MCMC approaches. For this
acoustic classification example, we were able to show that
our new method outperformed stochastic gradient MCMC,
both in classification accuracy and in uncertainty quanti-
fication. In particular, the analysis of the uncertainty quan-
tification showed symmetric split HMC achieved a lower
confidence for its misclassified labels, whilst also achieving
a better overall accuracy. In conclusion, we have introduced
a new splitting approach that is easy to implement on a
single GPU. Our approach is better than previous splitting
schemes and we have shown it is capable of outperforming
stochastic gradient MCMC techniques.



 Acknowledgements

We would like to thank Tien Pham for making the data
available and Ivan Kiskin for his great feedback. ACIDS
(Acoustic-seismic Classification Identification Data Set) is
an ideal data set for developing and training acoustic clas-
sification and identification algorithms. ACIDS along with
other data sets can be obtained online through the Auto-
mated Online Data Repository (AODR) [Bennett et al.,
2018]. Research reported in this paper was sponsored in
part by the CCDC Army Research Laboratory. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

References

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov,
and Dmitry Vetrov. Pitfalls of in-domain uncertainty es-
timation and ensembling in deep learning. arXiv preprint
arXiv:2002.06470, 2020.

Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel
Daulton, Benjamin Letham, Andrew Gordon Wilson, and
Eytan Bakshy. Botorch: Programmable Bayesian Op-
timization in Pytorch. arXiv preprint arXiv:1910.06403,
2019.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. To-
wards scaling up markov chain monte carlo: an adaptive
subsampling approach. 2014.

Kelly W Bennett, Dennis W Ward, and James Robertson.
Cloud-based security architecture supporting army re-
search laboratory’s collaborative research environments.
In Ground/Air Multisensor Interoperability, Integration,
and Networking for Persistent ISR IX, volume 10635,
page 106350G. International Society for Optics and
Photonics, 2018.

Michael Betancourt. The fundamental incompatibility of
scalable Hamiltonian Monte Carlo and naive data sub-
sampling. In International Conference on Machine Learn-
ing, pages 533–540, 2015.

Michael J Betancourt. Generalizing the no-U-turn
sampler to Riemannian manifolds. arXiv preprint
arXiv:1304.1920, 2013.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Good-
man. Pyro: Deep universal probabilistic programming.

J. Mach. Learn. Res., 20:28:1–28:6, 2019. URL http:
//jmlr.org/papers/v20/18-403.html.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural net-
works. In Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning-
Volume 37, pages 1613–1622. JMLR. org, 2015.

Glenn W Brier. Verification of forecasts expressed in terms
of probability. Monthly weather review, 78(1):1–3, 1950.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic
gradient Hamiltonian Monte Carlo. In International Con-
ference on Machine Learning, pages 1683–1691, 2014.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale
Doshi-Velez, and Steffen Udluft. Decomposition of un-
certainty for active learning and reliable reinforcement
learning in stochastic systems. ArXiv, abs/1710.07283,
2017.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen,
Robert D Skeel, and Hartmut Neven. Bayesian sampling
using stochastic gradient thermostats. In Advances in
neural information processing systems, pages 3203–3211,
2014.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and
Duncan Roweth. Hybrid Monte Carlo. Physics letters B,
195(2):216–222, 1987.

Angelos Filos, Panagiotis Tigas, Rowan McAllister, Nich-
olas Rhinehart, Sergey Levine, and Yarin Gal. Can
autonomous vehicles identify, recover from, and adapt
to distribution shifts? arXiv preprint arXiv:2006.14911,
2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learn-
ing, pages 1050–1059, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep
bayesian active learning with image data. In Interna-
tional Conference on Machine Learning, pages 1183–
1192, 2017.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David
Bindel, and Andrew G Wilson. GPytorch: Blackbox
matrix-matrix Gaussian process inference with GPU ac-
celeration. In Advances in Neural Information Processing
Systems, pages 7576–7586, 2018.

Mark Girolami and Ben Calderhead. Riemann mani-
fold Langevin and Hamiltonian Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statist-
ical Methodology), 73(2):123–214, 2011.

http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html


 Alex Graves. Practical variational inference for neural net-
works. In Advances in Neural Information Processing
Systems, pages 2348–2356, 2011.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B
Schon. Evaluating scalable Bayesian deep learning meth-
ods for robust computer vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 318–319, 2020.

Jonathan Heek and Nal Kalchbrenner. Bayesian infer-
ence for large scale image classification. arXiv preprint
arXiv:1908.03491, 2019.

Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian
Langmore, Dustin Tran, and Srinivas Vasudevan. Neutra-
lizing bad geometry in Hamiltonian Monte Carlo using
neural transport. arXiv preprint arXiv:1903.03704, 2019.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn
sampler: adaptively setting path lengths in Hamiltonian
Monte Carlo. Journal of Machine Learning Research, 15
(1):1593–1623, 2014.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and
Máté Lengyel. Bayesian active learning for classification
and preference learning. arXiv preprint arXiv:1112.5745,
2011.

