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Abstract

Correlated topic models (CTM) are useful tools
for statistical analysis of documents. They ex-
plicitly capture the correlation between top-
ics associated with each document. We pro-
pose an extension to CTM that models the evo-
lution of both topic correlation and word co-
occurrence over time. This allows us to identify
the changes of topic correlations over time, e.g.,
in the machine learning literature, the correla-
tion between the topics “stochastic gradient de-
scent” and “variational inference” increased in
the last few years due to advances in stochastic
variational inference methods. Our temporal dy-
namic priors are based on Gaussian processes
(GPs), allowing us to capture diverse tempo-
ral behaviours such as smooth, with long-term
memory, temporally concentrated, and periodic.
The evolution of topic correlations is modeled
through generalised Wishart processes (GWPs).
We develop a stochastic variational inference
method, which enables us to handle large sets
of continuous temporal data. Our experiments
applied to real world data demonstrate that our
model can be used to effectively discover tem-
poral patterns of topic distributions, words as-
sociated to topics and topic relationships.

1 INTRODUCTION

Topic models (Blei et al., 2003) are a popular class of
tools to automatically analyse large sets of categorical
data, including text documents or other data that can
be represented as bag-of-words, such as images. Topic
models have been widely used in various domains, e.g.,
information retrieval (Blei et al., 2007; Mehrotra et al.,
∗The work was part of internship at Spotify.
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2013; Balikas et al., 2016), computational biology (Zhao
et al., 2014; Gopalan et al., 2016; Kho et al., 2017), rec-
ommender systems (Liang et al., 2017) and computer
vision (Fei-Fei & Perona, 2005; Kivinen et al., 2007;
Chong et al., 2009). In the original topic model by Blei
et al. (2003), which is also known as Latent Dirichlet
Allocation (LDA), the words in a document come from a
mixture of topics, where each topic is defined as a distri-
bution over a vocabulary. The variations in the mixtures
of topics across documents are captured by a Dirichlet dis-
tribution. However, a limitation is that it does not model
the correlation in the co-occurrence of topics. To over-
come this limitation, Blei & Lafferty (2006a) proposed
the correlated topic models (CTM), which extends LDA
with a correlated prior distribution for mixtures of topics.

An important piece of information associated with a tex-
tual document is when the document has been written. For
human writings, both the meanings of topics, popularity
and correlations among topics evolve over time. Model-
ing such evolution is very important for understanding
the topics in a collection of documents across a period of
time. For example, consider the topic machine learning.
The distribution of the words associated with it has been
gradually changing over the past few years, revolving
around neural networks, shifting towards support vector
machines, kernel methods, and finally again on neural
networks and deep learning. In addition, due to the evo-
lution of meaning, the topic machine learning probably
increasingly correlates with high performance computing
and GPU following the emerging of deep learning.

In this paper, we propose the dynamic correlated topic
model (DCTM), which allows us to learn the temporal dy-
namics of all the relevant components in CTM. To model
the evolution of the meanings of topics, we construct a
temporal prior distribution for topic representation, which
is derived from a set of Gaussian processes (GP). This
enables us to handle documents in continuous time and
to interpolate and extrapolate the topic representations at
unseen time points. In CTM, the prior distribution for



mixtures of topics is derived from a multivariate normal
distribution, in which the mean encodes the popularity of
individual topics while the covariance matrix encodes the
co-occurrence of topics. We extend the prior for mixtures
of topics into a dynamic distribution by providing a set of
GPs as the prior for the mean, and a generalised Wishart
Process (GWP) as the prior for the covariance matrices.
With DCTM, apart from assuming the individual docu-
ments at a given time points are independently sampled,
we can jointly model the evolution of the representations
of topics, the popularity of topics and their correlations.

A major challenge applying topic models to real world
applications is the scalability of the inference methods. A
large group of topic models come with the inference meth-
ods based on Markov chain Monte Carlo (often Gibbs
sampling in particular), which are hard to apply to cor-
pora of millions of documents. To allow the model to deal
with large datasets, we develop a stochastic variational in-
ference method for DCTM. To enable mini-batch training,
we use a deep neural network to encode the variational
posterior of the mixtures of topics for individual docu-
ments. For the GPs and the generalised Wishart Process,
we augment the model with auxiliary variables like in the
stochastic variational GP (Hensman et al., 2013) to derive
a scalable variational lower bound. As the final lower
bound is intractable, we marginalise the discrete latent
variables and apply a Monte Carlo sampling approxima-
tion with the reparameterisation trick, which allows us to
have a low-variance estimate for the gradients.

The main contributions of this paper are as follows:

• We propose a full dynamic version of CTM, which al-
lows us to model the evolution of the representations
of topics, topic popularity and their correlations.

