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Abstract

The computational efficiency of approximate
Bayesian computation (ABC) has been im-
proved by using surrogate models such as Gaus-
sian processes (GP). In one such promising
framework the discrepancy between the sim-
ulated and observed data is modelled with a GP
which is further used to form a model-based
estimator for the intractable posterior. In this ar-
ticle we improve this approach in several ways.
We develop batch-sequential Bayesian experi-
mental design strategies to parallellise the ex-
pensive simulations. In earlier work only se-
quential strategies have been used. Current
surrogate-based ABC methods also do not fully
account the uncertainty due to the limited bud-
get of simulations as they output only a point
estimate of the ABC posterior. We propose a nu-
merical method to fully quantify the uncertainty
in, for example, ABC posterior moments. We
also provide some new analysis on the GP mod-
elling assumptions in the resulting improved
framework called Bayesian ABC and discuss
its connection to Bayesian quadrature (BQ) and
Bayesian optimisation (BO). Experiments with
toy and real-world simulation models demon-
strate advantages of the proposed techniques.

1 INTRODUCTION

Approximate Bayesian computation (Beaumont et al.,
2002; Marin et al., 2012) is used for Bayesian inference
when the likelihood function of a statistical model of in-
terest is intractable, i.e., when the analytical form of the
likelihood is either unavailable or too costly to evaluate,
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but simulating the model is feasible. The main idea of the
ABC rejection sampler (Pritchard et al., 1999) is to draw
a parameter from the prior, use it to simulate one pseudo-
data set and finally accept the parameter as a draw from an
approximate posterior if the discrepancy between the sim-
ulated and observed data sets is small enough. While the
computational efficiency of this basic ABC algorithm has
been improved in several ways, many models e.g. in ge-
nomics and epidemiology (Numminen et al., 2013; Mart-
tinen et al., 2015), astronomy (Rogers et al., 2019) and
climate science (Holden et al., 2018) are expensive-to-
simulate which makes the sampling-based ABC infer-
ence algorithms infeasible. To increase sample-efficiency
of ABC, various methods using surrogate models such
as neural networks (Papamakarios and Murray, 2016;
Papamakarios et al., 2019; Greenberg et al., 2019) and
Gaussian processes (Meeds and Welling, 2014; Wilkin-
son, 2014; Gutmann and Corander, 2016; Jirvenpéd et al.,
2018, 2019) have been proposed.

In one promising surrogate-based ABC framework the dis-
crepancy between the observed and simulated data, a key
quantity in ABC, is modelled with a GP (Gutmann and
Corander, 2016; Jarvenpii et al., 2018, 2019). The GP
model is then used to form an estimator for the (approx-
imate) posterior and to adaptively select new evaluation
locations. Sequential Bayesian experimental design (also
known as active learning) methods to select the simula-
tion locations so as to maximise the sample-efficiency
were proposed by Jarvenpid et al. (2019). However, their
methods allow to run only one simulation at a time al-
though in practice one often has access to multiple cores
to run some of the simulations in parallel. In this work,
we resolve this limitation by developing batch simulation
methods which are then shown to considerably decrease
the wall-time needed for ABC inference. Our approach
(Section 4) is based on a Bayesian decision theoretic
framework recently developed by Jarvenpii et al. (2020)
who, however, assumed that expensive and potentially
noisy likelihood evaluations are available (e.g. by syn-



thetic likelihood method (Wood, 2010; Price et al., 2018)).this article we assume a suitable discrepancy function is
In this work we instead focus on ABC scenario where onlyalready available (e.g. constructed based on expert opin-
less than a thousand model simulations can be obtainedon, earlier analyses on other similar models, pilot runs
. S . ordistance measures between raw data sets (Park et al.,
In practice the posterior distribution is often summarised i S

- . . . 016; Bernton et al., 2019)) and focus on approximating
for further decision making using e.g. the expectation an . L . .

: X any given ABC posterior in (2) as well as possible given
variance. When the computational resources for ABC o : i
. o X . only a limited budget of simulations.
inference are limited, it would be important to assess the
accuracy of such summaries, but this has not been done
in earlier work. As the second main contribution of this 3 BAYESIAN ABC FRAMEWORK
article, we devise an approximate numerical method to _ _
propagate the uncertainty of the discrepancy, representéfe describe our Bayesian ABC framework here. The
by the GP model, to the resulting ABC posterior sum-main difference to _earller yvork (Jarvenpaa et al., 2019)
maries (Section 5). Such uncertainty estimates are usefi$ that we use a hierarchical GP model and, most im-
for assessing the accuracy of the inference and guidingortantly, explicitly quantify the uncertainty of the ABC
the termination of the inference algorithm. We call the posterior instead of resorting to point estimation. The
resulting improved framework dayesian ABGn anal- ~ Main idea is to explicitly use another layer of Bayesian
ogy with the related problems &fayesiamuadrature and  inference to estimate the ABC posterior in (2). The previ-
Bayesiarpptimisation. ously simulated discrepancy-parameter-pairs are treated

as data to learn a surrogate model, which will predict the

We also provide new insights on the underlying GP modyjis renancy for a given parameter value. The surrogate
elling assumptions (Appendix A.2) and on the CoNNeC, e s further used to form an estimator for the ABC

tions betwe.en Bayesian ABC, BQ a”‘{' B_O to irm’rovegosterior in (2) and to adaptively acquire new data.
understanding of these conceptually similar technique

