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Abstract

We consider the problem of sequentially opti-
mising the conditional expectation of an objec-
tive function, with both the conditional distri-
bution and the objective function assumed to
be fixed but unknown. Assuming that the ob-
jective function belongs to a reproducing ker-
nel Hilbert space (RKHS), we provide a novel
upper confidence bound (UCB) based algo-
rithm CME-UCB via estimation of the con-
ditional mean embeddings (CME), and derive
its regret bound. Along the way, we derive
novel approximation guarantees for the CME
estimates. Finally, experiments are carried out
in a synthetic example and in a likelihood-free
inference application that highlight the useful
insights of the proposed method.

1 INTRODUCTION

A large class of problems in machine learning and statis-
tics involve the optimisation of an expected objective
conditioned on control variables. For instance, one may
want to minimise expected risks (Beyer and Sendhoff,
2007) or maximise the expected rewards in reinforce-
ment learning (Deisenroth et al., 2011). Alternatively,
the involved conditional distributions themselves might
be of interest, as in likelihood-free inference (Gutmann
and Corander, 2016; Papamakarios et al., 2019). These
are hard-to-model stochastic processes which are unsuit-
able for standard optimisation algorithms.

In recent years the representation of conditional dis-
tributions p(x|u) as elements of a reproducing kernel
Hilbert space (RKHS), known as conditional mean em-
beddings, has become increasingly popular (Song et al.,
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2009). In this formulation the conditional expectation
of any function f in the RKHS becomes a linear oper-
ation, via the RKHS inner product with the appropriate
distribution embedding. Conditional mean embeddings
have been successfully applied to many machine learning
tasks such as hidden Markov models (Song et al., 2010a),
non-parametric graphical models (Song et al., 2010b),
modelling transition dynamics in MDPs (Grünewälder
et al., 2012b), subspace selection (Fukumizu et al., 2009)
and conditional independence testing (Fukumizu et al.,
2008). We refer the interested reader to the monograph
by Muandet et al. (2016) for a review.

The main motivation behind conditional mean embed-
dings has been to generalise the notion of conditional
expectation to Hilbert spaces. Its foremost advantage is
that one can directly compute conditional expectations
based on the observed data. The alternative approach of
learning a conditional density estimate as an intermediate
step scales poorly with the dimension of the underlying
space (Grünewälder et al., 2012b). Additionally, condi-
tional mean embeddings can be characterised as the solu-
tion of a Tikhonov regularized vector-valued regression
problem with the square loss (Grünewälder et al., 2012a).
Convergence of conditional mean embeddings in RKHS
norm has been established under independent and iden-
tically distributed (i.i.d.) samples (Song et al., 2010b;
Grünewälder et al., 2012a), which essentially shows that
the estimated embeddings are consistent under certain
smoothness assumptions. However, in an active or se-
quential learning environment like the one considered in
this work, one collects data based on past observations,
and hence existing bounds fail to remain useful.

Against this backdrop, we revisit the problem of sequen-
tially maximising the conditional expectation of a func-
tion in an RKHS via estimating the conditional mean em-
bedding. We make the following contributions:

• Under non-i.i.d. samples, we derive a concentration
bound on conditional mean embeddings and their



estimators in RKHS norm as a function of the uncer-
tainties around these estimates (Theorem 1). This
bound not only serves as a key tool in designing our
algorithm but also is of independent interest.

• We develop an algorithm, namely Conditional
Mean Embeddings Upper Confidence Bound
(CME-UCB), for maximising the conditional
expectation of a function (Algorithm 1) and derive
a high-probability regret bound under RKHS
regularity assumption (Theorem 4).

• Finally, we experimentally verify our results in a
synthetic toy example and also in a likelihood-free
inference application, for which our algorithm is
seen to perform favourably.

2 RELATED WORK

Black-box optimisation of an unknown function with ex-
pensive, noisy queries is a generic problem arising in
domains such as hyper-parameter tuning for complex
machine learning models (Snoek et al., 2012), policy
search (Wilson et al., 2014), environmental monitoring
(Marchant and Ramos, 2012), experimental design etc.
Bayesian optimization (BO), the most popular approach
towards solving this problem, starts with a prior distribu-
tion over a function class, typically a Gaussian process
(GP) (Rasmussen and Williams, 2006), uses function
evaluations to compute the posterior distribution over
functions, and chooses the next function evaluation adap-
tively towards reaching the optimum. Perhaps the most
prominent algorithm with rigorous theoretical guarantees
in this regard is the Gaussian process upper confidence
bound (GP-UCB) algorithm (Srinivas et al., 2010). Re-
cently, Oliveira et al. (2019) considers the BO problem
under input noise, which has applications in certain areas
of robotics and process control, and design an algorithm
via a GP model that takes conditional distributions as in-
puts. Their method, however, does not attempt to learn
the distribution model.

Other approaches to learning kernel embeddings focus
on learning the hyper-parameters of the kernel, which
are critical in certain applications. Flaxman et al. (2016)
propose a Bayesian approach to learn kernel embedding
hyper-parameters by means of the marginal likelihood of
a GP, which is placed as a prior over the true embedding.
Alternatively, Hsu and Ramos (2019) propose a closed-
form approach to estimate probability density functions
in a Bayesian probabilistic model. The latter allows them
to learn hyper-parameters by maximising the evidence
of the data. Buathong et al. (2019) consider maximis-
ing the conditional expectation of an unknown function,
with the expectation being taken over the uniform distri-

bution on a given set. Despite that, all of these methods
still use i.i.d. data to form the distribution embeddings.
Our concern in this paper is in deriving a more efficient
data collection process which can improve the estimates
of both the conditional distribution and an underlying ob-
jective function. Lastly, Vien and Toussaint (2018) con-
sider optimising a function defined over an RKHS, while
we focus on optimising the conditional expectation of a
function with a goal to find the optimal control.