• We derive a stochastic variational inference method
for DCTM, which enables mini-batch training and
is scalable to millions of documents.

Outline. Section 2 discusses related work. Section 3
presents our novel contribution and the generalised dy-
namic correlated topic model. Section 4 describes an effi-
cient variational inference procedure for our model, built
on top of sparse Gaussian processes. Section 5 presents
our experiments and validation of the model on real data.
Section 6 concludes with a discussion and future research
directions.

2 RELATED WORK

Static Topic Models. LDA was proposed by Blei et al.
(2003) as a technique to infer a mixture of topics starting

from a collection of documents. Each topic is a proba-
bility distribution over a vocabulary, and each topic is
assumed to be independent from one another. However,
such independent assumption usually does not hold in real
world scenarios, in particular when the number of topics
is large. The CTM (Blei & Lafferty, 2006a) relaxes this
assumption, allowing us to infer correlated topics through
the use of a logistic normal distribution. Similar mod-
els have been proposed with modifications to the prior
distribution of the topics, in particular using a Gaussian
process to model topic proportions while keeping topics
static (Agovic & Banerjee, 2010; Hennig et al., 2012).
However, the static nature of such models makes them
unsuitable to model topics in a set of documents ordered
by an evolving index, such as time.

Dynamic Topic Models. Topic models have been ex-
tended to allow for topics and words to change over time
(Blei & Lafferty, 2006b; Wang et al., 2008b), making use
of the inherent structure between documents appearing at
different indices. These models considered latent Wiener
processes, using a forward-backward learning algorithm,
which requires a full pass through the data at every itera-
tions if the number of time stamps is comparable with the
total number of documents. A similar approach was pro-
posed by Wang & McCallum (2006), with time being an
observed variable. Such approach allowed for scalability,
while losing the smoothness of inferred topics. Another
scalable approach was proposed by Bhadury et al. (2016),
to model large topic dynamics by relying on stochastic
gradient MCMC sampling. However, such approach is
still restricted to Wiener processes. Finally, Jähnichen
et al. (2018) recently proposed a model that allows for
scalability under a general framework to model time de-
pendency, overcoming the limitation of Wiener processes.
An attempt to model a latent correlation between topics
in discrete time stamps has been shown in (Song et al.,
2008), where topic correlation is computed using princi-
pal component analysis based on their closeness in the
latent space. However, to the best of our knowledge, no
general procedure has been proposed to explicitly model
dynamic topic models with evolving correlations over
continuous time.

Stochastic Variational Inference. We develop a scal-
able inference method for our model based on stochas-
tic variational inference (SVI) (Hoffman et al., 2013),
which combines variational inference with stochastic gra-
dient estimation. Two key ingredients of our inference
method are amortised inference and the reparameteri-
sation trick (Kingma & Welling, 2014). Amortised in-
ference has been widely used for enabling mini-batch
training in the models with local latent variables such as
variational autoencoder (Kingma & Welling, 2014) and



deep Gaussian processes (Dai et al., 2015). The reparam-
terisation trick allows us to obtain low-variance gradi-
ent estimates with Monte Carlo sampling for intractable
variational lower bounds. Note that SVI is usually ap-
plied to the models, where the data points are i.i.d. given
the global parameters such as Bayesian neural networks,
which does apply to GP and GWP. Although the log
marginal likelihood of GP and GWP cannot be easily ap-
proximated with data sub-sampling, we use the stochastic
variational sparse GP formulation (Hensman et al., 2013),
where an unbiased estimate of the variational lower bound
could be derived from data sub-sampling, which is essen-
tial for mini-batch training. Recently, Jähnichen et al.
(2018) developed a stochastic variational inference for
DTM, which is a dynamic version of LDA. This is dif-
ferent from our approach, which is a dynamic version of
CTM, where the correlations in the mixture of topics are
modelled dynamically.

3 DYNAMIC CORRELATED TOPIC
MODEL

DCTM is a correlated topic model in which the temporal
dynamics are governed by GPs and GWPs. Consider a
corpus W of documents associated with an index (for ex-
ample a time stamp). We denote the index of a document
as d and its time stamp as td. While taking into account
the dynamics underlying the documents, our goal is two-
fold: (i) infer the vocabulary distributions for the topics,
and (ii) infer the distribution of the mixture of topics. We
use continuous processes to model the dynamics of words
and topics, namely the Gaussian process. These incor-
porate temporal dynamics into the model, and capture
diverse evolution patterns, maybe in the forms of smooth,
with long-term memory or periodic.

