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Abstract

Trust Region Policy Optimization (TRPO) and
Proximal Policy Optimization (PPO) are among
the most successful policy gradient approaches
in deep reinforcement learning (RL). While
these methods achieve state-of-the-art perfor-
mance across a wide range of challenging tasks,
there is room for improvement in the stabiliza-
tion of the policy learning and how the off-
policy data are used. In this paper we revisit the
theoretical foundations of these algorithms and
propose a new algorithm which stabilizes the
policy improvement through a proximity term
that constrains the discounted state-action visi-
tation distribution induced by consecutive poli-
cies to be close to one another. This proximity
term, expressed in terms of the divergence be-
tween the visitation distributions, is learned in
an off-policy and adversarial manner. We empir-
ically show that our proposed method can have
a beneficial effect on stability and improve final
performance in benchmark high-dimensional
control tasks.

1 INTRODUCTION

In Reinforcement Learning (RL), an agent interacts with
an unknown environment and seeks to learn a policy
which maps states to distribution over actions to max-
imise a long-term numerical reward. Combined with deep
neural networks as function approximators, policy gradi-
ent methods have enjoyed many empirical successes on
RL problems such as video games (Mnih et al., 2016) and
robotics (Levine et al., 2016). Their recent success can
be attributed to their ability to scale gracefully to high
dimensional state-action spaces and complex dynamics.

The main idea behind policy gradient methods is to
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parametrize the policy and perform stochastic gradient
ascent on the discounted cumulative reward directly (Sut-
ton et al., 2000). To estimate the gradient, we sample
trajectories from the distribution induced by the policy.
Due to the stochasticity of both policy and environment,
variance of the gradient estimation can be very large, and
lead to significant policy degradation.

Instead of directly optimizing the cumulative rewards,
which can be challenging due to large variance, some ap-
proaches (Kakade and Langford, 2002; Azar et al., 2012;
Pirotta et al., 2013; Schulman et al., 2015) propose to
optimize a surrogate objective that can provide local im-
provements to the current policy at each iteration. The
idea is that the advantage function of a policy 7 can pro-
duce a good estimate of the performance of another policy
7’ when the two policies give rise to similar state visita-
tion distributions. Therefore, these approaches explicitly
control the state visitation distribution shift between suc-
cessive policies.

However, controlling the state visitation distribution shift
requires measuring it, which is non-trivial. Direct meth-
ods are prohibitively expensive. Therefore, in order to
make the optimization tractable, the aforementioned meth-
ods rely on constraining action probabilities by mixing
policies (Kakade and Langford, 2002; Pirotta et al., 2013),
introducing trust regions (Schulman et al., 2015; Achiam
et al., 2017) or clipping the surrogate objective (Schulman
etal., 2017; Wang et al., 2019b).

Our key motivation in this work is that constraining the
probabilities of the immediate future actions might not
be enough to ensure that the surrogate objective is still a
valid estimate of the performance of the next policy and
consequently might lead to instability and premature con-
vergence. Instead, we argue that we should reason about
the long-term effect of the policies on the distribution of
the future states.

In particular, we directly consider the divergence between
state-action visitation distributions induced by succes-



sive policies and use it as a regularization term addedliscounted state-action visitation distribution(s; a) of
to the surrogate objective. This regularization term ispolicy

itself optimized in an adversarial and off-policy manner
by leveraging recent advances in off-policy policy eval-
uation (Nachum et al., 2019a) and off-policy imitation
learning (Kostrikov et al., 2019). We incorporate these
ideas in the PPO algorithm in order to ensure safer policyit is known (Puterman, 1990) that (s;a) = d (s) (aj
learning and better reuse of off-policy data. We call ours) and that is characterized vie8(s®%a®% 2S A *

proposed method PPO-DICE. o o

s;a)=(1 s) (a’js 1
The present paper is organized as follows: after reviewing (sha) = ( Z ) () @) @
conservative approaches for policy learning, we provide + (a% sYP(s%j s;a) (s;a)ds da;
theoretical insights motivating our method. We explain
how off-policy adversarial formulation can be derived to

optimize the regularization term. We then present the2.2 CONSERVATIVE UPDATE APPROACHES

algorithmic details of our proposed method. Finally, we ) o ]
show empirical evidences of the bene ts of PPO-DICE Most policy training approaches in RL can be understood
as well as ablation studies. as updating a current policyto a new improved policy °

based on the advantage functian or an estimaté of it.
We review here some popular approaches that implement