3 PROBLEM STATEMENT

We consider the optimisation problem of maximising a
function f : X → R over a given state space X ⊂ RD.
However, we assume no direct control over the space X .
Instead, we can only set control variables u ∈ U in a
given control space U ⊂ Rd. The application of a control
u results in a state x distributed according to x|u ∼ Pu.
In addition, both f and the mapping u 7→ Pu are un-
known. The algorithm can select up to n controls to find:

u? ∈ argmax
u∈U

E[f(x)|u] . (1)

The query point ut at time t is chosen causally depending
upon the past observations Dt−1 = {(ui,xi, yi)}t−1

i=1 .
For each ut, the algorithm is provided with observations
yt = f(xt) + ζt, where xt|ut ∼ Put . We assume that ζt
is zero-mean conditionally σζ-sub-Gaussian observation
noise, for some σζ ≥ 0. More precisely,

∀γ ∈ R, E[exp (γζt) |Ht−1] ≤ exp
(
γ2σ2

ζ/2
)

(a.s.),
(2)

where Ht−1 is the σ-algebra generated by the random
variables {(xi, yi)}t−1

i=1 and xt and the expectation holds
in the almost surely (a.s.) sense. One common metric to
evaluate the performance of any sequential algorithm is
the cumulative regret, defined in our context as:

Rn =
∑n

t=1
rt =

∑n

t=1
E[f(x)|u?]− E[f(x)|ut] .

A sublinear growth of Rn with n implies the time-
average regret Rn/n → 0 as n → ∞. The latter in-
dicates that the algorithm is able to get arbitrarily close
to the optimum over time, since mint≤n rt ≤ Rn/n.

Regularity assumptions: We assume f : X → R
to be an element of Hk, which is a reproducing ker-
nel Hilbert space (RKHS) (Schölkopf and Smola, 2002).
For a given positive-definite kernel k : X × X → R, a
RKHS Hk is a Hilbert space of functions with feature
map φk : X → Hk, inner product 〈·, ·〉k and norm
‖·‖k =

√
〈·, ·〉k such that f(x) = 〈f, k(·,x)〉k and

k(x,x′) = 〈φk(x), φk(x′)〉k for any f ∈ Hk and any
x,x′ ∈ X . We assume k is continuous and bounded on



X × X , with k(x,x) ≤ 1,∀x ∈ X , and that ‖f‖k ≤ b
for the objective function in Equation 1, where b > 0 is
known. Boundedness of k along the diagonal holds for
any stationary kernel, i.e., where k(x,x′) = k(x − x′),
e.g., the squared exponential kernel and the Matérn ker-
nel (Rasmussen and Williams, 2006).

Distribution assumptions: Let P denote the set of all
probability measures on X . With f ∈ Hk, we can define
the map:

ψ : P → Hk

P 7→
∫
X
k(·,x) dP (x) .

(3)

For any X -valued random variable x distributed accord-
ing to P ∈ P , we then have that:

EP [f ] := E[f(x)] = 〈f, ψP 〉k, ∀f ∈ Hk , (4)

where ψP := ψ(P ). If the kernel k is characteristic,
such as radial kernels (Sriperumbudur et al., 2011), ψ
is injective, defining a one-to-one relationship between
measures in P and elements of Hk. Therefore, ψ is re-
ferred to as the mean map, and ψP as the kernel mean
embedding of P (Muandet et al., 2016). Now we define
the map:

ϑ : U → Hk
u 7→ ψPu ,

(5)

where Pu represents a conditional probability distribu-
tion over X conditioned on u ∈ U . We then have that
ϑ(u) = E[k(·,x)|u], and:

∀f ∈ Hk, EPu [f ] := E[f(x)|u] = 〈f, ϑ(u)〉k . (6)

We assume that the state distribution Pu for a given con-
trol u marginalises over all other variables that could af-
fect the querying process, such as past states and effects
from the environment where the agent is. In addition, we
assume that the control space U is endowed with a pos-
itive definite kernel c : U × U → R with the associated
RKHS Hc and the feature map φc : U → Hc. Then
ϑ(u) traces out a set of mean embeddings in Hk, one
for each control u, via a conditional embedding operator
Θ : Hc → Hk, such that:

ϑ(u) = Θφc(u) . (7)

The mapping Θ : Hc → Hk can be seen as an ele-
ment of the Hilbert space Hk ⊗ Hc, whose reproducing
kernel is k(x,x′)c(u,u′).1 We assume c is continuous
and bounded, with c(u,u) ≤ 1,∀u ∈ U , and that Θ is
bounded, i.e., ‖Θ‖op ≤ B, where B > 0 is known.2

1This is a smoothness assumption on the conditional distri-
bution Pu and is equivalent to assuming that u 7→ EPu [f ] is an
element ofHc (Song et al., 2010a; Grünewälder et al., 2012b).

2‖·‖op denotes the operator norm: ‖Θ‖op :=

supg∈Hc:g 6=0
‖Θg‖k
‖g‖c .