Following the notation of the CTM (Blei & Lafferty,
2006a), we denote the probability of word w to be as-
signed to topic k as βwk, and the probability of topic k for
the document d as ηdk. DCTM assumes that a Nd-word
document d at the time td is generated according to the
following generative process:

1. Draw a mixture of topics ηd ∼ N (µtd ,Σtd);

2. For each word n = 1, . . . , Nd:

(a) Draw a topic assignment zn|ηd from a multino-
mial distribution with the parameter σ(ηd);

(b) Draw a word wn|zn,β from a multinomial dis-
tribution with the parameter σ(βzn),

where σ represents the softmax function, i.e., σ(z)i =

ezi/
∑K
j=1 e

zj . Note that the softmax transformation is

required for both ηd and βzn , as they are assumed to be
defined in an unconstrained space. The softmax transfor-
mation converts the parameters to probabilities, to encode
the proportion of topics for document d and the distribu-
tion of the words for a topic βzn , respectively.

Under this generative process, the marginal likelihood for
corpus W becomes:

p(W |µ,Σ,β) =

D∏
d=1

∫ ( k∑
zn=1

p(Wd|zn,βtd)p(zn|ηd)

)
p(ηd|µtd ,Σtd)dηd.

(1)

The individual documents are assumed to be i.i.d. given
the document-topic proportion and topic-word distribu-
tion.

The key idea of CTM is to relax the parameterisation of
η by allowing topics to be correlated with each other,
i.e., by allowing a non-diagonal Σtd . We follow the
same intuition as in (Blei & Lafferty, 2006a), using a
logistic normal distribution to model η. This allows the
probability of the topics to be correlated with each other.
However, especially in the presence of a long period of
time, we argue that it is unlikely that the correlations
among topics remain constant. Intuitively, the degree
of correlations among topics changes over time, as they
simply reflect the co-occurrence of the concepts appear-
ing in documents. Consider the correlation between the
topics “stochastic gradient descent” and “variational in-
ference”, which increased in recent years due to advances
in stochastic variational inference methods. We propose
to model the dynamics of the covariance matrix of the
topics, as well as the document-topic distribution and the
topic-word distribution.

Dynamics of µ, β and Σ. First, we model the topic
probability (µtd)

D
d=1 and the distribution of words for

topics (βtd)
D
d=1 as zero-mean Gaussian processes, i.e.,

p(µ) = GP(0, κµ) and p(β) = GP(0, κβ). We model
the series of covariance matrices (Σtd)

D
d=1 using gener-

alised Wishart processes, a generalisation of Gaussian
processes to positive semi-definite matrices (Wilson &
Ghahramani, 2011; Heaukulani & van der Wilk, 2019).
Wishart process are constructed from i.i.d. collections of
Gaussian processes as follows. Let f beD×ν i.i.d. Gaus-
sian processes with zero mean function, so that

fdi ∼ GP(0, κθ), d ≤ D, i ≤ ν (2)

and (shared) kernel function κθ, where θ denotes any pa-
rameters of the kernel function. For example, in the case
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Figure 1: The graphical model for DCTM.

of κθ = θ21 ∗ exp(−||x− y||2/(2 ∗ θ22)), θ = (θ1, θ2) cor-
responds to the amplitude and length scale of the kernel
(assumed to be independent from one another).

The positive integer-valued ν ≥ D is denoted as the
degrees of freedom parameter. Let Fndk := fdk(xn), and
let Fn := (Fndk, d ≤ D, k ≤ ν) denote the D×ν matrix
of collected function values, for every n ≥ 1. Then,
consider

Σn = LFnF
>
n L
>, n ≥ 1, (3)

where L ∈ RD×D satisfies the condition that the sym-
metric matrix LL> is positive definite. With such con-
struction, Σn is (marginally) Wishart distributed, and Σ
is correspondingly called a Wishart process with degrees
of freedom ν and scale matrix V = LL>. We denote
Σn ∼ GWP(V, ν, κθ) to indicate that Σn is drawn from
a Wishart process. The dynamics of the process of covari-
ance matrices Σ are inherited by the Gaussian processes,
controlled by the kernel function κθ. With this formula-
tion, the dependency between D Gaussian processes is
static over time, and regulated by the matrix V .

We consider L to be a triangular Cholesky factor of the
positive definite matrix V , with M = D(D + 1)/2 free
elements. We vectorise all the free elements into a vector
` = (`1, . . . , `M ) and assign a spherical normal distri-
bution p(`m) = N (0, 1) to each of them. Note that the
diagonal elements of L need to be positive. To ensure that,
we apply change of variable to the prior distribution of
the diagonal elements by applying a soft-plus transforma-
tion `i = log(1 + exp(ˆ̀

i)), ˆ̀
i ∼ N (0, 1). Hence, p(L)

is a set of independent normal distributions with diagonal
entries constrained to be positive by a change of variable
transformation.