N3
(s;a), (1 ) 'Pro(st = s;a
t=0

ajsg )

2 PRELIMINARIES conservative updates in order to stabilize policy training.
21 MARKOV DECISION PROCESSES AND First, let us state a key lemma from the seminal work of
VISITATION DISTRIBUTIONS Kakade and Langford (2002) that relates the performance

difference between two policies to the advantage function.
In reinforcement learning, an agent interacts with its ent emma 2.1(The performance difference lemma (Kakade
vironment, which we model as a discounted Markov Denq Langford, 2002))For all policies and °
cision Process (MDR)S; A; ; P;r; ) with state space
S, action spacd\, discount factor 2 [0; 1), transition J(9=J( )+ E; 40E, ocis) [A (s;@)]: (2)
modelP whereP(s?] s; a) is the probability of transition-
ing into states® upon taking actiora in states, reward
functionr : (S A )! R and initial distribution over
S. We denote by (a j s) the probability of choosing

actiona in states under the policy . The value func- direct application of this procedure would be prohibitively

: ; .
expectod sun of iscounted rewards along ihe raject{SNSIVe SNCe it requires estmatig for all *cands-
Xpe . 9 JeCtYates. To address this issue, Conservative Policy Iteration
ries induced byFIhe policy in the MDP starting at state

) 1o L (CPI) (Kakade and Langford, 2002) optimizes a surro-
th?gng\slzalixe E—[vaia?a‘) fl:lt'] (J: tisoonzgs,' ]S SAlr:”nIarg, ;23 gate objective de ned based on current policyat each
the advantage‘ungi?nA S Al R are de ned fterationi,
as:Q (s;8) , E[ i 'Mj(So;a)=(s;a); Jand | (9= 3( )+ E, , Es oiglA (53] (3)

A (s;a), Q (s;a) V (s). The goal of the agent is
to nd apolicy that maximizes the expected value from by ignoring changes in state visitation distribution due

This lemma implies that maximizing Equati@®) will
yield a new policy °with guaranteed performance im-
provement over a given policy. Unfortunately, a naive

under the initial state distribution to changes in the policy. Then, CPI returns the stochas-
tic mixture . = [ +(1 i) i where [ =
maxJ( ), (1 )E [V (9] argmax oL ,( 9 is the greedy policy and; 2 [0; 1] is

) o o tuned to guarantee a monotonically increasing sequence
We de ne the discounted state visitation distributtbn o hojicies.

induced by a policy :
Inspired by CPI, the Trust Region Policy Optimization
algorithm (TRPO) (Schulman et al., 2015) extends the

b3
t — H .
d(s). @ ) Pr(si=sjso ): policy improvement step to any general stochastic policy

t=0
. . - _ 1By abuse of notation, we confound probability distribu-
wherePr (st = sj so ) isthe prqbab'l'ty thas‘ =S, tions with their Radon—Nikodym derivative with respect to the
after we execute for t steps, starting from initial state | epesgue measure (for continuous spaces) or counting measure
sp distributed according to. Similarly, we de ne the (for discrete spaces).



rather than just mixture policies. TRPO maximizes thevisit all the states with similar probabilities. The follow-
same surrogate objective as CPI subject to a Kullbackng lemma more precisely formalizes this

Leibler (KL) divergence constraint that ensures the nexi arnma 3.1. For all policies and °©
policy .1 stays within -neighborhood of the current

policy :: (Y L (Y Dy(d'kd) (6)
i+1 =argmaxL (9 (4) L () Dyy(d 'kd );
s.t ES di [D KL ( 0( ] S)k i( j S))] ) where = maxsss an o(js) [A (S; a)]j andDqy is

the total variation distance.
whereD_ is the Kullback—Leibler divergence. In prac-
tise, TRPO considers a differentiable parameterized polthe proof is provided in appendix for completeness.
icyf ; 2 gand solves the constrained probl¢)  Lemma 3.1 states that ( 9 (or L ( 9) is a sensi-
in parameter space. In particular, the step direction is ble lower bound td ( 9 as long as and °are close in
estimated with conjugate gradients, which requires thderms of total variation distance between their correspond-

computation of multiple Hessian-vector products. Thereing state visitation distributiond ~ andd . However, the
fore, this step can be computationally heavy. aforementioned approaches enforce closenes8arid