4 ALGORITHM DESIGN

For a given f ∈ Hk, the knowledge of the conditional
distribution Pu would allow selecting points ut based
on the estimates for EPu [f ] = 〈f, ϑ(u)〉k. However, in
general, the true mapping u 7→ ϑ(u) is unknown. In-
stead, we learn a model u 7→ ϑ̂t(u) based on the samples
{ui,xi}ti=1. The conditional mean embedding operator
can be estimated by solving the optimization problem:

Θ̂t ∈ argmin
Θ:Hc→Hk

t∑
i=1

‖φk(xi)−Θφc(ui)‖2k + η‖Θ‖2HS ,

(8)
where η > 0 is a regularising constant.3 The solution of
Equation 8 is given by:

Θ̂t = Φk(Xt)Φc(Ut)
T
(
Φc(Ut)Φc(Ut)

T + ηI
)−1

,

where the columns of Φk(Xt) and Φc(Ut) contain the
features φk(xi) and φc(ui), 1 ≤ i ≤ t, respectively. Let
ct(u) = Φc(Ut)

Tφc(u) = [c(u1,u), . . . , c(ut,u)]T

and [Ct]ij = c(ui,uj), 1 ≤ i, j ≤ t. Then the sample
estimate of the conditional mean embedding becomes:

ϑ̂t(u) = Θ̂tφc(u) = Φk(Xt)(Ct + ηI)−1ct(u) . (9)

Then, for a given f ∈ Hk, EPu [f ] can be estimated by
〈f, ϑ̂t(u)〉k. However, since the objective function f is
also unknown, we need to estimate it as well. Given sam-
ples {xi, yi}ti=1, by the representer theorem (Steinwart
and Christmann, 2008), f can be estimated by:

µ̂t = Φk(Xt)(Kt + λI)−1yt ,

where λ > 0 is a regularising constant, [Kt]ij =
k(xi,xj), 1 ≤ i, j ≤ t and yt = [y1, . . . , yt]

T. Let
kt(x) = [k(x1,x), . . . , k(xt,x)]T. By the reproducing
property, we then have:

µ̂t(x) = kt(x)T(Kt + λI)−1yt .

Now EPu [f ] can be estimated by:

〈µ̂t, ϑ̂t(u)〉k = ct(u)T(Ct + ηI)−1Kt(Kt + λI)−1yt

= ct(u)T(Ct + ηI)−1µt , (10)

where we define:

µt = Kt(Kt + λI)−1yt = [µ̂t(x1), . . . , µ̂t(xt)]
T .

3‖·‖HS denotes the Hilbert-Schmidt norm: ‖Θ‖2HS :=∑∞
i,j=1〈fi,Θgj〉

2
k, where the fi’s form a complete orthonor-

mal system (CONS) forHk and the gj’s form a CONS forHc.



4.1 AN UPPER CONFIDENCE-BOUND BASED
ALGORITHM

The central idea is to maintain for each control u, a con-
fidence interval around the estimate 〈µ̂t, ϑ̂t(u)〉k of the
expected mean reward EPu [f ]. Appropriate widths for
the confidence intervals can be described in terms of the
Mahalanobis norm of the control features φc(u) with re-
spect to the regularized sample covariance matrix:

σt(u) := ‖φc(u)‖(Φc(Ut)Φc(Ut)T+ηI)−1 .

An application of the Sherman-Morrison formula yields:

σt(u) = η−1/2
√
c(u,u)− ct(u)T(Ct + ηI)−1ct(u) .

(11)
Now, given a set of past observations Dt−1 =
{(ui,xi, yi)}t−1

i=1 , the following defines an upper confi-
dence bound (UCB) acquisition function:

h(u|Dt−1) = 〈µ̂t−1, ϑ̂t−1(u)〉k + βt−1σt−1(u) , (12)

where βt−1 is a parameter of the algorithm. The the-
oretical results in Section 5.2 will show that βt−1 can
be set accordingly for h(u|Dt−1) to maintain a high-
probability upper bound on E[f(x)|u] for all u ∈ U .

Algorithm 1 presents the Conditional Mean Embeddings
Upper Confidence Bound (CME-UCB) algorithm, which
estimates the conditional mean embeddings as well as
builds an UCB acquisition function h(u|Dt−1) using the
estimates (Equation 12). At each iteration t, the al-
gorithm selects a control ut that maximises h(u|Dt−1)
(line 2). Such a rule inherently trades off between ex-
ploration (picking points with high uncertainty) and ex-
ploitation (picking points with high expected reward)
with the parameter βt−1 controlling this trade-off. In
line 3, the objective function f is queried at some loca-
tion xt|ut ∼ Put . After the query is done, the algorithm
is provided with an observation yt = f(xt) + ζt. In
line 5, first the estimate µ̂t of f is updated with the new
observation pair (xt, yt), and then µt, the vector evalu-
ations of µ̂t at the observed states is computed. Finally
in line 6, we update the estimate ϑ̂t(u) of the conditional
mean embedding and confidence width σt(u) with the
augmented data point (ut,µt). This process then repeats
for a given number of iterations n.