Figure 1 shows the graphical model of DCTM.

Collapsing z’s. Stochastic gradient estimation with dis-
crete latent variables is difficult, often results into sig-
nificantly higher variance in gradient estimation even
with state-of-the-art variance reduction techniques. For-
tunately, the discrete latent variables z in DCTM can
be marginalised out in closed form. The resulting
marginalised distribution p(Wd|ηd,βtd) becomes a multi-
nomial distribution over the word-count in each document,

Wd ∼
Nd∏
n=1

Multinomial(1, σ(βtdηd)). (4)

This trick has also been used by Srivastava & Sutton
(2017) to derive a variational lower bound for LDA.

4 VARIATIONAL INFERENCE

Given a collections of documents covering a period of
time, we are interested in analysing the evolution of not
only the word distributions of individual topics but also
the evolution of the popularity of individual topics in
the corpora and the correlations among topics. With the
aim of handling millions of documents, we develop a
stochastic variational inference method to perform mini-
batch training with stochastic gradient descent methods.

4.1 AMORTISED INFERENCE FOR
DOCUMENT-TOPIC PROPORTION

An essential component of the SVI method for DCTM
is to enable mini-batch training over documents. After
defining a variational posterior q(ηd) for each document,
a variational lower bound of the log probability over the
documents can be derived as follows,

logp(W |µ,Σ,β)

≥
D∑
d=1

∫
q(ηd) log

p(Wd|ηd,βtd)p(ηd|µtd ,Σtd)

q(ηd)
dηd

=

D∑
d=1

(
Eq(ηd) [log p(Wd|ηd,βtd)]

− KL (q(ηd)||p(ηd|µtd ,Σtd))
)
. (5)

Denote the above lower bound as LW . As the lower
bound is a summation over individual documents, it is
straight-forward to derive a stochastic approximation of
the summation by sub-sampling the documents,

LW ≈
D

B

∑
i∈DB

(
Eq(ηd) [log p(Wd|ηd,βtd)]

− KL (q(ηd)||p(ηd|µtd ,Σtd))
)
,

(6)

where DB is a random sub-sampling of the document
indices with the size B. The above data sub-sampling
allows us to perform mini-batch training, where the gra-
dients of the variational parameters are stochastically ap-
proximated from a mini-batch. An issue with the above
data sub-sampling is that only the variational parame-
ters associated with the mini-batch get updated, which
causes synchronisation issues when running stochastic



gradient descent. To avoid this, we assume the variational
posteriors q(ηd) for individual documents are generated
according to parametric functions,

q(ηd) = N (φm(Wd), φS(Wd)), (7)

where φm and φS are the parametric functions that gener-
ate the mean and variance of q(ηd), respectively. This is
known as amortised inference. With this parameterisation
of the variational posteriors, a common set of parame-
ters are always updated no matter which documents are
sampled into the mini-batch, thus overcoming the syn-
chronisation issue.

The lower boundLW cannot be computed analytically. In-
stead, we compute an unbiased estimate of LW via Monte
Carlo sampling. As q(ηd) are normal distributions, we
can easily obtain a low-variance estimate of the gradients
of the variational parameters via the reparameterisation
strategy (Kingma & Welling, 2014).

4.2 VARIATIONAL INFERENCE FOR
GAUSSIAN PROCESSES

In DCTM, both the word distributions of topics β and
the mean of the prior distribution of the document-topic
proportion µ follow Gaussian processes that take the time
stamps of individual documents as inputs, i.e., p(β|t) and
p(µ|t). The inference of these Gaussian processes are
due to the cubic computational complexity with respect to
the number of documents. To scale the inference for real-
world problems, we take a stochastic variational Gaussian
process (Hensman et al., 2013, SVGP) approach to con-
struct the variational lower bound of our model. We first
augment each Gaussian process with a set of auxiliary
variables with a set of corresponding time stamps, i.e.,

p(β|t) =

∫
p(β|Uβ , t, zβ)p(Uβ |zβ)dUβ , (8)

p(µ|t) =

∫
p(µ|Uµ, t, zµ)p(Uµ|zµ)dUµ, (9)

where Uβ and Uµ are the auxiliary variables for β and µ
respectively and zβ and zµ are the corresponding time
stamps. Both p(β|Uβ , t, zβ) and p(Uβ |zβ) follow the
same Gaussian processes as the one for p(β|t), i.e., these
Gaussian processes have the mean and kernel functions.
The same also applies to p(µ|Uµ, t, zµ) and p(Uµ|zµ).
Note that, as shown in Equations (8) and (9), the above
augmentation does not change the prior distributions for
β and µ.