) ) . . in terms of their action probabilities rather than their
To address this computational bottleneck, Proximal POI'Cystate visitation distributions. This can be justi ed by the

Optimization (PPO) (Schulman et al., 2017) PropoSey|awing inequality (Achiam et al., 2017):
replacing the KL divergence constrained objective (4) of

TRPO by clipping the objective function directly as: 0 2 : .
yEPPreRE e d Drv(d 'kd ) +=—Es ¢ P ( ik (9N
L (9= Ega + min Ai(s;a) o (sia); )
' i Plugging the last inequality7) into (6) leads to the fol-
A (s;a) clip( o=, (s;@);1 ;1+ ) ; (5) lowinglower bound:

2 ) .
where > Oand o (s;a) = 0222; is the importance  J( 9 L (9 1 Es a [P isk (il
sampling ratio. (8)
The obtained lower boun@) is, however, clearly looser
than the one in inequalit{7). Lower bound(8) suffers
from an additional multiplicative factoilb, which is the

i . ) o effective planning horizon. It is essentially due to the fact
In this section, we present the theoretical motivation ofihat we are characterizing a long-horizon quantity, such

our proposed method. as the state visitation distributiah (s), by a one-step

At a high level, algorithms CPI, TRPO, and PPO follow duantity, such as the action probabilitie§ j s). There-

similar policy update schemes. They optimize some suifore, algorithms that rely solely on action probabilities

rogate performance objective (, ( 9 for CPland TRPO 0 de ne closeness between policies should be expected

andL ¢ (' 9 for PPO) while ensuring that the new policy to suffer from instability and premature convergence in
i+1 stays in the vicinity of the current policy;. The  long-horizon problems.

vicinity requirement is implemented in differentways:  pyrthermore, in the exact case if we take at iteration

3 THEORETICAL INSIGHTS

1. CPI computes a sequence of stochastic policies thati«c ~ argmax oL (9 D7y (d *kd 1), then
are mixtures between consecutive greedy policies.

2. TRPO imposes a constraint on the KL di- ICis) L iCin) 'Drv(d "™ kd ')
vergence between old policy and new one L.(q) (by optimality of 1)
Es g Dk (AP (i ). =30 )

3. PPO directly clips the objective function based on the
value of the importance sampling ratio.- , between  Therefore, this provides a monotonic policy improvement,
the old policy and new one. while TRPO suffers from a performance degradation that
epends on the level of the trust regiofsee Proposition

Such conservative updates are critical for the stability oflj in Achiam et al. (2017)).

the policy optimization. In fact, the surrogate objective

L ,( 9 (orits clipped version) is valid only in the neigh-  2The result is not novel, it can be found as intermediate step
bourhood of the current policy;, i.e, when %and ; in proof of theorem 1 in Achiam et al. (2017), for example.



It follows from our discussion thaD, (d °kd )isa 2017)as

more natural proximity term to ensure safer and more . h

stable policy updates. Previous approaches excludedus- D ( k )= sup Eay olf (sia)]

ing this term because we don't have access towhich f:sa R i

would require executing®in the environment. In the next E(sa) [ ? f(s;a) ; (10)

section, we show how we can leverage recent advances in '

off-policy policy evaluation to address this issue. where ?(t) = sup,gftu (u)g is the convex con-
jugate of . The variationalO form in Equatiorl10)

4 OFF-POLICY FORMULATION OF still requires sampling from ~, which we cannot do.

DIVERGENCES To address this issue, we use a clever change of vari-

able trick introduced by Nachum et al. (2019a). De ne
In this section, we explain how divergences between staté : S A!  Rasthe xed point of the following Beliman
visitation distributions can be approximated. This is donegauation,
by leveraging ideas from recent works on off-policy learn-

ing (Nachum et al., 2019a; Kostrikov et al., 2019).