Computational complexity: Computing 〈µ̂t, ϑ̂t(u)〉k
involves inversion and multiplication of t-by-t matrices
(Equation 10), which take O(t3) time. Similarly, com-
puting σt(u) takes O(t3) time (Equation 11). Hence,
the per-update time complexity of CME-UCB (Algo-
rithm 1) is O(t3) which is no worse than standard BO al-
gorithms, e.g., GP-UCB (Srinivas et al., 2010). However,

Algorithm 1: Conditional Mean Embeddings Upper
Confidence Bound (CME-UCB)
Input: U : control space

n: total number of iterations
1 for t ∈ {1, . . . , n} do
2 ut = argmax

u∈U
〈µ̂t−1, ϑ̂t−1(u)〉k + βt−1σt−1(u)

3 (xt, yt)← Sample f at xt|ut ∼ Put

4 Dt = Dt−1 ∪ {(ut,xt, yt)}
5 Update µ̂t with (xt, yt) and compute µt
6 Update ϑ̂t(u) and σt(u) with (ut,µt)

using standard kernel approximation techniques like the
Nyström approximation (Drineas and Mahoney, 2005) or
the random Fourier features approximation (Rahimi and
Recht, 2008) and efficient incremental update schemes
(Gijsberts and Metta, 2013), the run-time complexity of
our algorithm can be reduced to a O(m2) per-update
cost, where m � n is the dimension of feature approxi-
mations (Gijsberts and Metta, 2013).

5 THEORETICAL RESULTS

This section presents our main theoretical results. We
split them in two parts, first presenting novel approxima-
tion bounds for learning with conditional mean embed-
dings. We then derive the resulting regret bounds for the
proposed CME-UCB algorithm.

5.1 ACTIVE LEARNING OF CONDITIONAL
MEAN EMBEDDING

First we consider building a confidence ball in the RKHS
Hk around the estimated conditional mean embedding
ϑ̂t(u) such that the true embedding ϑ(u) lies in it with
high probability. Equivalently, we focus on upper bound-
ing the distance ‖ϑ(u) − ϑ̂t(u)‖k between the condi-
tional mean embedding and its estimate as a function of
the uncertainty σt(u) around the estimate. Existing re-
sults (Song et al., 2010b) assume the data {ui,xi}ti=1 to
be i.i.d. and, hence, not valid for our purpose.

To this end, we define a measure of the information gain
about the conditional mean embeddings ϑ(u) as a func-
tion of the kernel c on U and the number of samples t:

γc,t = sup
U⊂U :|U|=t

1

2
log det

(
I + η−1CU

)
, (13)

where CU = [c(u,u′)]u,u′∈U denotes the gram matrix
computed at U. Now, we derive a novel upper bound on
‖ϑ(u) − ϑ̂t(u)‖k under non i.i.d. data as a function of
the uncertainty σt(u).



Theorem 1. Let k(x,x) ≤ 1 for all x ∈ X , c(u,u) ≤ 1
for all u ∈ U and ‖Θ‖op ≤ B. Then, for any δ ∈
(0, 1], with probability at least 1− δ, the following holds
uniformly over all t ≥ 0 and u ∈ U :

‖ϑ(u)− ϑ̂t(u)‖k ≤ βc,t(δ)σt(u) ,

where βc,t(δ) = B
√
η + 2

√
2 (γc,t + log(1/δ)).

Proof. Since Θ : Hc → Hk is a bounded linear operator,
we have g := ΘTf ∈ Hc for any f ∈ Hk (for the sake
of completeness we provide a short proof for this result
in the appendix, Lemma A.2). Hence,

〈f, ϑ(u)〉k = 〈f,Θφc(u)〉k = 〈g, φc(u)〉c = g(u) .

From Equation 9, we have:

〈f, ϑ̂t(u)〉k = ct(u)T(Ct + ηI)−1f t ,

where f t = [f(x1), . . . , f(xt)]
T. Let εt := k(·,xt) −

ϑ(ut) = k(·,xt)− E[k(·,xt)|ut]. Then,

f(xt) = 〈f, ϑ(ut)〉k + 〈f, εt〉k = g(ut) + 〈f, εt〉k .

Note that ‖E[k(·,xt)|ut]‖k ≤ E[k(xt,xt)|ut] ≤ 1, and
hence ‖εt‖k ≤ 2. Let Ft−1 be the sigma-algebra gen-
erated by the random variables {(ui,xi)}t−1

i=1 and ut.
Then 〈f, εt〉k is zero-mean 2‖f‖k-sub-Gaussian given
Ft−1. For any δ ∈ (0, 1], let αc,t(δ) = ‖ΘTf‖c

√
η +

2‖f‖k
√

2 (γc,t + log(1/δ)). Then by Durand et al.
(2018, Theorem 1), with probability at least 1 − δ, uni-
formly over all t ≥ 0 and u ∈ U , the following holds:∣∣∣〈f, ϑ(u)〉k − 〈f, ϑ̂t(u)〉k

∣∣∣ ≤ αc,t(δ)σt(u) .

Now the result follows from the definition of oper-
ator norm and the fact that ‖ϑ(u) − ϑ̂t(u)‖k =

supf∈Hk:‖f‖k≤1

∣∣∣〈f, ϑ(u)〉k − 〈f, ϑ̂t(u)〉k
∣∣∣.