The variational posteriors of β and µ are constructed
in a special form to enable efficient inference (Titsias,
2009): q(β, Uβ) = p(β|Uβ)q(Uβ) and q(µ, Uµ) =
p(µ|Uµ)q(Uµ). Both q(Uβ) and q(Uµ) are multivari-

ate normal distributions, in which the mean and covari-
ance are variational parameters, q(Uβ) = N (Mβ , Sβ),
q(Uµ) = N (Mµ, Sµ). p(β|Uβ) and p(µ|Uµ) are condi-
tional Gaussian processes, as defined in (Hensman et al.,
2013). When β and µ are used in the down-stream distri-
butions, a lower bound can be derived,

log p(·|β) ≥ Eq(β)[p(·|β)]− KL (q(Uβ)||p(Uβ)) ,
(10)

log p(·|µ) ≥ Eq(µ)[p(·|µ)]− KL (q(Uµ)||p(Uµ)) ,
(11)

where q(β) =
∫
p(β|Uβ)q(Uβ)dUβ and q(µ) =∫

p(µ|Uµ)q(Uµ)dUµ.

4.3 VARIATIONAL INFERENCE FOR
WISHART PROCESSES

The generalised Wishart process for Σ is derived from
a set of GPs. At each time point, the covariance ma-
trix is defined as Σt = LFtF

>
t L
>. The vector stacking

each entry of the matrix Ft across all the time points,
fij = ((F1)ij , . . . , (FT )ij)), follows a Gaussian process
p(fij |t) = GP(0, κ). A stochastic variational inference
method for the used Wishart Process could be derived
similar to the GPs in the previous section. For each GP
p(fij |t) in the Wishart process, we augment it with a set
of auxiliary variables with a set of the corresponding time
stamps,

p(fij |t) =

∫
p(fij |uij , t, zij)p(uij |zij)duij , (12)

where uij is the auxiliary variable, zij is the correspond-
ing time stamps and p(fij |uij) is a conditional Gaussian
process, as defined in (Hensman et al., 2013). We de-
fine the variational posterior of fij to be q(fij ,uij) =
p(fij |uij)q(uij), where q(uij) = N (mij , sij). We
also define the variational posterior of ` to be q(`) =
N (m`, S`), where S` is a diagonal matrix. As the diag-
onal elements of L needs to be positive, we also apply
change of variable to the variational posterior of the di-
agonal elements, i.e., `m = log(1 + exp(ˆ̀

m)), q(ˆ̀
m) =

N (m`m , S`m).

Note that zβ , zµ and zij are variational parameters and
not random variables. For this reason, we will omit them
from the notation for convenience.

With such a set of variational posterior for all the entries
{fij} and `, a variational lower bound could be derived,
when Σ is used for some down-stream distributions,

log p(·|Σ) ≥

Eq(F )q(`)[p(·|Σ)]−
∑
i,j

KL (q(uij)||p(uij))

− KL (q(`)||p(`)) ,

(13)



where q(F ) =
∏
ij q(fij) with q(fij) =∫

p(fij |uij)q(uij)duij .

4.4 INFERENCE FOR DCTM

After deriving the variational lower bound for all the
components, we will show how the lower bounds of
the individual components can be assembled together
for a stochastic variational inference for DCTM. The
document-topic proportion for each document d follows
a prior distribution p(ηd|µtd ,Σtd), where the GP of µ
provides the mean and the generalised Wishart process
for Σ provides the covariance matrix at the time stamp td.
The word distributions for individual topics are used in
defining the distribution of individual words for each doc-
ument d, p(Wd|ηd,βtd). Combining the lower bounds
(10), (11) and (13), we can derive the complete variational
lower bound L of DCTM,

log p(W ) ≥
Eq(µ)q(F )q(L)q(β) [LW ]− KL (q(Uβ)||p(Uβ))

− KL (q(Uµ)||p(Uµ))−
∑
i,j

KL (q(uij)||p(uij))

− KL (q(`)||p(`))
= L.

The first term ofL can be further decomposed by plugging
in Equation (5),

Eq(µ)q(F )q(L)q(β) [LW ] =

D∑
d=1

(
Eq(ηd)q(βtd

) [log p(Wd|ηd,βtd)]

− Eq(ηd)q(µtd
)q(Ftd

)q(L) [KL (q(ηd)||p(ηd|µtd ,Σtd))]
)
.

(14)

This formulation allows us to easily perform mini-batch
training by data sub-sampling. For each mini-batch, we
randomly sub-sampling the data set and re-weight the
term Eq(µ)q(F )q(L)q(β) [LW ] according to the ratio be-
tween the size of dataset and the size of the mini-batch as
shown in Equation (6). Note that all variational parame-
ters of q(µ), q(F ), q(L), q(β) are optimised.