Consider two different policies and ° Suppose that we whereP is the FﬁanS't:)O” oper%tor mduce((lj b§, de ned
have access to state-action samples generated by execd&P osia) = Aa%j sYP(s?] s;a)g(s% a%). g may

ing the policy in the environment, i.e(s; a) ) be interpreted as the action-value function of the policy
As motivated by the last section, we aim to estimate %in a modi ed MDP which shares the same transition
Dtv (d kd ) without requmng on- po“cy data fromo modelP as the original MDP, but hdsas the reward func-
Note that in order to avoid using importance samplmg'fIon instead of . Applying the change of variablg 1)
ratios, it is more convenient to estimade ( °k ),  to(10) and after some algebraic manipulation as done in

i.e, the total divergence between state-action visitatiodNachum et al. (2019a), we obtain

o(s;a)=f(s;a)+ P 0g(s; a); (12)

distributions rather than the divergence between state vis- 0 h
itation distributions. This is still a reasonable choice D ( k )= sup (1 )Es a o[g(s;a)]
asDyy (d kd ) is upper bounded bpry ( 'k ) as wsH R . i
shown below: . Esa) (@ P og(sa : (12
Drv(d’kd )= (d° d)(s)ds Thanks to the change of variable, the rst expectation over
VAR %in (10)is converted to an expectation over the initial
= ( ° )(s;a)da ds distribution and the policy i.e ();a A js).
757 @ Therefore, this new form of the-divergence in12) is
( 0 )(s: @) dads completely off-policy and can be estimated using only
s a samples from the policy.
=D ( k)

Other possible divergence representations: Using

The total variation distance belongs to a broad class of dihe variational representation ofdivergences was a key
vergences known as-divergences (Sriperumbudur et al., step in the derivation of Equatiqi2). But in fact any

2009). A -divergence is de ned as, representation that admits a linear term with respect to
. (.,e E off (s;a)]) would work as well. For
0 _ (s;a) (sia)
D( k )=Ega o s (9)  example, one can use the the Donkser-Varadhan repre-

sentation (Donsker and Varadhan, 1983) to alternatively
where :[0;1)! Risaconvex, lower-semicontinuous express the KL divergence as:

function and (1) = 0. Well-known divergences can be , h

obtained by appropriately choosing These include the D( k )= sup Esay clf(sia)] (13)
KL divergence ((t) = tlog(t)), total variation distance f:sAL R i

( (t)=jt 1j), 2-divergence ((t) = (t 1)?), etc. log Eay  [exp(f (s;a))]

Working with the form of -divergence given in Equa-

tion (9) requires access to analytic expressmns of both  Thelog-expected-exim this equation makes the Donkser-
and as well as the ability to sample from . We have  Varadhan representatiqi3) more numerically stable
none of these in our problem of interest. To bypass theséhan the variational on@2) when working with KL di-
dif culties, we turn to the alternative variational represen-vergences. Because of its genericity foedivergences,
tation of -divergences (Nguyen et al., 2009; Huang et al.we base the remainder of our exposition(@8). But it is



straightforward to adapt the approach and algorithm to usAs shown in Algorithm 1, both policy and dis-
ing (13) for better numerical stability when working with criminator are parametrized by neural networks
KL divergences speci cally. Thus, in practice we willuse and g respectively. We estimate the objectiy®4)

the latter in our experiments with KL-based regularizationwith samples from ; = . as follows. At a
but not in the ones with 2-based regularization. given iterationi, we generate a batch d¥l roll-
outs fS(ll)'?a(ll)?r(lj)i'S(f);_i31;S(T')?§(T');V(TJ)JS(T'11 g,
5 A PRACTICAL ALGORITHM USING by executing the policy; in the environment foll steps.
ADVERSARIAL DIVERGENCE Similarly to the PPO procedure, we learn a value function

V, by updating its parametets with gradient descent

o . . . steps, optimizing the following squared error loss:
We now turn these insights into a practical algorithm. The PS, op 9 gsq

lower bounds in lemma 3.1, suggest using a regularized

PPO objectivé: LP ( & D 1 (d kd ), where is 1 i 2
a regularization coef cient. If in place of the total vari- ~ Cv () = MT vis') v (1)
ation we use the off-policy formulation of-divergence j=1t=1
D ( 'k ) as detailed in Equatiofl2), our main op-
timization objective can be expressed as the following i) i) i) T4t
min-max problem: wherey;’ = rit o+ Ty i Vi (S141).
Then, to estimate the advantage, we use the truncated
; clip . generalized advantage estimate
max  min L (9 (1 )ESi a2 o[g(s;a)]
0
E(s;a) 7 (] P g)(s;a) ; (14)

