
Finite-Memory Near-Optimal Learning for Markov Decision Processes with
Long-Run Average Reward

Jan Kretínský
TUMunich

Munich, Germany

FabianMichel
TUMunich

Munich, Germany

Lukas Michel
TUMunich

Munich, Germany

Guillermo A. Pérez
University of Antwerp
Antwerp, Belgium

Abstract

We consider learning policies online in Markov
decision processes with the long-run average re-
ward (a.k.a. mean payoff). To ensure imple-
mentability of the policies, we focus on policies
with finite memory. Firstly, we show that near
optimality can be achieved almost surely, using
an unintuitive gadget we call forgetfulness. Sec-
ondly, we extend the approach to a setting with
partial knowledge of the system topology, intro-
ducing two optimality measures and providing
near-optimal algorithms also for these cases.

1 INTRODUCTION

Markov decision processes (MDP, e.g. Puterman (2005))
is the standard formalism for modelling and analysis of
sequential decision making in the presence of probabilis-
tic uncertainty. Their applications range from robot mo-
tion planning (Russell and Norvig, 2010), modelling and
playing Go (Gibney, 2016), to scheduling (Geeraerts et al.,
2018). Learning (near-)optimal policies (a.k.a. strategies)
for MDPs has been thoroughly investigated in the context
of various optimization objectives, such as discounted re-
ward (Watkins and Dayan, 1992), total reward (Dann and
Brunskill, 2015), and long-run average reward (Brafman
and Tennenholtz, 2002).
Long-run average reward (a.k.a. mean payoff, MP) is an
infinite-horizon objective that, in contrast to discounted
reward, requires considering infinite runs even for approx-
imating the optimal value. This aspect makes learning less
efficient, the whole problem more difficult and also less
studied in the context of AI or robotics. However, the aver-
age reward captures in a muchmore adequate way the per-
formance over an unknown or variable horizon than the
discounted one (see, e.g. Schwartz (1993)).
Learning (near-)optimal strategies has two main advan-
tages over model-based analysis of MDPs. Firstly, it is ap-

Proceedings of the 36th Conference on Uncertainty in Artificial Intelli-
gence (UAI), PMLR volume 124, 2020.

plicable also to (partially) unknown systems. Secondly, it can
bemore practical as it can scale better than an analysis of the
whole state space. These two advantages imply the follow-
ing two issues that should thus be reflected by the learning
framework and techniques.
(1) The systemmay be entirely unknown, in which case we
cannot even ensure any safety properties of the behaviour.
Alternatively, itmay be partially known: typically the quan-
tities (exact transition probabilities) are unknown, but the
qualitative topologymaybeknown (which actionsmay lead
to which states). In this paper, we consider a more flexible
option, where the topology is partially known, i.e. presence
or absence of transitions between states may or may not
be determined. For example, consider an action, which (i)
can fail in several known ways (with unknown probabil-
ities), (ii) certainly cannot affect unrelated components of
the system, but (iii) has unknown impact on other aspects.
We introduce modal MDPs to capture such knowledge.
(2) The strategies produced may require infinite mem-
ory in order to be optimal with high probability. Such
strategies are not practical to implement. We thus restrict
the scope of the problem to finite-memory strategies. In
contrast, R-MAX (Brafman and Tennenholtz, 2002) and
UCRL2 (Jaksch et al., 2010) continue updating their statis-
tics forever: For their optimality guarantees to hold they
have to be run to infinity. Since, at every step they update
internal variables based on new data, their policies have ac-
cess to an unbounded amount of storage or variables with
unbounded precision, i.e. so-called infinite memory.

Our contributions can be summarized as follows:
• We argue that PAC learning is more appropriate in
this context than regret minimization.

• We provide the first optimal finite-memory strategy
for PAC online learning inMDPs with long-run aver-
age reward, via a gadget we call forgetfulness.

• We extend the approach to modal MDPs. In contrast
to many other works, we do not assume any restric-
tion on the structure of the system such as strong con-
nectedness, unichains etc.

Related work. Our work resembles earlier model-based
learning algorithms for long-run average reinforcement
learning like (Jaksch et al., 2010; Auer and Ortner, 2006).
Nevertheless, we focus on PAC-like bounds since we work
towards finite-memory strategies. That means that bound-
ing regret (like in previous works), which would imply the
PAC bounds, is not an option (see Corollary 1). The closest
to ourwork is (Křetínský et al., 2018), which considers PAC
online learning for MDPs with MP. However, full knowl-
edge of the topology is assumed there. Besides, we identify
an incorrect statement (Křetínský et al., 2018, Proposition
9) claiming impossibility of almost-sure near-optimality
for finite-memory strategies; we correct the claim, show-
ing the opposite by introducing “forgetful” strategies.

Related to learning for MDPs is statistical model check-
ing (SMC) for MDPs, which constructs a strategy using
possibly more (re-started) runs of the system. SMC of
unbounded-horizon properties of MDPs was first consid-
ered in (Lassaigne and Peyronnet, 2012; Henriques et al.,
2012). (Hahn et al., 2019) gives a convergent model-free
algorithm (with no bounds on the current error) and iden-
tifies errors in some previous approaches.

Several approaches provide SMC for MDPs and un-
bounded properties with PAC guarantees. Firstly, the al-
gorithm of (Fu and Topcu, 2014) requires (1) the mixing
timeT of theMDP, (2) the ability to restart simulations also
in non-initial states, (3) visiting all states sufficiently many
times, and thus (4) the size of the state space |S|. Secondly,
(Brázdil et al., 2014), based on delayed Q-learning (Strehl
et al., 2006), lifts the assumptions (2) and (3) and instead
of (1) requires only (a bound on) the minimum transition
probability pmin. Thirdly, (Ashok et al., 2019) additionally
lifts the assumption (4), keeping onlypmin, as in this paper.