5 EXPERIMENTS

We validated the DCTM on real datasets in which the
documents are created over the course of a period of time.
We demonstrate the ability of DCTM in terms of capturing
not only the changes within a topic but also how the topic
changes themselves affect their relationships. Below we
present the details of the datasets used in this study to
compare DCTM against the state-of-art topic models.

5.1 DATASETS

We used three time-stamped text corpora with different
characteristics. Firstly, we used the State of the Union
(SotU) corpus, a long-term dataset with a small number
of documents for each time step (only one document
per time step). Secondly, we analysed the Department
of Justice (DoJ) dataset, which has a short short-span
but includes an high number of documents. Finally, we
validated our model on the NeurIPS dataset, that features a
medium-length time span and includes more documents at
every time point. The first and last dataset were also used
by Jähnichen et al. (2018) to validate their dynamic topic
models. We applied simple preprocessing techniques
used in prior works to all three datasets: text tokenisation,
punctuations removal, and filtering the stop words from a
standard list of English stop words.1 Further details about
each dataset are provided below.

State of the Union corpus (1790-2018). The corpus
represents an annual address by the President of the
United States before a joint session of congress. The
dataset includes one document per year, from 1790 to
2018 (229 years). After our preprocessing, our vocabu-
lary includes 1112 words. Finally, we split the data into
170 documents as training and 57 documents as test data.

Department of justice press releases (2009-2018).
The dataset includes 13087 press releases from the De-
partment of Justice from 2009 to 2018, for a total of 115
unique time points. It includes information such as crimi-
nal cases, actions taken against felons or general current
administration updates. Our preprocessing leads to 1801
unique tokens. Finally, the documents were split into
9674 for training and for 3413 testing.

NeurIPS conference papers (1987-2015). The dataset
contains 5804 conference papers from 1987 to 2015 (29
years), with an average of 34 papers per year. Our prepro-
cessing produces 1047 tokens. We used 4237 documents
as training data and 1567 as test data.

5.2 MODEL COMPARISON

We compared our approach with the state-of-the-art topic
models and evaluate the generalisation on unseen docu-
ments. We compare with the following models, including
both static and dynamic models: (i) LDA model with stan-
dard online mean-field variational inference1 (Hoffman
et al., 2010); (ii) ProdLDA, an autoencoding inference
method to learn an LDA model (Srivastava & Sutton,
2017). Similar to correlated topic models, ProdLDA ap-
proximates the η distribution using a logistic normal;

1Available in scikit-learn library.



(iii) CTM using variational inference (Blei & Lafferty,
2006a), where we also add the word-topic assignment
(the parameter β) as a variational parameter, using the
same base framework as our model (but without the tem-
poral component); (iv) FastDTM, an implementation of
MCMC-based dynamic topic model that relies on latent
Wiener processes (Bhadury et al., 2016); (v) gDTM, a con-
tinuous dynamic topic model that generalises the DTM,
and includes a temporal dynamics to the word-topic dis-
tribution parameter β (Jähnichen et al., 2018).

5.3 IMPLEMENTATION DETAILS

All datasets were divided into two disjoint parts, namely
training and test set, using 75% of documents for training
and 25% for testing. To model a real world scenario, doc-
uments in the training data are associated with a temporal
index disjoint to the index of the test documents.

In our experimental setting, we optimised the static mod-
els (LDA, ProdLDA, and CTM) for documents belonging
to our datasets disregarding the actual temporal index that
each document is associated with. Since FastDTM does
not handle continuous dynamics, we discretised the index
points and assigned each index point to the closest bin,
i.e., we split the datasets into 10 bins and grouped together
adjacent time points. As the model does not allow us to
predict during unseen time steps, we compute our metrics
by simply matching the discretisation of the index points
for the test set.

Model Parameters. In our experiments we used a
Matérn kernel (with parameter 1/2) for β, as we allow
topic to quickly incorporate new words (especially useful
with neologisms). To model µ and f we instead used a
squared exponential kernel, as we allow more freedom to
topic probability and their correlation to change rapidly.

We initialised amplitude and length scale of kernels as 1
and 0.1 respectively, which are then learnt in our model
using the approximate empirical Bayes approach (Maritz,
2018).

Hyperparameters. Our models are implemented using
TensorFlow (Dillon et al., 2017). Experiments were con-
ducted using Adam optimiser with learning rate 0.001 and
2000 iterations. To validate the output of topic models
based on variational inference we compute the perplex-
ity using the exponential the average negative predictive
log-likelihood for each word (Blei et al., 2003), where the
ELBO for a test document d∗ is computed using Equa-
tion (14). We experimented with different number of
topics, and selected the best ones for each dataset (30 for
NeurIPS and DoJ, 20 for SotU). We also experimented
with a different number of inducing points for the three

Table 1: Average per-word perplexity on test data of three
real world datasets (the lower the better).