At ey = ()t visth) Vi)
When the inner minimization overis fully optimized, t=1

it is straightforward to show — using the score function__ ) ) (17),
estimator — that the gradient of this objective with respect! NiS 2dvantage estimate is used to compute an estimate

to is (proof is provided in appendix): of L given by:

li . 04 .
r Lo ( 9 (1 )Eas Jo(s;a)r olog Y(ajs)] (eip ()= (18)
’ noo o
ot min A(s!;al’) - (sal);
Eso p(jsayae ojso [0(s%5a)r olog (&%) 9] J= o 0
Asta) cip( - (s{ial’yi1 1)

+ E(s;a) ! (g P Og)(S;a) (15) i)@ X

Furthermore, we can use the reparametrization trick if the
policy is parametrized by a Gaussian, which is usually
the case in continuous control tasks. We call the resulting’he parameters of the discriminator are learned by
new algorithm PPO-DICE, (detailed in Algorithm 1), as gradient descent on the following empirical version of the
it uses the clipped loss of PPO and leverages the Digegularization term in the min-max objective (14)
tribution Correction Estimation idea from Nachum et al.
(2019a).

XX _ .
In the min-max objectiv14), g plays the role of a  Co(: )= ﬁ @ g Py @9
discriminator, as in Generative Adversarial Networks =1 t=1
(GAN) (Goodfellow et al., 2014). The policy® plays ? g Pa) g (9 :al))
the role of a generator, and it should balance between
increasing the likelihood of actions with large advantage
versus inducing a state-action distribution that is close tQNhereaf”) (i S(11)) andatqﬂl) (i S§J+)1 _

the one of ;.
If the reparametrization trick is applicable (which is al-

3 : li H
Both regularized.“" andL , are lower bounds on policy st always the case for continuous control tasks), the

i ip - . . .
performance in Lemma 3.1. We uk€P rather tharL ; be- parameters of the policy are updated via gradient as-
cause we expect it to work better as the clipping already provide t the obiectivé.cip NS
some constraint on action probabilities. Also this will allow a cent on the objectiv () o(; )aswecan

more direct empirical assessment of what the regularizatio®@ckpropagate gradient though the action sampling while
brings compared to vanilla PPO. computinglp (; ) in Equation(19). Otherwise, are



Algorithm 1 PPO-DICE
1: Initialisation : random initialize parameters (policy), 1 (discriminator) and ; (value function).
2: for i=1, ...do _ S _ S
3: Generate a batch &1 rolloutsf s(lJ ), a(l' ), rﬁ' ), s(lJ Voot ;s$ ), a$ ), r$ ), s$ll ng:1 by executing policy , in
the environment foll steps.

. . P . . .
4:  Estimate Advantage functiol(s’’;al)y= " T ( )t 2P+ v, 1) v 1))
5. Compute targetvalug?) = r + r ) + 04 TRty (s74)
6: =1 = 7 =
7: for epoch n=1, ... Nlo
8: for iteration k=1, ...Kdo
9: /[ Compute discrlg)minatlgr loss:
10: Co(; )= g L = 72 oethal) g 6lal)) @ g al) where
a  (isiyal) (st
11: /I Update discriminator parameters: (using learning rate )
12: c r Cp(; )
13: end for
14: /l Compute vallaue Io%s:
. . 2
15; )= M L viE)
16: /l Compute PPQ clipre)ed loss: ' . . . ‘ ‘ _ _
17 Cop ()= g 1L Lomin Asal) o sia) A el )elipg - (stsal )it
y1+)
18: /I Update parameters: (using learning rate)
19: N N V(DT
20: + r (CC"F’( )+ I'_\D(; )) (if reparametrization trick applicable, else gradient step on Eq. 20)
21: end for
22: iee =15 s = ) i =
23: end for

updated via gradient ascent on the following objective: Choice of divergence: The algorithmic approach we
just described is valid with any choice ofdivergence for

Lot () measuring the discrepancy between state-visitation distri-
XM oX Q). -a0) Q) ) butions. It remains to choose an appropriate one. While
T (I g (st’a’)log (a " jsi’)  Lemma 3.1 advocates the use of total variation distance
i=i t=1 ( (t)=jt 1j),itis notoriously hard to train high dimen-
Q g (S(j)_a(j)) g (S(j) _a1q1) sional distributions using this divergence (see Kodali et al.
ot to trl el (2017) for example). Moreover, the convex conjugate of
g (sthr;ali)log  (al) s (00 O=jt Lis "= tifjti 5and 7= 1

otherwise. This would imply the need to introduce an
Note that the gradient of this equation with respect to extra constrainkg P gk, % in the formulation(12),
corresponds to an empirical estimate of the score functioiyhich may be hard to optimize.