In (Daca et al., 2016), it is argued that while unbounded
properties cannot be analysed without any information on
the system, knowledge of (a lower bound on) the minimum
transition probability pmin is a relatively light and realis-
tic assumption in many scenarios, in particular compared
to the knowledge of the whole topology. In this paper, we
thus adopt this assumption.

2 PRELIMINARIES
For a countable set S, we denote by Dist(S) the set of all
(rational) probabilistic distributions on S, that is the set of all
functions f : S → [0, 1] ∩ Q such that

∑
s∈S f(s) = 1.

For a set X and a function g : X → Dist(S), we write
g(s|x) instead of g(x)(s). The support of a distribution f ∈
Dist(S) is the set supp(f) def

= {s ∈ S : f(s) > 0}; for a
function g : X → Dist(S), we set supp(g) def

= {(x, s) ∈
X × S : g(s|x) > 0} and for a relation h ⊆ X × S,
supp(h, x)

def
= {s ∈ S : (x, s) ∈ h}.

2.1 MARKOV CHAINS

Definition 1. A Markov chain (MC) is a tuple C =
(Q,P,R) where Q is a countable set of states, P is a prob-
abilistic transition function P : Q → Dist(Q), and R :
Q×Q→ [0, 1] ∩Q is a reward function.

A run of an MC is an infinite sequence of states q0q1 . . .
such that P (qi+1|qi) > 0 for all i ≥ 0. For an initial
state q0, Runsq0(C) denotes the set of all runs of C that
start with the state q0 andPrq0C [·] is the unique probability
measure respecting P by Carathéodory’s extension theo-
rem (Puterman, 2005). Further, for a measurable function
f : Runsq0(C) → R, we write Eq0C [f] for the expected
value of the function f under Prq0C [·] (Puterman, 2005).

Mean payoff is the random variable MP assigning to
each run ρ = q0q1 . . . of C the value

MP(ρ)
def
= lim inf

n∈N>0

Avgn(ρ),

where Avgn(ρ)
def
=

1

n

n−1∑
i=0

R(qi, qi+1).

BothAvgn (for alln) andMP are readily seen to be Borel
definable, thus also measurable, and therefore the expected
mean payoff Eq0C [MP] is well defined and finite.

2.2 MARKOVDECISION PROCESSES

Definition 2. AMarkov decision process (MDP) is a tuple
M = (Q, q0, A, P,R) whereQ is a finite set of states, q0 ∈
Q is the initial state,A is a finite set of actions, P : Q×A9
Dist(Q) is a partial probabilistic transition function, and R :
Q×A×Q→ [0, 1] ∩Q is a reward function.

Let A(q) ⊆ A denote the subset of available actions from
state q, that is, the set of all actions a ∈ A such thatP (q, a)
is defined. We make the assumption that MDPs contain no
deadlocks (a.k.a. dead-ends), i.e. A(q) 6= ∅ for all q ∈ Q.

A history h of an MDP is a finite state-action-reward se-
quence q0a0r0 . . . ak−1rk−1qk such that ai ∈ A(qi),
P (qi+1|qi, ai) > 0, and ri = R(qi, ai, qi+1), for all
0 ≤ i < k. We write last(h) to denote the state qk and
Histq(M) for the set of all histories ofM starting with q.
Definition 3. A strategy σ in an MDP M =
(Q, q0, A, P,R) is a function σ : Histq0(M) → Dist(A)
such that σ(a|h) > 0 implies that a ∈ A(last(h)).
Semantics of MDP. A strategy σ for an MDPM resolves
all nondeterministic choices of actions and thus yields an
MCMσ = (Histq0(M), Pσ, Rσ) where

Pσ(h′|h) =

{
σ(a|h) · P (q′|last(h), a) if h′ = harq′

0 otherwise

Similarly,Rσ(h, h′) is r if h′ = harq′ and 0 otherwise.

Types of strategies. A strategy σ is calledmemoryless if for
all histories h, h′ we have that last(h) = last(h′) implies
σ(h) = σ(h′); it is deterministic if for all histories h the
distribution σ(h) is Dirac, i.e. σ(h)(a) = 1 for some a.

Further, we are interested in strategies implementable us-
ing real-world hardware or software with finite resources,
in particular with finite memory. These strategies are typi-
cally formally defined as implementable by a finite stochas-
tic Mealy machine:
Definition 4 (Finite-memory strategies). A stochastic
Mealy machine for an MDP M = (Q, q0, A, P,R) is
a tuple T = (M,m0, fu, fo) where M is a finite set of
memory elements, m0 ∈ M is the initial memory element,
fu : M × Q × A × Q → M is an update func-
tion, and fo : M × Q → Dist(A) is an output func-
tion. We denote by σT the strategy implemented by T as fol-
lows: for all histories h = q0a0r0 . . . ak−1rk−1qk we have
σT (h) = fo(mk, qk), where mk is inductively defined as
mi+1 = fu(mi, qi, ai, ri) for all i ≥ 1. We call such strate-
gies finite-memory strategies.

End components Here we recall the fundamental notion
for MDP analysis.
Definition 5. An end component (EC) of an MDPM =
(Q, q0, A, P,R) is a pair (S,B) with S ⊆ Q and B ⊆ A
such that

• for all s ∈ S and all a ∈ B(s) we have
supp(P (s, a)) ⊆ S, and

• the directed graph with nodes fromS and edges {(s, s′) ∈
S × S : ∃a ∈ B(s), s′ ∈ supp(P (s, a))} is strongly
connected.

Intuitively, an EC is a subsystemwhere one can stay forever
and see all of it infinitely often.

2.3 ASSUMPTIONS

In our online-learning setting, we do not assume the com-
plete knowledge of the MDPM = (Q, q0, A, P,R) but
only the following.