Dataset LDA ProdLDA CTM FastDTM gDTM DCTM (ours)

SotU 1340.82 896.15 1012.79 1317.72 1263.41 790.12
DoJ 663.70 873.62 1340.73 890.65 2248.93 440.41

NeurIPS 1033.18 1081.6 1028.54 874.06 3581.72 505.88

components β, µ and f , which control the complexity
of the variational posterior. We used 15/20/15 (NeurIPS),
10/10/10 (DoJ), 6/6/6 (SotU).

5.4 RESULTS

We report both quantitative and qualitative results on the
three datasets previously described.

Quantitative Analysis. We report the per-word per-
plexity computed on the held-out test set of different
models described in Section 5.2. The per-word perplexity
is used as a measure of best fit to compare models and is
computed as an exponent of the average negative ELBO
per word (Wang et al., 2008a).

Table 1 shows the average per-word perplexity of our
proposed model and various baselines on unseen test doc-
uments. We see that by considering temporal dynam-
ics, our proposed model generalises better and captures
the presence of correlated topics. In general, our pro-
posed DCTM model outperforms all baselines on the
three datasets considered in our evaluation, by capturing
the change in topics over time. Amongst the three datasets
considered in this study, SotU dataset covers the longest
time span and includes only one document per time point.
In such case we argue it is of fundamental importance
for topic models to capture time dynamics. However, we
note how a static topic model (ProdLDA) performs al-
ready quite well in this case by considering a perplexity
score. This is related to the fact that, by considering a
single document at each time point, ProdLDA is able to
fix different topics and to correctly assign documents to
the relevant topics (however without information on the
temporal aspect of the topics). In such case extreme case
of a single document per time point, we note how DCTM
can choose to optimise for different topics (of which their
proportion change over time but the words describing
them stay constant) or to consider fixed topic proportions
over time with words that change.

Next, the performance of our model on the DoJ corpus
demonstrates the robustness of our model. While the
performance of our proposed DCTM is better than the
baselines, the perplexity values are also quite close to
a simple LDA. This is somewhat expected because the
dataset spans over a relatively short time period and we



Table 2: Top 30 most probable words associated to Topic
2 (neural networks), Topic 15 & 19 (neuroscience). These
topics are highly correlated (as shown in Figure 3). This is
also reflected by the common words shared among them
(such as those highlighted).

Topic num Words

2
layer unit hidden architectur input deep hinton output network weight
connect recept net pool convolut modul activ represent propag epoch
competit learn train gate unsupervis neural sigmoid code recurr sensori

15
voltag channel signal spike auditori circuit frequenc filter sound chip
nois movement veloc record sourc decod motor analog gain delay
current modul power conduct motion adapt respons tempor period neuron

19
neuron synapt fire cortic cortex stimulus cell synaps spike stimuli
popul neurosci respons tune recept sensori orient biolog oscil correl
mechan visual brain activ potenti connect spatial domin modul pattern

suspect that topics do not change much, while having a
low correlation as documents are relatively short and only
focused on a particular topic. The poor performance of
CTM and gDTM models on this dataset confirms our ex-
pectations. Our results demonstrates how DCTM adapts
well to datasets including mostly static topics.

We observe one of the biggest performance gain of using
our model on the NeurIPS dataset, which spans quite a
long-time and has are many documents associated with ev-
ery time point. DCTM is able to correctly handle datasets
when topics share similarities, as it is the case for the
NeurIPS dataset, but the topics themselves may be iden-
tified by different words. Indeed, modeling the covari-
ance structure between the topics through the use of a
Wishart process allows not only to model topics correla-
tion, but also their evolution over time. Particularly for the
NeurIPS dataset this has shown to be strongly effective
(as the dataset spans over almost 30 years), and topics are
associated to possible different words (for example based
on neologisms, or such as names of novel models).

Qualitative Analysis on NeurIPS dataset. Figure 2
shows a sample of the most relevant topics over time,
computed based on distribution of the topics for each doc-
ument. The topic distribution shows a decreasing trend
in neural networks popularity after early 1990. Unfortu-
nately, our dataset does not include documents after 2015,
when the topic began popular again. Also, consistently
with our prior knowledge, there is a decreasing trend for
topics associated with 15 and 19. Both of these topics
show a similar temporal pattern. By inspecting the words
associated with them (Table 2), we can indeed interpret
such topics as both related to the area of neuroscience,
which indeed began have less presence in the conference
especially after the year 2000.