estimator we provided in Equation 15. o )
Therefore, we will instead use the KL divergencét) =

We train the value function, policy, and discriminator t log(t); ?(t) = exp(t 1)). This is still a well
for N epochs usingv rollouts of the policy ;. We  justied choice as we know thaDqy ( °k )
can either alternate between updating the policy and thé T~ o <

discriminator, or updatg for a few stepaM before
updating the policy. We found that the latter workedWill also try 2-divergence ((t) = (t 1)?) that yields
better in practice, likely due to the fact that the targeta squared regularization term.

distribution ' changes with every iteratian We also

found that increasing the learning rate of the discriminator

by a multiplicative factoc of the learning rate for the

policy and value function improved performance.

%DKL( °k ) thanks to Pinsker's inequality. We



6 RELATED WORK

Constraining policy updates, in order to minimize the in-

formation loss due to policy improvement, has been an

active area of investigation. Kakade and Langford (2002)

originally introduce CPI by maximizing a lower bound on

the policy improvement and relaxing the greedi cation

step through a mixture of successive policies. Pirotta et al.

(2013) build on Kakade and Langford (2002) re ne the

lower bounds and introduce a new mixture scheme. MoreFigure 1: Comparison of2 and KL divergences for PPO-
over, CPI inspired some popular Deep RL algorithmsD|CE for two randomly selected environments in OpenAl
such as TRPO (Schulman et al., 2015) and PPO (Schusym MuJoCo and Atari, respectively. We see that KL
man et al., 2015), Deep CPI (Vieillard et al., 2019) andperforms better than? in both settings. Performance
MPO (Abdolmaleki et al., 2018). The latter uses similar plotted across 10 seeds with 1 standard error shaded.
updates to TRPO/PPO in the parametric version of its

E-step. So, our method can be incorporated to it.

Our work is related to regularized MDP literature (Neu tive (lower bqund on the pohc;y pgrformance). Moreover,
our method is online off-policy in that we collect data

etal., 2017; Geist et al., 2019). Shannon Entropic regu ith h policy found in th timizati d but
larization is used in value iteration scheme (HaarnojaWI €ach policy found in the optimization procedure, bu

et al., 2017: Dai et al., 2018) and in policy iteration also use previous data to improve stability. Whereas, their

schemes (Haarnoja et al., 2018). Note that all the mer@Igonthm is designed to learn a policy from a xed dataset

tioned works employ regularization on the action probab”_ccl)llecgaldclljzy_behav?gu;policies. I;grther comparison with
ities. Recently, Wang et al. (2019a) introduce divergenceA gae IS provided in appendix.

augmented policy optimization where they penalize the

po!icy u.pdgte py a Bregman diverggnce onthe state visif EXPERIMENTS AND RESULTS

tation distributions, motivated the mirror descent method.

While their framework seems general, it doesn't mcludeWe use the PPO implementation by Kostrikov (2018) as a

the divergences we employ in our algorithm. In fact, . e
their met?md enables thz uée of td:mdqitional KL di- baseline and modify it to implement our proposed PPO-
; o e DICE algorithm. We run experiments on a randomly
vergencg between state-action visitations distribution de- . . o
db (s:a)lo (2i5) and not the KL divergence selected subset of environments in the Atari suite (Belle-
ned by e 9 “(aja) 9 mare et al., 2013) for high-dimensional observations and
(s;a)log ﬂ% Note the action probabilities ratio discrete action spaces, as well as on the OpenAl Qym
inside thelog in the conditional KL divergence allows (Brockman etal., 2016) MuJoCo environments, which

them to use the policy gradient theorem, a key ingrediha"e continuous state-action spaces. All shared hyper-
ent in their framework, which cannot be done for the KL Parameters are set at the same values for both methods,

and we use the hyperparameter values recommended by

Kostrikov (2018) for each set of environments, Atari and
Our work builds on recent off-policy approaches: MuJoCo?.