Executability. Intuitively, we assume we can run the
MDP. Formally, we know the initial state q0; given any state
q, we know the setA(q)of its available actions; given a state
q and an available action a, we can sample the successor
according to P (· | q, a), observe the sampled successor q′
and the respective rewardR(q, a, q′). FormodalMDPsde-
fined later, this assumption allows us to avoid strange ques-
tions such as: “If the transition is not really there, can I still
play the action labelling it?”

Partial knowledge of topology. While we do not nec-
essarily assume anything about the topology of the MDP,

we want to reflect the partial knowledge whenever we
have any. In order to formalize this, we assume we know
an under-approximation T and an over-approximation T
of the transition relation, i.e., relations satisfying T ⊆
supp(P) ⊆ T ⊆ Q × A × Q. In other words, the tran-
sitions of T must be present with nonzero probability, the
transitions of T \ T may be present (it is not known), and
the transitions of Q × A × Q \ T certainly have proba-
bility 0. We also use terms must transitions and may tran-
sitions according to the tradition of modal transition sys-
tems (Larsen and Thomsen, 1988). W.l.o.g., for all states q,
A(q) = {a ∈ A : ∃q′ ∈ Q : (q, a, q′) ∈ T}.

Minimum nonzero probability. Here we introduce
ourmain restrictive assumption, used in all our results nec-
essarily due to our finite-memory restriction. We assume
the knowledge of a lower bound for all nonzero transition
probabilities, i.e. a pmin ∈ Q such that 0 < pmin ≤
P (q′|q, a) for all (q, a, q′) ∈ supp(P). See Fig. 4 in Sec-
tion 6 for an example of a MDP which demonstrates the
need for pmin.

2.4 PROBLEM STATEMENT

The fundamental problem is to obtain strategies that maxi-
mize the expectedmean payoff, (nearly) achieving the value

Val(M)
def
= sup

σ
Eq0Mσ [MP]

In our setting there are two particular aspects to be taken
into account. Firstly, we are interested in finite-memory
strategies. Fortunately, the supremum is realized by amax-
imum over the memoryless strategies (Puterman, 2005),
hence this is not a real restriction and the strategieswe pro-
duce are near-optimal among all strategies.

Secondly, we obtain the strategies by online learning with
the limited knowledge of the MDP. In Section 3, we inves-
tigate the case of strongly connected systems (applies to
unichains, too), where we can guarantee the optimum. In
general, the MDP can have more maximal ECs (MECs).
Since different MECs are not mutually reachable with
probability 1, we have to resolve online (with the limited
knowledge) inwhichMECwe remain, and thus it is impos-
sible to guarantee the optimal value. Instead, we optimize
the mean payoff given that we remain in a certain EC. We
examine the notions of ECs in the online-learning context
and the corresponding optimization problems in the sub-
sequent sections.

3 FORGETFUL LEARNING

In this section, we tackle a simpler problem, where the
graph topology of the MDP is known and strongly con-
nected, as stated by the following two assumptions:

1. We assume T = T , i.e., we know which transitions
have positive probability.

2. The whole MDPM constitutes an end component.

Recall that for every MDP, there always exists an optimal
strategy that is memoryless (Gimbert, 2007), i.e., a memo-
ryless strategy τ such that Eq0Mτ [MP] = Val(M). We
present a family of online-learnt finite-memory strategies
σε that ensure, given any ε ∈ (0, 1), a mean payoff that is
ε-close to the optimumVal(M).

The strategy σε plays in episodes sub-divided into repeated
exploration and exploitation phases as follows.

• Explore: First, σε chooses actions uniformly at ran-
dom during L (stands for Learning) steps to collect
statistics allowing it to compute empirical approxima-
tions P̂ and R̂ of P andR.

• Exploit: Second, σε follows a (memo-
ryless) expectation-optimal strategy τ for
M̂ = (Q, q0, A, P̂ , R̂) during O (stands for
Optimization) steps.

• Then the strategy σε “forgets the learnt model” and
restarts from the exploration phase.

Since σε only keeps information for a finite number of
steps, the strategy can be implemented with finite memory.

Intuitively, it is clear that one round of long enough explo-
ration and exploitation forever establishes a precise enough
model with high enough probability, yielding PAC guaran-
tees. In order to achieve almost-sure guarantees, the for-
getting and restarting is fundamental. Without it, too high
imprecision still has positive probability. The following re-
sult tells us that the repetition limits the probability of too
high imprecision to zero. Note that Křetínský et al. (2018)
falsely claims this is impossible.
Theorem 1. For all ε ∈ (0, 1), one can compute L,O ∈
N such that for the resulting finite-state strategy σε we have
Prq0Mσε [ρ : MP(ρ) ≥ Val(M)− ε] = 1.

Proof idea.

• By Hoeffding’s inequality, we can easily compute a
number L such that L steps of the exploration phase
yield a good approximation of the dynamics of the
MDP with high probability.

• We show that O steps of the exploitation phase are
sufficient to compensate for the learning phase so
that the each episode has near-optimal expectedmean
payoff w.h.p. The computation of O is considerably
more involved. Since we do not have access to the
actual transition probabilities, it relies on robustness
(a.k.a. simulation (Kearns and Singh, 2002)) lemmas
for mean payoff. Furthermore, the finite-memory
restriction complicates using probabilistic guaran-
tees on the convergence to the stationary distribu-

q0 q1

q2

q3

a : 0.5

a : 0.5

b
p : 1

1− p : 0

a : 1

a : 0

Figure 1: AnMDP is depicted for which no finite-memory
strategy can achieve better guarantees than almost-sure
near-optimality.

tion (such as Tracol, 2009). We circumvent this prob-
lem by using exact-mixing stopping-time algorithms for
unknown Markov chains (See, e.g., Lovász and Win-
kler, 1995; Propp and Wilson, 1998) and the fact that
their expectation can be bounded as function of |Q|
and pmin. In turn, this expectation gives a bound on
the (Cesaro-)mixing time of the finite Markov chain
induced by the strategy (Levin and Peres, 2017).