2This is calculated as 〈σ(ηt∗)〉p(ηt∗ |D), where p(ηt∗ |D) =∫
p(ηt∗ |µt∗ ,Σt∗)p(µt∗ |D)p(Σt∗ |D)dµt∗dΣt∗ .

Figure 2: Evolution of the mean of the mixture of top-
ics σ(η) for a few selected topics across the time span
predicted from the trained DCTM.2 Topics 15 and 19 are
both associated with neuroscience, which exhibit a de-
creasing trend over time. Similarly there is a decreasing
trend for neural networks after 1990.

To understand the behaviour of topics over time we can
use topic correlations as learnt by our model (Figure 3).
The plot shows the temporal correlation between topic 19
(associated with neuroscience) and other topics, such as
topic 15 (again, mostly associated with neuroscience) and
topic 2 (neural networks). Consistently with their inter-
pretation, topic 15 and 19 exhibit high level of correlation
across time. Also, we note the increasing correlation with
topic 2, associated with neural networks.

To better analyse this behaviour, Table 2 includes a list of
the most relevant words for those topics. We highlighted
the words shared among at least two of those topics. The
table shows two fundamental features of the our model.
First, our model is robust enough to discriminate between
different topics that share the vocabulary (such as topics 2
with respect to both 15 and 19). Indeed, we point out how
the literature on neural networks has been using words
traditionally connected to the field of neuroscience. At the
same time, DCTM is able to consider multiple topics with
similar interpretation (such as topics 15 and 19), hence
splitting facets of a single topic (which may be the case
when the number of topics specified as a hyperparameter
is too high).

Figure 4 shows another topic, which is related to the field
of topic modeling. While the probability associated with
this topic is stable over time (topic 11 in Figure 2), we
note how the words associated with this topic change
drastically over time. In particular, after their introduction
in 2003, topic modeling has been referred to through the
use of words such as lda, dirichlet, and topic. Before
this date the model identified other words associated with
this topic (or a closely related one), such as mixture and
expert. Indeed, there is a strong connection between topic



Figure 3: Evolution of the correlations between Topic
19 (neuroscience) and a few selected topics from DCTM.
The solid line shows the 50th percentile and shaded area
show the credible interval between 5th and 95th percentile.
Topic 15 is consistently positively correlated with topic 19,
which shares lost of similar words. The correlation with
Topic 2 slowly increases over time. Instead, correlations
with other topics are small and close to zero (dashed line),
as they are mostly identified by disjoint sets of words.

modeling and mixture models, as the former can be seen
as a particular case of the latter.

Modeling dynamics. We remark that we did not exper-
iment with the choice of the kernel functions and their
parameters. However, we argue that in real use cases it is
better and beneficial to tune the model based on the data
at hand to account for different temporal dynamics, pos-
sibly at the word level. Indeed, while in our experiment
we included a single copy of the kernel for each word,
it would be beneficial to allow for each topic to evolve
according to a particular behaviour. We note that this is
readily available in our framework, as it is general in the
choice of the kernel function.

6 CONCLUSION

In this paper, we developed a novel dynamic correlated
topic model that incorporates a time dynamics for each of
the word-topic distribution, topic proportions, and topic
correlations. Our model incorporates dynamics through
the use of continuous processes, namely Gaussian and
Wishart processes. We developed a stochastic variational
inference for DCTM, which enables us to scale for large
collections of documents. The inference of the covari-
ance structure between the topics over time is beneficial

Figure 4: Evolution of word-topic probabilities over time
for a topic. This is computed from the posterior predictive
probability β. The top figure shows the 50th percentile in
solid line and the credible interval between 5th and 95th
percentile as shaded areas. The figure below shows the
stacked word mean probability for a few words. While the
word topic appears only after 2000, the model associate
the words mixture and expert to this topic. These words
have decreasing trends, balanced with the increasing trend
of lda (after its introduction in 2003), latent and dirichlet.
Such models have been mostly applied to textual data
(reflected in the high probability of document and word).

to understand the similarity between topics. Modeling
topic correlation is also fundamental in real use cases, as
shown in our experiments, where topics are expected to
be related. By considering such structure between topics,
the model benefits as it improves statistical robustness
and performance.

A current limitation of this approach is the long-term
forecasting, due to the limitation of the stationary ker-
nels used in DCTM. A solution would be to extend the
model to use more sophisticated time-series models, such
as forecasting and state-space models, which provide a
general framework to analyse deterministic and stochastic
dynamical systems (Hyndman & Athanasopoulos, 2018).

Finally, our proposed approach is able to scale to large
datasets for two reasons. First, the use of sparse Gaussian
process decreases the computational cost during infer-
ence. Secondly, using the stochastic variational inference
method introduced, we are able to perform mini-batches
on large datasets in a parallel.
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