Interpretation of the bound: In order to understand
the growth of ‖ϑ(u) − ϑ̂t(u)‖k with the number of
samples t, first we need to understand the behaviour
of γc,t. Let g : U → R be a (random) function
sampled from a zero-mean Gaussian process GP(0, c)
with covariance function c. Then γc,t denotes the max-
imum information gain about g after t noisy observa-
tions obtained by passing g through an i.i.d. Gaus-
sian channel N(0, η), and it measures the reduction in
the uncertainty of g after t noisy observations. γc,t is
a function of the kernel c and domain U . If c is the
squared exponential (SE) kernel and U ⊂ Rd is com-
pact and convex, then γc,t = O

(
(log t)d+1

)
(Srini-

vas et al., 2010). In this case, Theorem 1 implies that

‖ϑ(u) − ϑ̂t(u)‖k = Op (polylog t)σt(u).4 For the

Matérn kernel γc,t = O
(
t

d(d+1)
2ν+d(d+1) log t

)
, and there-

fore ‖ϑ(u)− ϑ̂t(u)‖k = Op
(
tα(log t)1/2

)
σt(u), where

α < 1/2. In fact, α < 1/4 as long as ν > d(d+ 1)/2.

Comparison with results under i.i.d. samples: Let
Cuu = E[φc(u)⊗ φc(u)] and Cxu = E[φk(x)⊗ φc(u)]
denote the (uncentered) covariance operator on U and
cross-covariance operator from U to X , respectively.5

Then, under i.i.d. samples {ui,xi}ti=1, the distance (in
RKHS norm) between the conditional mean embedding
CxuC

−1
uuφc(u) and its empirical estimate Φk(Xt)(Ct +

ηtI)−1ct(u) is of the order Op(1/
√
t) (Song et al.,

2010b, Theorem 1). Note that this estimator is differ-
ent from ϑ̂t(u) in the sense that the regulariser used in
the former expression is η multiplied by the number of
samples t, whereas we use η as the regulariser (Equa-
tion 9). In that case, as evident from Equation 11, we
can crudely upper bound σt(u) by 1/

√
ηt to recover the

Op(1/
√
t) scaling6 of Song et al. (2010b) up to a polylog

factor for the SE kernel and up to a tα factor, α < 1/2,
for the Matérn kernel. We refrain from comparing with
the results of Grünewälder et al. (2012a) since the latter
assumes Hk to be a finite dimensional RKHS, which is
generally not the case.

Application of the bound: For the purpose of this
work, Theorem 1 will be used to build a confidence ellip-
soid around the sample estimate of the conditional expec-
tation EPu [f ]. However, the applicability of Theorem 1
is much more general and might be of independent inter-
est. We point out one such simple application. Let P̂ tu
be a t sample empirical approximation to the conditional
distribution Pu in the sense that EP̂ tu [f ] = 〈f, ϑ̂t(u)〉k
for any f ∈ Hk. It then follows that:

‖ϑ(u)− ϑ̂t(u)‖k = sup
f∈Hk:‖f‖k≤1

∣∣∣EPu [f ]− EP̂ tu [f ]
∣∣∣ ,

which corresponds to the maximum mean discrepancy
(MMD) between distributions Pu and P̂ tu. Thus, Theo-
rem 1 can be used to provide a upper bound on the MMD
between a (conditional) distribution and its estimate un-
der non i.i.d. samples. The MMD, and more generally,
kernel mean embeddings have been used in many appli-
cations particularly in kernel density estimation (Smola
et al., 2007), two and one sample tests (Gretton et al.,

4Op(·) hides constants and dependencies on log(1/δ).
5f ⊗ g denotes the tensor product between f ∈ Hk and

g ∈ Hc, and for any h ∈ Hc satisfies (f ⊗ g)h = 〈g, h〉cf .
6Thanks to the smoothness of ϑ(u) (Equation 7), σt(u)

would decay faster thanO(1/
√
t), yielding a better rate of con-

vergence.

supplement.pdf{}{}{}#lemma.A.2{}{}{}


2012) and distributionally robust optimisation (Staib and
Jegelka, 2019).

5.2 CONCENTRATION BOUND

Equipped with the confidence ball around ϑ̂t(u) con-
structed in Theorem 1, we now focus on building a con-
fidence interval around the sample estimate 〈µ̂t, ϑ̂t(u)〉k
of 〈f, ϑ(u)〉k, the expectation of f under the conditional
distribution Pu. However, first we need a confidence ball
around the sample estimate µ̂t of the objective function
f such that f lies in it with high probability. To this end,
we describe the uncertainty around µ̂t(x) in terms of the
Mahalanobis norm of the state features:

st(x) = λ−1/2
√
k(x,x)− kt(x)T(Kt + λI)−1kt(x) .

We also define a measure of the information gain about
f as a function of the kernel k and number of samples t:

γk,t = sup
X⊂X :|X|=t

1

2
log det

(
I + λ−1KX

)
, (14)

where KX = [k(x,x′)]x,x′∈X denotes the gram matrix
computed at X. Lemma 2 provides a high probability
confidence interval around µ̂t(x) with its width being
proportional to st(x), and is well known in the BO lit-
erature (Durand et al., 2018).

Lemma 2 (Durand et al. (2018)). Let k(x,x) ≤ 1 for
all x ∈ X , ‖f‖k ≤ b and ζt be σζ-sub-Gaussian (Equa-
tion 2). Then, for any δ ∈ (0, 1], with probability at least
1− δ, uniformly over all t ≥ 0 and x ∈ X ,

|f(x)− µ̂t(x)| ≤ βk,t(δ)st(x) ,

where βk,t(δ) = b
√
λ+ σζ

√
2 (γk,t + log(1/δ)).