• An exploration phase can yield a too imprecise ap-
proximation, leading to too suboptimal exploitation
phase. However, the forgetfulness implies that the ef-
fect of any such episode on the overall result is lim-
ited.

These guarantees are optimal for finite-memory strategies
as the following example shows.
Proposition 1. LetMp be the MDP of Fig. 1 parameterised
by probability p. For all finite-memory strategies σ there exists
a probability p such that

Prq0Mσ
p
[ρ : MP(ρ) ≥ Val(Mp)] < 1.

Proof sketch. Observe that taking always action a yields a
mean payoff of 0.5, and b yields p. Therefore, depending
onwhether p < 0.5, the former or the latter is optimal. Let
σ be a finite-memory strategy with n states. We perform a
case split:

Firstly, assume there exists a run (inMp for some p ∈
(0, 1)) such that during some n + 1 consecutive visits of
q0, action a is chosen with probability 1. Then, σ has re-
visited q0 with the same memory state twice and in be-
tween all choices were deterministic. Thus, σ continues
looping through these memory states while always choos-
ing action a deterministically. Since the finite prefix has
positive probability, the complete run has positive proba-
bility inMσ

0.75, but it has a suboptimal mean payoff of 0.5.

Secondly, we treat the case where in all n + 1 consecutive
visits of q0 on all runs (in e.g.Mσ

0.25) there is some (con-
stant) positive probability of choosing action b. By the law
of large numbers, this implies that action b will be chosen
almost surely a nonzero fraction of the time. However, this
action will also almost surely contribute a suboptimal av-
erage of 0.25 reward to the mean payoff and therefore the
mean payoff is almost surely suboptimal.

From the above claim it immediately follows that finite-
memory strategies exhibit too much regret, motivating
PAC learning instead.
Corollary 1. The regret of all finite-memory strategies is at
least linear.

Proof. We first introduce the relevant definitions. Let
RT = T · AvgT be the random variable for the to-
tal reward in the first T steps. The regret of a strategy in
an MDPM is then defined as the expectation of RT −
T · Val(M). It is easy to see that a finite-memory strat-
egy whose regret is a sublinear function of T would im-
ply Prq0Mσ [ρ : MP(ρ) ≥ Val(M)] = 1, contradicting
Proposition 1.

4 MODALMARKOVDECISION
PROCESSES

From this section on, letM denote amodal MDP (mMDP),
which is an MDP (not necessarily strongly connected) to-
gether with possibly different lower bound T and upper
bound T on the set of transitions. Since we consider dif-
ferent transitions sets, we introduce the notation GS,B,T
to denote the directed graph with nodes of S ⊆ Q and
edges {(s, s′) ∈ S × S : ∃a ∈ B(s) : (s, a, s′) ∈ T},
i.e., restricted to actions available according toB ⊆ A and
transitions in T for the given T ⊆ T ⊆ T .

4.1 POSSIBLE AND SAFE END COMPONENTS

Since we do not know the transition relation of the MDP
exactly, we cannot determine the ECs of the MDP. Con-
sequently, we cannot optimize the mean payoff within an
EC. Instead, we have to definemore general versions of this
concept, reflecting the modality of the transitions in what
may or must be an EC.
Definition 6. A possible end component (PEC) of the
mMDPM is a pair (S,B) with S ⊆ Q and B ⊆ A such
that

• for all s ∈ S and all a ∈ B(s) we have that
supp(T , s, a) ⊆ S and supp(T , s, a) ∩ S 6= ∅, and

• GS,B,T is strongly connected.

The former implies that it is possible (for some transition
set respecting the bounds) to stay within the PEC, the latter
that it is possible to see all of the PEC (infinitely often with
probability 1). Every EC is a PEC; later on we also use that
if supp(P (s, a)) = supp(T , s, a) ∩ S for all s ∈ S and
all a ∈ B(s) then the PEC is an EC.

PECs indicate components of the mMDP where the mean
payoff can be optimized if the transition function is
favourable. However, if a PEC is no EC, a strategy might
leave the PEC during optimization.

Definition 7. A safe end component (SEC)with respect to
s0 ∈ S of the mMDPM is a pair (S,B) with S ⊆ Q and
B ⊆ A such that

• for all s ∈ S and all a ∈ B(s) we have that
supp(T , s, a) ⊆ S,

• for all transition relations T with T ⊆ T ⊆ T and
supp(T, s) = A(s) for all s ∈ S we have that all states
s ∈ S have a path to s0 in GS,B,T , and

• GS,B,T is strongly connected.

The former implies that it is certain (for any transition set
respecting the bounds) to stay within the SEC, the latter
that it is certain to return to s0 (infinitely often with prob-
ability 1), not necessarily visiting all of the SEC. Besides,
we keep the possible strong connectivity, hence every SEC
is also a PEC. Consequently, SECs provide components
where the mean payoff can be optimized “safely”, without
the risk of leaving the EC of s0.

An EC, PEC or SEC (S,B) is maximal (a MEC, MPEC or
MSEC) if for all other ECs, PECs or SECs (S′, B′) with
S ⊆ S′ and B(s) ⊆ B′(s) for all s ∈ S it holds
(S,B) = (S′, B′). These maximal components are of
particular interest for optimization since they provide the
largest components with the given guarantees.

q0 q1

q2 q3

q4

b

c

a ba

c

a
a a

Figure 2: A modal MDP (the may transitions are dashed)

Example. Fig. 2 shows a modal MDP. One MPEC is
formed by q4, which cannot be left. The other MPEC con-
tains q0, q1, q2, q3 as can be seen by realizing the may tran-
sitions to q0 and q1. In contrast, the MSEC of q0 contains
only q0, q1. Indeed, q1 is part of the MSEC even though it
may be unreachable from q0; q2 is not in this MSEC since
the may transition back to q0 may not exist; q3 is not in this
MSEC since the may transition to q4 may exist, violating
the first condition of the definition.