(Section 6). Finally, we demonstrate the ABC posterior'Ve assume that each discrepancy evaluation, denoted by
uncertainty quanti cation and show that Bayesian ABC i at the corresponding parametey is generated as
framework is well-suited for parallel simulations using

L _ o iid .2y,

several numerical experiments (Section 7). =ECD+ TN 0 ) ©)
where 2 > 0is the variance of the discreparicyTo

2 BRIEF BACKGROUND ON ABC encode the assumptions of smoothness and e.g. potential

quadratic shape of the discrepancy, in this work its
We denote the (continuous) parameters of the statisticalnknown mean functioh is given a hierarchical GP prior

modgl of interest w_ith 2 RP. The po;terior dis- fi GP (mo( )ik (: %);
tribution, that describes our knowledge ofiven some %t
observed data, 2 X and a prior density ( ), can then mo( ), hi(); N (b;B); (4)
be computed using Bayes' theorem =1
(jxo)= R () (Xo_l ) o (1) Wwherek : 21 R s a covariance function with hy-
(9 (xoj 9d perparameters andh; : ! R are basis functions

If the likelihood function (xoj ) is intractable, eval- (Poth assumed continuous). We marginalise (4), asin
uating (1) even up-to-normalisation becomes infeasibld2'Hagan and Kingman (1978), and Riihiméki and Vehtari
Standard ABC algorithms such as the ABC rejection sam(2014), to obtain the GP prior

pler instead target the a%proxmate posterior f GP (h( )bk (; 9+ h( ) Bh(9Y: (5

(B x "(Xoix) (xj )dx

whereh( ) 2 R" is a column vector consisting of the

asc( jXo), R

(9 ¢ "(Xeix9 (x3 Hdxod basis function$); evaluated at . For now, we assume the
(2)  GP hyperparameters, ( 2; )are xed and omit
where «(XojX) = 1( ) ». Other choices of ker- from our notation for brevity.
nel - are also possible (Wilkinson, 2013). Above, Given training dataD; , f( i; i)g'.,, we obtain

X211 R, isthe discrepancy function used to com-¢ iD GP (mi( );a( ; 9),
pare the similarity of the data sets ahds a threshold 1 .
parameter. Small produces good approximations but ~ Mt( ), Ke( )K= «+ R{() (6)
renders sampling-based ABC methods inef cient. Awell-™ 1y this modelling assumption may seem strong, it has

constructed discrepancy function is an important ingrepeen used successfully before. We now give a justi cation for
dient of accurate ABC inference (Marin et al., 2012). In this modelling choice in Appendix A.2.



al 9, k(; 9 k(K k(9 sequential designs, where one simulation is run at a time,
+RI()B L+ HK, H] R 9. (7 were developed by Jarvenpéaa et al. (2019). In practice,
to decrease the wall-time needed for the inference task,
where [K¢Jj . k(i; j) + Lizj 2, k() one could run some of the simulations in parallel. In the
k(5 a)iink(C s )7y ¢, (a5iir ¢)” and following, we apply Bayesian experimental design theory
1 1> 1 1Rhy- (Chaloner and Verdinelli, 1995; Jarvenpéaa et al., 2020)
(o (B IHHIGHTT (HK S+ B Th); (8) for the (synchronous) batch setting whérsimulations
Ri( ), H() HK k() (9)  are simultaneously selected to be computed in parallel.
Above , is the generalised least-squares estintateis
ther  t matrix whose columns consist of basis function 4.1 DECISION-THEORETIC APPROACH
values evaluated at.¢, 1.¢isap tmatrix,andH( ) 2 . L, )
R’ is the corresponding vector of test pointWe also de- consider aloss function: D! R. so that( asc;d)
ne s?( ), a( ; )and IfDI , GP(M( )icl ;9. quantl_es the penalty of reportmg 2 D as our ABC
For further details of GP regression, see e.g. Rasmussd}PSterior when the true one isgc 2 D. GivenDy,
and Williams (2006). the one-batch-ah_ead Bayes-optimal sele_ctlon of the next
batch ofb evaluations ®'=[ $:::: °Plisthen
If the true discrepancy mean functibrand the variance

opt_ ; -
of the discrepancy 2 were known, the ABC posterior -argmin L( )i where ()
would be ) Le( )=E | p, MnEsp o I( fee;d) : (16)
Cy RO =Y g PP gen TP ey
EETTT ) (D= d” oo )

where () is the Gaussian cdf. This fact follows from (2) . .
; : : ! In (16), we calculate an expectation over future discrep-
and the Gaussian modelling assumption (3). In practice

. ) luati = Dl > atl i
s unknoun butour knowiedge sbckis represenied 1 ASIOTS = 10l o) tloestons L
by the posteriof jD¢ fD‘ . Since the ABC posterior g they ' P