Now, in Lemma 3, we build a high probability confidence
interval around 〈µ̂t, ϑ̂t(u)〉k with its width proportional
to σt(u), the uncertainty around the approximate embed-
ding ϑ̂t(u). However, the width is inflated accordingly
to account for the uncertainty around µ̂t.

Lemma 3. Let k(x,x) ≤ 1 for all x ∈ X , c(u,u) ≤ 1
for all u ∈ U , ‖f‖k ≤ b, ‖Θ‖op ≤ B and ζt be σζ-sub-
Gaussian (Equation 2). For any δ ∈ (0, 1], let βc,t(δ)
and βk,t(δ) be as given in Theorem 1 and Lemma 2, re-
spectively. Then, with probability at least 1 − δ, the fol-
lowing holds uniformly over all t ≥ 0 and u ∈ U :∣∣∣〈f, ϑ(u)〉k − 〈µ̂t, ϑ̂t(u)〉k

∣∣∣ ≤ βtσt(u) ,

where βt := βt(δ) = bβc,t(δ/2) + βk,t(δ/2)
√

2γk,t.

Proof. By an application of triangle inequality, we have∣∣∣〈f, ϑ(u)〉k − 〈µ̂t, ϑ̂t(u)〉k
∣∣∣ ≤ ∣∣∣〈f, ϑ(u)− ϑ̂t(u)〉k

∣∣∣ +

∣∣∣〈f − µ̂t, ϑ̂t(u)〉k
∣∣∣. For the first term, by the Cauchy-

Schwartz inequality and Theorem 1, with probability at
least 1− δ, the following holds for all t > 0 and u ∈ U :∣∣∣〈f, ϑ(u)− ϑ̂t(u)〉k

∣∣∣ ≤ bβc,t(δ)σt(u) , (15)

since ‖f‖k ≤ b. For the second term, let f t =
[f(x1), . . . , f(xt)]

T. From Equation 9, we then have∣∣∣〈f − µ̂t, ϑ̂t(u)〉k
∣∣∣ =

∣∣ct(u)T(Ct + ηI)−1(f t − µt)
∣∣

≤ ‖(Ct + ηI)−1ct(u)‖2‖f t − µt‖2
= ‖Φc(Ut)

TV−1
t φc(u)‖2‖f t − µt‖2,

where Vt = (Φc(Ut)Φc(Ut)
T + ηI)−1. It is easy

to see that ‖Φc(Ut)
TV−1

t φc(u)‖2 ≤ σt(u), since
‖Φc(Ut)

TV
−1/2
t ‖op ≤ 1. Now by Lemma 2 and mono-

tonicity of βk,t, we have with probability at least 1− δ:

‖f t − µt‖2 ≤ βk,t(δ)

√√√√ t∑
i=1

s2
i (xi) ≤ βk,t(δ)

√
2γk,t ,

where the final step follows from
∑t
i=1 s

2
i (xi) ≤

log det
(
λ−1Kt + I

)
(Lemma A.1 in the Appendix) and

the definition of γk,t (Equation 14). Therefore, with
probability at least 1 − δ, for all t > 0 and u ∈ U :

∣∣∣〈f − µ̂t, ϑ̂t(u)〉k
∣∣∣ ≤ βk,t(δ)√2γk,tσt(u) . (16)

Now the result follows by combining Equation 15 and
Equation 16, and taking an union bound.

5.3 REGRET BOUND OF CME-UCB

In this section, we derive an upper bound on the cumula-
tive regret of CME-UCB (Algorithm 1).

Theorem 4. Fix any δ ∈ (0, 1]. Then, under the same
hypothesis of Lemma 3, CME-UCB with βt set as in
Lemma 3, enjoys, with probability at least 1 − δ, the re-
gret bound:

Rn ≤ 2βn

√
2(1 + 1/η)γc,n n .

Proof. Let
∣∣∣〈f, ϑ(u)〉k − 〈µ̂t, ϑ̂t(u)〉k

∣∣∣ ≤ βtσt(u) for
all t ≥ 0 and u ∈ U . Then the instantaneous regret at
time t ≥ 1 is:

rt := E[f(x)|u?]− E[f(x)|ut]
= 〈f, ϑ(u?)〉k − 〈f, ϑ(ut)〉k
≤ 〈µ̂t−1, ϑ̂t−1(u?)〉k + βt−1σt−1(u?)− 〈f, ϑ(ut)〉k
≤ 〈µ̂t−1, ϑ̂t−1(ut)〉k + βt−1σt−1(ut)− 〈f, ϑ(ut)〉k
≤ 2βt−1σt−1(ut) ,
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where the second inequality is due the choice of ut
(line 2 of Algorithm 1). Now, by Lemma 3, with proba-
bility at least 1− δ, we have:

Rn ≤
n∑
t=1

2βt−1σt−1(ut) ≤ 2βn

√
n
∑n

t=1
σ2
t−1(ut) ,

where the last step is due to the monotonicity of βt
and the Cauchy-Schwartz inequality. Now the re-
sult follows from the definition of γc,t (Equation 13)
along with the identities σ2

t−1(u) ≤ (1 + 1/η)σ2
t (u)

and
∑n
t=1 σ

2
t (ut) = log det

(
λ−1Cn + I

)
(Refer to

Lemma A.1 in the Appendix.).