4.2 COMPUTATIONOF END COMPONENTS IN
MODALMDPS

In order to optimizewithin the newly defined “end compo-
nents”, we first present algorithms calculating MPECs (Al-
gorithm 1) and MSECs (Algorithm 2) in polynomial time.
Of course, these algorithms adhere to our assumptions and
use only the bounds T and T on the support of the transi-
tion function and thus implicitly the allowed actionsA.

The idea of the algorithm computing MPECs is to over-
approximate all MPECs with larger components and suc-
cessively refine them until there are only MPECs left. This

is very similar to standard algorithms for the calculation
of maximal ECs in MDPs, see e.g. (Baier and Katoen,
2008, Algorithm 47). For a component (S,B) in the over-
approximation, consider the graph GS,B,T .

If this graph is strongly connected, then (S,B) is already
a PEC. Otherwise, the graph can be decomposed into
strongly connected components (SCCs), and we know that
each PEC previously contained in (S,B) has to be con-
tained in one of these SCCs. Thus, we can replace (S,B)
with the set of its SCCs. If all components stay unchanged
during one iteration of the algorithm, we know that only
PECs are left, and these have to be maximal, since we over-
approximated them.

In order to give the algorithm for MPECs, we define, for a
setS ⊆ Q, the candidate actionsBS for PECs byBS(s)

def
=

{a ∈ A(s) : supp(T , s, a) ⊆ S ∧ supp(T , s, a) ∩ S 6=
∅}. Intuitively, these actions could belong to a PEC with
states S.

Algorithm 1 Calculation of MPECs
Input: mMDPM with transition relation bounds T , T
Ouput:M = {(S,B) : (S,B)MPEC inM}
M ← {(Q,A)}
repeat

M ′ ← ∅
for all (S,B) ∈M do

for all S′ ⊆ S : S′ is an SCC in GS,B,T do
M ′ ←M ′ ∪ {(S′, BS′)}

end for
end for
M ←M ′

untilM stayed unchanged

Theorem 2. Algorithm 1 computes the MPECs of a mMDP in
polynomial time.

Considerably more interesting is the algorithm computing
MSECs. To this end, we first define, for a set S ⊆ Q, the
candidate actions BS for SECs almost dually as BS(s)

def
=

{a ∈ A(s) : supp(T , s, a) ⊆ S} for all s ∈ S. Like for
PECs, these are all actions that could belong to a SEC with
states S.

To compute an MSEC w.r.t. s0 ∈ Q, we analogously over-
approximate all SECs and successively refine this approxi-
mation. If we have a candidate setS for ourMSEC,we only
keep those statesS′which, using only the candidate actions
BS for SECs, definitely have a path to s0, independent of
the actual support of the transition function. All SECs have
to be contained in these states. In order to compute them,
we start with S′ = {s0} and then add states s ∈ S \ S′
with an action a ∈ BS(s) which must have a transition to
S′. These are exactly those actions which cannot possibly

stay outside of S′, i.e. actions not inBQ\S′(s).

If at some point we keep all states and S remains un-
changed, we know that we have found a component of
the MDP which contains all SECs and fulfils all SEC con-
straints except for the strong connectedness. Since, by con-
struction, every state in S has a path to s0 we simply need
to keep only states reachable from s0 in GS,BS ,T to make it
a SEC. Since it also contains all SECs, it has to be the unique
MSEC w.r.t. s0.

Algorithm 2 Calculation of MSECs
Input: mMDPM with transition relation bounds T , T ,
s0 ∈ Q
Ouput: (S,B) the MSEC with respect to s0
S ← Q
repeat

S′ ← {s0}
while ∃s ∈ (S \ S′) : ∃a ∈ BS(s) \BQ\S′(s) do

S′ ← S′ ∪ {s}
end while
S ← S′

until S stayed unchanged
S ← {s ∈ S : s is reachable from s0 in GS,BS ,T }
(S,B)← (S,BS)

Theorem3. Algorithm 2 computes theMSECw.r.t s0 in poly-
nomial time.

5 LEARNING INMODALMDPS

In this section, we optimize mean payoff in a modal MDP.
Since the MECs of the MDP are not known, the results
of Section 3 have to be lifted to the modified notions of
MPECs and MSECs of Section 4. Respectively, there are
two types of strategies that we want to consider:

1. Either we want to achieve the best mean payoff pos-
sible in the MEC in which the strategy ends up in, not
missing any opportunity in that MEC.
Secondarily, during the execution of the strategy, we
prefer to optimize the mean payoff in the current
MEC, taking only minimal risk of leaving it. The mo-
tivation for this is that, if possible, we do not skip a lot
of promising MECs along the way to the final MEC.
Instead, we try to optimize the mean payoff already
within them and only move to another MEC if our
incomplete knowledge forces us to do so.

2. Or we do not want to take any risk of leaving the cur-
rentMECwhenever this can be ensuredusing the par-
tial knowledge.
This is motivated by the fact that we cannot (almost
surely) return to the MEC once we leave it and the
lack of information about the rewards outside of the

current MEC. However, such a conservative strategy
might not be able to explore the complete MEC due
to avoiding the risk of falling out of it and thus might
miss some opportunities for a better mean payoff within
this MEC. This is a well known issue regarding par-
tially known environments and is best exemplified by
the the Canadian traveller’s problem (Papadimitriou
and Yannakakis, 1991; Nikolova and Karger, 2008).