Harry Hurd and Tien Pham. Target association using har-
monic frequency tracks. In Proceedings of the Fifth In-
ternational Conference on Information Fusion. FUSION
2002.(IEEE Cat. No. 02EX5997), volume 2, pages 860–
864. IEEE, 2002.

Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko,
Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. Subspace inference for bayesian deep learning.
In UAI, 2019.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and
Sepp Hochreiter. Self-normalizing neural networks. In
Advances in neural information processing systems, pages
971–980, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty es-
timation using deep ensembles. In Advances in Neural
Information Processing Systems, pages 6402–6413, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan,
Philipp Berens, and Siegfried Wahl. Leveraging uncer-
tainty information from deep neural networks for disease
detection. Scientific reports, 7(1):1–14, 2017.

Benedict Leimkuhler and Sebastian Reich. Simulating
hamiltonian dynamics. 14, 2004.

Benedict Leimkuhler and Xiaocheng Shang. Adaptive Ther-
mostats for Noisy Gradient Systems. arXiv preprint arXiv:
1505.06889v2, 2016.

Chris Xiaoxuan Lu, Stefano Rosa, Peijun Zhao, Bing Wang,
Changhao Chen, John A Stankovic, Niki Trigoni, and
Andrew Markham. See through smoke: robust indoor
mapping with low-cost mmwave radar. In MobiSys, pages
14–27, 2020.

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. En-
semble distribution distillation. In ICLR, 2020.

Youssef Marzouk, Tarek Moselhy, Matthew Parno, and
Alessio Spantini. An introduction to sampling via meas-
ure transport. arXiv preprint arXiv:1602.05023, 2016.

Radford M Neal. Bayesian Learning for Neural Networks.
PhD thesis, University of Toronto, 1995.

Radford M Neal. MCMC using Hamiltonian dynamics.
Handbook of Markov chain Monte Carlo, 2(11):2, 2011.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-
ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Éd-
ouard Duchesnay. Scikit-learn: Machine learning in
python. Journal of Machine Learning Research, 12
(85):2825–2830, 2011. URL http://jmlr.org/
papers/v12/pedregosa11a.html.

Herbert Robbins and Sutton Monro. A stochastic approx-
imation method. The annals of mathematical statistics,
pages 400–407, 1951.

Christian Robert and George Casella. Monte Carlo stat-
istical methods. Springer Science & Business Media,
2013.

JC Sexton and DH Weingarten. Hamiltonian evolution for
the hybrid monte carlo algorithm. Nuclear Physics B,
380(3):665–677, 1992.

Babak Shahbaba, Shiwei Lan, Wesley O Johnson, and Rad-
ford M Neal. Split Hamiltonian Monte Carlo. Statistics
and Computing, 24(3):339–349, 2014.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and
Frank Hutter. Bayesian optimization with robust bayesian
neural networks. In Advances in neural information pro-
cessing systems, pages 4134–4142, 2016.

Gilbert Strang. On the construction and comparison of
difference schemes. SIAM journal on numerical analysis,
5(3):506–517, 1968.

http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html


 Meet P Vadera, Adam D Cobb, Brian Jalaian, and Ben-
jamin M Marlin. Ursabench: Comprehensive benchmark-
ing of approximate bayesian inference methods for deep
neural networks. arXiv preprint arXiv:2007.04466, 2020.

Ziyu Wang, Shakir Mohamed, and Nando Freitas. Adaptive
Hamiltonian and Riemann Manifold Monte Carlo. In
International Conference on Machine Learning, pages
1462–1470, 2013.

Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient Langevin dynamics. In Proceedings of
the 28th International Conference on Machine Learning
(ICML-11), pages 681–688, 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. ArXiv, abs/1708.07747, 2017.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen,
and Andrew Gordon Wilson. Cyclical stochastic gradient
mcmc for bayesian deep learning. International Confer-
ence on Learning Representations, 2020.

Yichuan Zhang and Charles Sutton. Semi-separable
Hamiltonian Monte Carlo for inference in Bayesian hier-
archical models. In Advances in Neural Information
Processing Systems, pages 10–18, 2014.


	Introduction
	Related Work
	Split Hamiltonian Monte Carlo
	Hamiltonian Monte Carlo
	Split Hamiltonian Monte Carlo

	Symmetric Split Hamiltonian Monte Carlo
	Comparison to Other Splitting Approaches
	Logistic Regression Example
	BNN Regression Example
	BNN Classification Example

	Scaling HMC to Vehicle Classification from Acoustic Sensors
	The Data Set
	Baselines
	Classification Results
	Uncertainty Quantification

	Discussion
	Conclusion