Theorem 4 implies that the cumulative regret of CME-
UCB isOp

(
γk,n
√
γc,n n+ γc,n

√
n
)
. If k and c are both

squared exponential kernels, the regret is of the order
Õ(
√
n), and hence sublinear in n.7

Comparison with the GP-UCB algorithm: For g :=
ΘTf , we can write the observation yt as a noisy sam-
ple of g(ut) corrupted by zero-mean noise 〈f, εt〉k + ζt,

which is
√
σ2
ζ + 4b2 sub-Gaussian. Then, instead of es-

timating the conditional mean embedding, one can di-
rectly run GP-UCB (Chowdhury and Gopalan, 2017) as

ut = argmaxu∈U µ̃t−1(u) + β̃t−1σt−1(u) ,

with µ̃t(u) = ct(u)T(Ct + ηI)−1yt and

β̃t = bB
√
η +

√
σ2
ζ + 4b2

√
2(γc,t + log(1/δ)),

and achieve a regret bound of Op

(
β̃n
√
γc,n n

)
.

Since βt = Op
(
σζγk,t + b(

√
γk,t +

√
γc,t)

)
and

β̃t = Op

(√
(σ2
ζ + b2)γc,t

)
, Theorem 4 is tighter than

that of GP-UCB as long as b � σζ and γk,t �
√
γc,t.

Particularly, if the dimension D of the state space is
much smaller than the control space dimension d (e.g.
D � d/2 for the SE kernel), then there is a clear ad-
vantage of estimating the conditional mean embedding
using the observed states as an intermediate step, as
proposed in Algorithm 1. The learnt embedding also
encodes knowledge of the dynamics of the stochastic
query process, which can be applied to future tasks.

6 APPLICATION TO
LIKELIHOOD-FREE INFERENCE

In this section, we discuss an application of Theorem 1,
and the key insights it brings, to the likelihood-free infer-
ence problem. The goal is to estimate parameters u of a
physical system according to observed data, represented

7Õ(·) hides constants and log factors.

Figure 1: Regret comparison for KELFI with the UCB strat-
egy vs. i.i.d. data. Results are averaged over 5 trials. The
plot shows the mean regretRn/n with respect to the maximum
likelihood estimator for the simulator parameters. Shaded areas
correspond to ±1 standard deviation.

by summary statistics xo. The forward model of the sys-
tem is approximated by a simulation model x|u ∼ Pu

based on the given parameter settings u. In this case, the
likelihood p(xo|u) is given by:

p(xo|u) =

∫
x∈X

p(xo|x)p(x|u) dx (17)

The integral above is often intractable due to the
marginalisation over simulator outputs. Simulations can
also be expensive and time consuming, difficulting in-
ference even further. As proposed by Hsu and Ramos
(2019), for a symmetric simulator-output likelihood, i.e.
p(xo|x) = p(x|xo), such as the densities in the expo-
nential family, we can set p(xo|x) =: k(xo,x), for any
x,xo ∈ X . In this case, we have:

p(xo|u) = Ex[k(xo,x)|u] = 〈φk(xo), ϑ(u)〉k (18)

The method proposed by Hsu and Ramos (2019) still
used i.i.d. data {ut,xt}nt=1. With our results, however,
we can formulate an informative sampling approach.

Let ψP̂ tu(xo) := 〈φk(xo), ϑ̂t(u)〉k = kt(xo)
T(Ct +

ηI)−1ct(u). Then, applying Theorem 1 to Equation 18,
with probability greater than 1−δ, the following concen-
tration bound holds:

∀u ∈ U ,∀t ≥ 0, |p(xo|u)−ψP̂ tu(xo)| ≤ βc,t(δ)σt(u) ,

(19)
since ‖φk(xo)‖k =

√
k(xo,xo) ≤ 1, under our settings.

At every iteration, an algorithm can select:

ut ∈ argmax
u∈U

ψP̂ t−1
u

(xo) + βc,t−1σt−1(u) (20)

Following this strategy, the algorithm ap-
proaches the maximum likelihood estimator
u∗ ∈ argmaxu∈U p(xo|u) with regret bounded by
Theorem 4, setting βt := βc,t,∀t ≥ 0.

To demonstrate the approach, Figure 1 presents ex-
perimental results on learning the likelihod p(x|u) via
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KELFI (Hsu and Ramos, 2019) for the Lotka-Volterra
simulator. For this experiment, we use a dataset with
10,000 i.i.d. pairs of simulator parameters u and ob-
servation summary statistics x to form the control and
state spaces. We compare KELFI run with i.i.d. data,
as originally proposed, against data selected by CME-
UCB. The maximum likelihood estimator is computed
based on a CME model fit with the entire dataset. A
bound for ‖Θ‖op is also computed based on the same
full-data CME model (see Lemma B.1). As Figure 1
shows, KELFI run with CME-UCB is able to quickly
learn a likelihood model while approaching the maxi-
mum likelihood estimator. CME-UCB is able to find the
most informative data points within the first 50 iterations.

7 A PRACTICAL IMPROVEMENT

This section presents a modification to the CME-UCB
algorithm8 which renders significant improvements over
GP-UCB for optimisation problems involving unknown
conditional distributions. We start by presenting theoret-
ical results for the derivation of the improved CME-UCB
algorithm and proceed with experimental results.9

7.1 A REFINED CME-UCB

In its proposed version, the upper bound in CME-UCB
(Lemma 3) is still large when compared to the traditional
GP-UCB. As a result, performance improvements are
marginal in practical applications, as we demonstrate in
the next section. However, we are able to further tighten
the upper confidence bound in our main result, which
leads to an improvement over GP-UCB. Proofs are de-
ferred to Appendix C in the supplementary material.