5.1 OPTIMIZATION INMPECS

We start by considering the first type of strategies. As al-
ready stated in Section 4.2, each EC is a PEC and each PEC
could constitute an EC. Thus, in order not to miss any op-
portunity for a good mean payoff in the current MEC, we
have to try to explore the whole MPEC in which we are
currently located as the whole MPEC could be a MEC.

To optimize the mean payoff, we employ a strategy similar
to the one of Section 3. Again, we use only finitememory to
almost surely obtain a mean payoff which is ε-close to the
optimal expected mean payoff in the final MEC. Our strat-
egy σp works in episodes of exploration and exploitation:

• Explore: First, σp chooses actions uniformly at ran-
dom among the actions of the current MPEC (S,B)
during L steps to collect statistics allowing it to com-
pute empirical approximations P̂ and R̂ of P and R
in the MEC in which the strategy is at the end of the ex-
ploration phase.

• Exploit: Then, σp follows a (memoryless)
expectation-optimal strategy τ for that MEC in
M̂ = (Q, q0, A, P̂ , R̂) during O steps. (If it is not
in any non-trivial MEC, it can behave arbitrarily.)
The strategy σp then “forgets the learnt model” and
restarts from the exploration phase.

Whenever σp discovers a transition which has not been in-
cluded inT , it can updateT in order tomake further calcu-
lations of MPECs more precise. However, notice that this
is not necessary in order to fulfil the desired guarantees, it
only allows in future to explore fewer actions which could
lead out of the current MEC and thus it decreases the risk
of leaving the MEC.

For a run ρ ∈ Runsq0(Mσ), denote by Inf(ρ) the set of
all states ofQ visited infinitely often by ρ. Thus, the event
Inf ⊆ S corresponds to all runs eventually staying within
S. Moreover, for an EC (S,B) inM, let the optimal value
in this EC be Val(M | S,B)

def
= Val(N) where N =

(S, s0, B, P |S×A , R|S×A×S) is the restriction ofM to
the EC and s0 ∈ S can be arbitrary since this value is the
same for all states of an EC. Using this notation, we get the
following optimality guarantee for σp:
Theorem 4. For all ε ∈ (0, 1), one can compute L,O ∈ N
such that for the resulting finite-state strategy σp and anyMEC

(S,B) ofM with Prq0Mσp [Inf ⊆ S] > 0 we have

Prq0Mσp [ρ : MP(ρ) ≥ Val(M | S,B)− ε | Inf ⊆ S] = 1

Proof sketch:

• As L andO of Theorem 1 only depend on pmin, |Q|,
|A| and ε and not on the transition relation ofM, we
can choose them in exactly the same way.

• Consider themoment that Inf is entered and stayed in
forever. The MPEC (S′, B′) that the strategy com-
putes at that point satisfies B′|S = B. (Otherwise,
the MPEC would contain an action leading out of
the MEC, which would almost surely be taken in the
repetitive exploration and theMEC, in particular this
state of Inf , would be left forever, a contradiction.)

• Consequently, σp actually corresponds to the strategy
σε in the MEC (S,B). By our choice of L and O, it
follows from Theorem 1 that the strategy will obtain
an ε-close mean payoff almost surely.

5.2 OPTIMIZATION INMSECS

Now we consider optimizing mean payoff among “safe”
strategies, not leaving the current MEC whenever the par-
tial knowledge allows for that. To this end, we consider
strategies which are defined for the maximum supports of
the transition function andwhich never leave theMEC, in-
dependent of the actual support.

A modal strategy σ in a mMDPM with transition rela-
tion bounds T and T is a strategy in the MDP M =
(Q, q0, A, P ,R) where P is a transition function with
supp(P (q, a)) = supp(T , q, a) for all q ∈ Q and a ∈
A(q). This means that σ is defined for all transition func-
tions compatible with the transition bounds.

A strategy σ is in (S,B) if for all histories hwith last(h) ∈
S (and positive probability underσ) it holds supp(σ(h)) ⊆
B(last(h)). Intuitively, σ is in (S,B) if it never leaves it.

Finally, we call a modal strategy σ s0-EC-safe for some
s0 ∈ Q if for all transition functions P ′ compatible with
the transition relation bounds T and T it holds that σ is in
the MEC containing s0 inM′ = (Q, s0, A, P

′, R).

The following lemma establishes the relationship between
EC-safe strategies (defined by the desired property) and
SECs (effectively computable).
Lemma 1. A modal strategy σ is s0-EC-safe if and only if
it is in the MSEC (S,B) w.r.t. s0. Moreover, σ is in the EC
containing s0 which is the maximal such EC within (S,B) .

The proof is rather technical and can be found in the sup-
plementary material.

Thus in order to optimize mean payoff among s0-EC-safe
strategies, we simply have to optimize the mean payoff in

the MSEC w.r.t. s0. In particular, we require the MSEC to
be non-trivial, i.e. B(s0) 6= ∅, since otherwise there does
not exist any s0-EC-safe strategy. (For such s0we first need
to reach another state that is in a non-trivialMSEC.) Let the
optimal mean-payoff among s0-EC-safe strategies be

sVal(M, s0)
def
= sup

τ :τ is s0-EC-safe
Es0Mτ [MP] .

We define our finite-memory s0-EC-safe strategy σs, ob-
taining a mean-payoff which is ε-close to the optimal
mean-payoff among s0-EC-safe strategies, using again ex-
ploration and exploitation episodes:

• Explore: First, σs chooses actions uniformly at ran-
dom among the actions of the MSEC (S,B) w.r.t. s0
during L steps to collect statistics allowing it to com-
pute empirical approximations P̂ and R̂ of P and R
in the EC containing s0 which is the maximal such EC
within (S,B).