DualDICE (Nachum et al., 2019a) for policy evaluation
and ValueDICE (Kostrikov et al., 2019) for imitation

learning. Both use the off-policy formulation of KL diver- 7.1 IMPORTANT ASPECTS OF PPO-DICE
gence. The former uses the formulation to estimate thg
ratio of the state visitation distributions under the target" -

and pe_ha.vi.or policigs. Whereas, the latter learns a policyya conducted an initial set of experiments to compare
by minimizing the divergence. two different choices of divergences, KL and, for
The closest related work is the recently proposed Althe regularization term of PPO-DICE. Figure 1 shows
gaeDICE (Nachum et al., 2019b) for off-policy policy training curves for one continuous action and one discrete
optimization. They use the divergence between statedction environment. There, as in the other environments in
action visitation distribution induced by and a behavior ~which we run this comparison, KL consistently performed
distribution, motivated by similar techniques in Nachum better than 2. We thus opted to use KL divergence in all
et al. (2019a). However, they incorporate the regularsubsequent experiments.

ization to the dual form of policy performandd ) =

Eia)  [r(s;a)] whereas we consider a surrogate objec-  “Code: https:/github.com/facebookresearch/ppo-dice

divergence.

1.1 Choice of Divergence



7.1.2 Effect of Varying extra regularizing measure proposed in PPO (Schulman
etal., 2017). For our algorithm also, we hypothesized that
it would be important for providing additional constraints
on the policy update to stay within the trust region. Fig-
ure 3 con rms this empirically: we see the effect on our
method of clipping the action loss versus keeping it un-
clipped. Initially, not having the additional regularization
allows it to learn faster, but it soon crashes, showing the
need for clipping to reduce variance in the policy update.

7.2 RESULTS ON ATARI

Given our above observations we settled on using a KL-

regularizedL P , with the adaptive method for that
Figure 2: Varying in Hopper_v2 , 10 seeds, 1 standard we explained Section 7.1.2. We run PPO-DICE on ran-
error shaded. PPO-DICE is somewhat sensitivevalue, domly selected environments from Atari. We tuned two
but the theoretically-motivated adaptive version worksadditional hyperparameters, the learning rate for the dis-
well. criminator and the number of discriminator optimization

steps per policy optimization step. We found tat= 5
Next we wanted to evaluate the sensitivity of our methoddiscriminator optimization steps per policy optimization
to the parameter that controls the strength of the regstep performed well. Fewer steps showed worse perfor-
ularization. We examine in Figure 2 the performancemance because the discriminator was not updating quickly
of PPO-DICE when varying. There is a fairly narrow  enough, while more optimization steps introduced insta-
band forHopper-v2 that performs well, betweem01  bility from the discriminator over tting to the current
andl. Theory indicates that the proper value fois the  batch. We also found that increasing the discriminator
maximum of the absolute value of the advantages (searning rate to be = 10 the policy learning rate
Lemma 3.1). This prompted us to implement an adaptivehelped most environments. We used the same hyperpa-
approach, where we compute the 90th percentile of adameters across all environments. Results are shown in
vantages within the batch (for stability), which we found Table 1. We see that PPO-DICE signi cantly outper-
performed well across environments. To avoid introducforms PPO on a majority of Atari environments. See

ing an additional hyperparameter by tuningwe use the  Appendix C.2 for training curves and hyperparameters.
adaptive method for subsequent experiments.

7.3 RESULTS ON OpenAl Gym MuJoCo

For the OpenAl Gym MuJoCo suite, we also used= 5
discriminator optimization steps per policy optimization
step, andc = 10 learning rate for the discriminator

in all environments. We selected 5 of the more dif cult
environments to showcase in the main paper (Figure 4),
but additional results on the full suite and all hyperparam-
eters used can be found in Appendix C.1. We again see
improvement in performance in the majority of environ-
ments with PPO-DICE compared to PPO and TRPO.

Figure 3: Comparison of PPO-DICE with clipped loss 8 CONCLUSION

L¢P and withoutlL . We see that clipping the action loss

is crucial for good performance. In this work, we have argued that using the action proba-

bilities to constrain the policy update is a suboptimal ap-

proximation to controlling the state visitation distribution
7.1.3 Importance of Clipping the Action Loss shift. We th.en Qemonstrat.e that gsing th.e recently pro-

posed Distribution Correction Estimation idea (Nachum
We earlier mentioned (see Footnote 3) two possible formst al., 2019a), we can directly compute the divergence
of our regularized objective: one with clipped action lossbetween the state-action visitation distributions of suc-
L and one without. Clipping the action loss was an cessive policies and use that to regularize the policy opti-