Lemma 5. For any δ ∈ (0, 1], with probability at least
1− δ, uniformly over all t ≥ 0 and u ∈ U ,∣∣∣〈f, ϑ̂t(u)〉k − 〈µ̂t, ϑ̂t(u)〉k

∣∣∣ ≤ βk,t(δ)st(P̂ tu) .

The predictive variance s2
t (P̂

t
u) on the approximate con-

ditional P̂ tu is defined as:

s2
t (P̂

t
u) := λ−1vt(u)Tkt(Xt,Xt)vt(u) , (21)

where vt(u) := (Ct + ηI)−1ct(u) and kt(Xt,Xt) is a
GP predictive covariance matrix on the observed states:

kt(Xt,Xt) = Kt −Kt(Kt + λI)−1Kt

= λKt(Kt + λI)−1 .
(22)

8The results presented in this section have been obtained
post-submission.

9Code available at: https://github.com/rafaol/
active-learning-conditional-mean-embeddings

Combining Lemma 5 with Theorem 1, we obtain the fol-
lowing refinement over Lemma 3.

Proposition 6. For any δ ∈ (0, 1], let βc,t(δ) and βk,t(δ)
be as given in Theorem 1 and Lemma 2, respectively.
Then, with probability at least 1−δ, the following holds:

∀t ≥ 0, ∀u ∈ U ,
∣∣∣〈f, ϑ(u)〉k − 〈µ̂t, ϑ̂t(u)〉k

∣∣∣ ≤ βt(u) ,

where βt(u) := bβc,t(δ/2)σt(u) + βk,t(δ/2)st(P̂
t
u).

Using Proposition 6, we define a refined CME-UCB rule:

ut = argmaxu∈U 〈µ̂t−1, ϑ̂t−1(u)〉k + βt−1(u) .

We now derive a regret upper bound for this refined ver-
sion of the CME-UCB algorithm, which we refer to as
improved CME-UCB, or I-CME-UCB.

Theorem 7. Fix any δ ∈ (0, 1]. Then, under the same
hypothesis of Proposition 6, I-CME-UCB, enjoys, with
probability at least 1− δ, the regret bound:

Rn ≤ 2 (bβc,n(δ/2) + βk,n(δ/2))
√

2(1 + 1/η)γc,n n .

Comparison with GP-UCB. Theorem 7
implies an improved regret bound of order
Op
(
σζ
√
γk,nγc,n n+ bγc,n

√
n
)

for I-CME-UCB.
Now GP-UCB, when applied to our setting, achieves a
regret bound of order Op ((σζ + b)γc,n

√
n). Therefore

this improved bound for I-CME-UCB is tighter than
GP-UCB as long as γk,n ≤ γc,n.

7.2 EXPERIMENTAL RESULTS

We assess the performance of CME-UCB in compar-
ison to GP-UCB on a synthetic toy example. For
this experiment, we generate objective functions f =∑m
i=1 αik(·,xi) ∈ Hk by sampling each xi from a

uniform distribution U [0, 1] and αi from a Gaussian
α ∼ N(0,K), where [K]ij = k(xi,xj). To ensure
we find the global optimum of the acquisition func-
tion, the control space is finite U := {ui}nu

i=1. State
conditional distributions were synthesised as Gaussians
Pu := N(x̂(u),Σ), where x̂(u) := Au with a ran-
domly generated A. The state kernel k is set as the
squared exponential, while the control kernel is set as a
Matérn with smoothness parameter ν = 2.5 (Rasmussen
and Williams, 2006). The algorithms are configured with
δ = 0.2 and the norm bounds on f and Θ are computed
as the exact norms, which is possible due to a finite con-
trol space U (see Lemma B.1 in the supplement).

Figure 2 presents performance results for this experi-
ment. As the plot shows, I-CME-UCB presents a sig-
nificant improvement in terms of regret when compared
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Figure 2: Regret comparison with CME-UCB, its improved
version (I-CME-UCB) and GP-UCB on the toy experiment.
Results are averaged over 10 trials. The shaded areas corre-
spond to ±1 standard deviation.

to CME-UCB. While CME-UCB still outperforms GP-
UCB, its performance gains are only marginal when
compared to I-CME-UCB. The main reason for this im-
provement is due to a less exploratory behaviour by I-
CME-UCB coming from the tighter UCB.

8 CONCLUSION

In this paper we propose a novel method to optimise the
conditional expectation of functions over a state space
given a set of control variables, without any direct control
over the states. Under the RKHS regularity assumption
over the objective function, we first estimate the condi-
tional mean embeddings and derive novel approximation
bounds for these estimates under non i.i.d. samples. We
then make use of these embeddings to design a Bayesian
optimisation algorithm for maximising the conditional
expectation and provide its regret bound. In terms of ap-
plications, we demonstrate that the proposed theoretical
results lead to novel algorithms in likelihood-free infer-
ence. It may be possible to apply our method to other
problems such as two sample test, kernel density esti-
mation and distributionally robust optimisation, and we
leave those as possible future work (see Appendix D for
a discussion on applications to reinforcement learning).
Another important future direction is adapting CME-
UCB to efficiently choose a batch of controls (Desautels
et al., 2014; Contal et al., 2013).
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