• Exploit: Then, σs follows a (memoryless)
expectation-optimal strategy τ for that EC in
M̂ = (Q, q0, A, P̂ , R̂) during O steps. (If no EC
is explored, it can execute an arbitrary EC-safe
strategy.) The strategy σs then “forgets the learnt
model” and restarts from the exploration phase.

Again, if σs discovers a new transition, this transition can
be added to T . Either way we get the desired optimality
guarantees for σs:
Theorem 5. For all ε ∈ (0, 1), one can compute L,O ∈ N
such that for the resulting finite-state strategy σs we have

Prs0Mσp [ρ : MP(ρ) ≥ sVal(M, s0)− ε] = 1

Proof sketch:

• Again, we can choose the L andO as in Theorem 1.
• By Lemma 1, we know that all s0-EC-safe strategies
are within the ECC containing s0 which is the maxi-
mal such EC within that MSEC. Since σs is by defini-
tion in the MSEC, it is also inC by the same lemma.

• Consequently, σs actually is the strategy σε withinC .
By the choice of L and O, Theorem 1 implies the al-
most sure ε-optimality.

6 EXPERIMENTAL RESULTS

We have implemented the proposed approach and here we
illustrate it on several examples. For all simulated runs, ex-
ploration phases ran for 1000 steps, exploitation phases for
10000 steps and the number of episodes was set to 3, i.e., 3
exploration and 3 exploitation phases.

In Fig. 3, we can see that 1000 steps of exploration suffice
for an approximation of the transition probabilities which

1

0.75

0.5

0.25

0
Figure 3: 50 simulation runs in theMDP of Fig. 1 with p =
0.75. x-axis: number of steps, y-axis: average reward.

was accurate enough to identify the optimal strategy in all
simulated runs. The optimal mean payoff of 0.75 is ap-
proached by the curves. The slight drops in the curves cor-
respond to the exploration phases where no mean payoff
optimization is done. The average reward collected dur-
ing the simulated prefixes of the runs (with prefix length
3 · (1000+10000) = 33000 steps) amounts to 0.739, cor-
responding to 98.6 % of the achievable optimum.

q0 q11 : 0.1

p : 0
1− p : 0

1 : 1

1− p
100 : 0

p
100 : 0

Figure 4: An instantiation of the modal MDP from Fig. 2
(only MSEC is shown) demonstrating the need for pmin.

Fig. 4 shows why the number of steps in the exploration
phase has to depend on pmin. Indeed, if this was not the
case, p could be chosen small enough such that the prob-
ability of never taking the transition to q1 during explo-
ration is arbitrarily close to 1, making it impossible to com-
pute accurate empirical approximations of the transition
probabilities. The optimal strategy in Fig. 4 plainly is to try
to reach q1 and then always play the right looping transi-
tion. However, if q1 is not actually visited during explo-
ration, the strategy will stay in q0 also during optimiza-
tion, and obtain sub-optimalmean payoff. Moreover, if this
transition was a may transition, we would not even know
whether it is present at all.

1

0.75

0.5

0.25

0
Figure 5: 150 simulation runs in the MDP of Fig. 4 with
p = 0.001.

In Fig. 5, most of the curves converge towards a mean pay-
off of 0.1 since the state q1 is never visited during explo-
ration. Only a small part of the runs ended up in q1 and cor-
rectly optimizes the mean payoff. The memory is reset be-
fore each explorationphase. Therefore, every runhas a new
chance to (not) visit q1 during exploration in every episode.
This is reflected in the graph by sudden drops or increases
of the curves after the exploration phases. If the exploration
phase length was chosen according to Section 5.2 instead
(taking into account pmin), the collected average reward of
0.262 could be increased to any number< 1.

q0 q1

q2 q3

q4

1 : 0.2

1 : 0.9

0.5 : 0
0.5 : 0

1 : 0.3

0.5 : 0
0.5 : 0

0.999 : 0.9

0.001 : 0.10.5 : 0.8

0.5 : 1 1 : 0.9 1 : 0.1

Figure 6: An instantiation of the modal MDP of Fig. 2.
When exploring the MPEC in the mMDP instantiation in
Fig. 6, almost all runs will finally end up in q4. Restrict-
ing exploration to the MSEC will prevent this behaviour.
However, both strategies fail to obtain the optimal mean
payoff, which could be collected by always trying to get to
q2. This is not a contradiction to Theorem 4 since optimal-
itywas only guaranteed conditioned on the event that a run
ends up in a particular EC, and for MPEC exploration, all
runs will end up in the EC of q4 where the strategy will
then be (locally) optimal. Theorem 5 equally does not guar-
antee global optimality, but only optimality under q0-EC-
safe strategies which must never exit the MSEC q0, q1 (cf.
Fig. 2).

When exploring thewholeMPEC, runs could already reach
q4 during exploration. However, if this does not yet hap-
pen, two possibilities arise: depending on how the tran-
sition probabilities of the transitions exiting q2 were ap-
proximated, the calculated optimizing strategy may try to
reach q2 or q3. If q3 is chosen, the run will probably end up
in q4 during optimization, explaining the runs with a sud-
den drop in mean payoff during the optimization phase in
Fig. 7. If, however, q2 is chosen, the run will stay within
the MPEC for the remaining optimization phase and col-
lect the optimal mean payoff of 0.9 during this phase. In
the next exploration phase, it is again possible that q2 or q3
are chosen. Since only 3 episodes were simulated, the part
of the runs which always chose q2 and never reached q4 is
still significant, as can be seen in the graph. In the long run,
however, all runs will end up in q4 and approach a mean
payoff of 0.1.