Game | PPO PPO-DICE

AirRaid 43050 63815 5217:5 769:19
Asterix 43000 16931 6200:0 754:10
Asteroids 15110 12503 1653:0 112:20
Atlantis 21204000 47160993 3447433:33 100105:82
BankHeist 12470 21:36 1273:33 7:89
BattleZone 29000:0 2620:43 190000 246306
Carnival 324333 36951 30800 18981
ChopperCommand 56667 14:91 900:0 77:46
DoubleDunk 6.0 1.62 4:0 1:26
Enduro 11299 7318 1308:33 120:09
Freeway 3233 015 320 0:00
Frostbite 639:0 334:28 29667 5:96
Gopher 13880 387.65 14140 41784
Kangaroo 40600 53930 6650:0 1558:16
Phoenix 12614:0 621:71 1167667 58824
Robotank 7:8 1:33 12:1 2:91
Seaguest 11980 12882 13000 12397
TimePilot 50700 58053 7000:0 562:32
Zaxxon 7110:0 841:60 61300 111248

Table 1: Mean nal reward and 1 standard error intervals across 10 seeds for Atari games evaluated at 10M steps.

Figure 4: Results from OpenAl Gym MuJoCo suite in more complex domains, with 10 seeds and 1 standard error
shaded. Results on the full suite of environments can be found in Appendix C.1.
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A Omitted Proofs

A.1 Proof of Lemma 3.1

According to performance difference lemma 2.1, we have
J(9=J3( )+ Es goEa o9 lA (s;9)]

=J()+ EsqEa ojglA (s;a)]+ ’s Ea ojs[A (553)](d (s) d (s)ds
ZS
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where = maxsjE; o js) [A (s;@)]j andDyy is total variation distance. The rst inequality follows from
Cauchy-Schwartz inequality.

A.2 Score Function Estimator of the gradient with respect to the policy
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B Comparison with AlgaeDICE

Both the recent AlgaeDICE (Nachum et al., 2019b) and our present work propose regularisation based on discounted
state-action visitation distribution but in different ways. Firstly, AlgaeDICE is initially designed to nd an optimal
policy given a batch of training data. They alter the objective function itself i.e the policy perforrddgntdy adding

the divergence between the discounted state-action visitation distribution and training distribution, while our approach
adds the divergence termlto ( 9. The latter is a rst order Taylor approximation of the policy performai¢e?).

Therefore, our approach could be seen as a mirror descent that uses the divergence as a proximity term. Secondly, their
training objective is completely different from ours. Their method ends up being an off-policy version of the actor-critic
method.

We implemented the AlgaeDICE min-max objective to replace our surrogate min-max objective in the PPO training
procedure i.e at each iteration, we sample rollouts from the current policy and update the actor and the critic of
AlgaeDICE for 10 epochs. Empirically, we observed that AlgaeDICE objective is very slow to train in this setting.
This was expected as it is agnostic to training data while our method leverages the fact that the data is produced by the
current policy and estimates advantage using on-policy multi-step Monte Carlo. So our approach is more suitable than
AlgaeDICE in this setting. However, AlgaeDICE, as an off-policy method, would be better when storing all history of
transitions and updating both actor and critic after each transition, as shown in Nachum et al. (2019b).



C Empirical Results

C.1 OpenAl Gym: MuJoCo

See Figure 5

C.2 Atari

See Figure 6

D Hyperparameters

D.1 OpenAl Gym: MuJoCo

For the OpenAl Gym environments we use the default hyperparameters in Kostrikov (2018).

Parameter name Value
Number of minibatches 4
Discount 0:99
Optimizer Adam
Learning rate 3e-4
PPO clip parameter 0:2
PPO epochs 10
GAE 0:95
Entropy coef 0
Value loss coef 05
Number of forward steps per update2048

Table 2: A complete overview of used hyper parameters for all methods.

D.2 Atari

For the Atari hyperparameters, we again use the defaults set by Kostrikov (2018).

Parameter name Value
Number of minibatches 4
Discount 0:99
Optimizer Adam
Learning rate 2.5e-4
PPO clip parameter 01
PPO epochs 4
Number of processes 8
GAE 0:95
Entropy coef 0:01
Value loss coef 0:5
Number of forward steps per update 128

Table 3: A complete overview of used hyper parameters for all methods.



Figure 5: Our method with KL divergences in comparison to PPO and TRPO on MuJoCo, with 10 seeds. Standard
error shaded.
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