MSEC exploration is straightforward for the instantiation
in Fig. 6. The state q1 and the right, self-looping tran-
sition are identified as yielding the optimal mean payoff
within the MSEC, and the mean payoff will approach 0.3

1

0.75

0.5

0.25

0
Figure 7: 150 simulation runs in the MDP of Fig. 6 with
MPEC exploration.

1

0.75

0.5

0.25

0
Figure 8: 50 simulation runs in the MDP of Fig. 6 with
MSEC exploration.

(see Fig. 8) which is better than the 0.1 we get fromMPEC
exploration, but worse than the best possible mean payoff
0.9. After the 33000 simulated steps, the collected aver-
age reward of 0.284 is at 94.7 % of the achievable optimum
within the MSEC.

7 CONCLUSION

Wehave presented the first algorithms for learning optimal
finite-memory strategies in MDPs with mean payoff, both
for complete and partial knowledge of the topology (with
zero quantitative knowledge). In order to provide a practi-
callymore efficient implementation, the next step is to pro-
vide smaller number of stepsL andO for particular classes
of MDP with faster mixing. Alternatively, if the hard guar-
antees may be relaxed, simulations with low L and O are
also possible. In our experiments, they have always proved
as either reasonably reliable, or visibly indicating the neces-
sity to increase the numbers, ruling out cases with falsely
believed optimality.

Acknowledgements

This research was partially funded by the German Re-
search Foundation (DFG) project 383882557 “Statistical
Unbounded Verification” (KR 4890/2-1) and the Belgian
FWO “SAILor” project (G030020N).

References

Ashok, P., Kretínský, J., andWeininger, M. (2019). PAC sta-
tistical model checking for Markov decision processes
and stochastic games. In CAV (1), pages 497–519.
Springer.

Auer, P. and Ortner, R. (2006). Logarithmic online regret
bounds for undiscounted reinforcement learning. In
NIPS, pages 49–56. MIT Press.

Baier, C. and Katoen, J.-P. (2008). Principles of model check-
ing. MIT Press.

Brafman, R. I. and Tennenholtz, M. (2002). R-MAX - A
general polynomial time algorithm for near-optimal re-
inforcement learning. J. Mach. Learn. Res., pages 213–
231.

Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretín-
ský, J., Kwiatkowska, M. Z., Parker, D., and Ujma, M.
(2014). Verification of Markov decision processes using
learning algorithms. In ATVA, pages 98–114. Springer.

Daca, P., Henzinger, T. A., Kretínský, J., and Petrov,
T. (2016). Faster statistical model checking for un-
bounded temporal properties. In TACAS, pages 112–
129. Springer.

Dann, C. and Brunskill, E. (2015). Sample complexity
of episodic fixed-horizon reinforcement learning. In
Advances in Neural Information Processing Systems, pages
2818–2826.

Fu, J. and Topcu, U. (2014). Probably approximately cor-
rectMDP learning and control with temporal logic con-
straints. In Robotics: Science and Systems.

Geeraerts, G., Guha, S., and Raskin, J.-F. (2018). Safe and
optimal scheduling for hard and soft tasks. In FSTTCS,
pages 36:1–36:22. Dagstuhl.

Gibney, E. (2016). Google ai algorithm masters ancient
game of go. Nature News, (7587):445.

Gimbert, H. (2007). Pure stationary optimal strategies in
Markov decision processes. In STACS, pages 200–211.
Springer.

Hahn, E. M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A.,
and Wojtczak, D. (2019). Omega-regular objectives in
model-free reinforcement learning. In TACAS (1), pages
395–412. Springer.

Henriques, D., Martins, J. G., Zuliani, P., Platzer, A., and
Clarke, E. M. (2012). Statistical model checking for
Markov decision processes. InQEST, pages 84–93. IEEE
Computer Society.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal
regret bounds for reinforcement learning. J.Mach. Learn.
Res., pages 1563–1600.

Kearns, M. J. and Singh, S. P. (2002). Near-optimal rein-
forcement learning in polynomial time. Machine Learn-
ing, (2-3):209–232.

Křetínský, J., Pérez, G. A., and Raskin, J.-F. (2018).
Learning-based mean-payoff optimization in an un-

knownMDPunder omega-regular constraints. InCON-
CUR, pages 8:1–8:18. Dagstuhl.

Larsen, K. G. and Thomsen, B. (1988). A modal process
logic. In LICS, pages 203–210. IEEE Computer Society.

Lassaigne, R. and Peyronnet, S. (2012). Approximate plan-
ning and verification for large Markov decision pro-
cesses. In SAC, pages 1314–1319. ACM.

Levin, D. A. and Peres, Y. (2017). Markov chains and mixing
times. American Mathematical Soc.

Lovász, L. and Winkler, P. (1995). Exact mixing in an un-
knownMarkov chain. Electr. J. Comb.

Nikolova, E. and Karger, D. R. (2008). Route planning un-
der uncertainty: The canadian traveller problem. In
AAAI, pages 969–974.

Papadimitriou, C. H. and Yannakakis, M. (1991). Short-
est paths without a map. Theoretical Computer Science,
(1):127–150.

Propp, J. G. and Wilson, D. B. (1998). How to get a per-
fectly random sample from a generic Markov chain and
generate a random spanning tree of a directed graph. J.
Algorithms, (2):170–217.

Puterman, M. L. (2005). Markov Decision Processes. Wiley-
Interscience.

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education.

Schwartz, A. (1993). A reinforcement learning method
for maximizing undiscounted rewards. In ICML, pages
298–305. Morgan Kaufmann.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman,
M. L. (2006). PAC model-free reinforcement learning.
In ICML, pages 881–888. ACM.

Tracol, M. (2009). Fast convergence to state-action fre-
quency polytopes forMDPs. Opereration Research Letters,
(2):123–126.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note
Q-learning. Machine Learning, pages 279–292.