T a ~ tion is taken of thdBayes risk_ ( {3![ p ) resulting from
asc In (10) depends of, itis also a random quantity the nested decision problem of choosing the estinttor

certainty inf through the mapping 7! 5. DiviaD , f( ;; ;)g”;. While the main quantity
Computing the distribution ofj\BC is dif cult due to of interestfin the Baye_sian AB_C fr_arnework is the ABC
its nonlinear dependence érand because is in nite- ~ POSIENON gc in (10), in practice it is desirable to use

dimensional. However, the pointwise mean, variance an@ loss functiori"based on the unnormalised distribution
. 1 1 f

quantiles of the unnormalised ABC posterior ~asc- Such a simpli cation, also used by Kandasamy
‘ . etal. (2017); Sinsbeck and Nowak (2017); Jarvenpaa et al.
~aec( ), () f()=n) (11) (2019, 2020), allows ef cient computations. Furthermore,

i.e. the numerator of (10), can be computed analyticallyevaluations that are optimal for estimatifngs. will be
as shown by Jarvenpaa et al. (2019) in the case of a zeiaoformative about the related quantit)f&BC.
mean GP prior. Itis easy to see that their formulas also

R
. 2 H ~f 2
hold for our more general GP model in (4). For example,cons'de"‘ loss functiorTz , (agc( ) dC )"d

E ¢ _ _ 12 between the unnormalised ABC poster'reiréc and its
rio:(FaecC D= () Ca))s (12) estimatord (both supposed to be square-integrable in
a( ), (" m( )= 2+s(); (13) i.e. ~hge;@ 2 LZ() ). Then the optimal estimator is
f _ " — . the mean in (12) (Sinsbeck and Nowak, 2017; Jarven-
(= = =n); (14 . :
med jo, (~asc( ) OC" mCD=0)5 (14) paa et al., 2020). If we instead conside loss'y
wheremedis the marginal (i.e. elementwise) median. j~LBC( ) d()jd (SUppOSi”WLBc?GZ L1() ),
While these formulas are useful, they do not allowthen the marginal median in (14) is the optimal estimator.
Rhe to assess the uncertainty of e.g. posterior meagorresponding Bayes risks, denotetiandL ™, respec-
ABC( )d . We resolve this limitation in Section 5. tively, can be computed as follows:

Lemma 4.1. Consider the GP model in Section 3. The

4 PARALLEL SIMULATIONS Bayes risks fzor th& 2 andL? losses are given by
h
We aim to nd the most informative simulation locations L'( 5= 2() (a( ) ( a())
for obtaining the best possible estimate of the ABC pos- [ (7)

p
terior 5. given the postulated GP model. Principled 2T a( ); n= 3+2sf() d;



Z
LM( fD )=2 ()T(a( ):si( )= n)d ; (18) Another potential computational dif culty is the integra-

' tion over in (19) and (20). Many state-of-the-art BO
methods, such as Hennig and Schuler (2012); Hernandez-
Lobato et al. (2014); Wu and Frazier (2016), also require
similar computations. We approximate the integral using

We callL( ) as anacquisition functionExpected inte- humerical integration fop 2 and self-normalised im-
grated variance (EIV) and expected integrated MAD Portance sampling (IS), where the current loss function
(EIMAD) acquisition functions, denotetlY( ) and interpreted as an unnormalised density is the instrumental

L™( ), respectively, can be computed as follows: distribution, forp > 2. Full details and the pseudocode
of our algorithm can be found in Appendix B.

respectively, where;( ) is given by (13) and ( ; ) de-
notes Owen's T function (Owen, 1956).

Proposition 4.2. Consider the GP model in Section 3.

TheEIV and EIMAD acquisition functions are
" 4.3 HEURISTIC BASELINE BATCH METHODS

Z P —ro T
LV( )_2 2()T a 'n n+st() t( ' ) . .. . .
t = ()P — 5 We consider also heuristic acquisition functions which
n*sit)* ©(5 ) evaluate where the pointwise uncertainty-gc( ) is
highest. Such intuitive strategies are also knownras
T a( ); 197 d; (19 certainty samplingnd used e.g. by Gunter et al. (2014);

2 4+ 2
7 B si() I Jarvenpéa et al. (2019); Chai and Garnett (2019). When
( ) 2( ;) the variance is used as the measure of the uncertainty of
LM )=2 ()T a( )i—pl ! d; .
t - t 2 ) ’ ~agc( ), we call the method as MAXV. When MAD is
n ’

(20) used, we obtain an alternative strategy called analogously
MAXMAD. The resulting acquisition functions can be

respectively, where; ( ) is given by (13) and computed using the integrands of (17) and (18).

20 . y= . . 217 1 Sy Finally, we propose a heuristic approach, also used for
cCi=als lal )+l fal )o@ 2 Ths (Snoek et al., 2012), to parallelise MAXV
and MAXMAD strategies: The rst point in the batch

Is chosen as in the sequential case. The other points are
‘iteratively selected as the locations where the expected
pointwise variance (or MAD) of-LBC( ), taken with
respect to the discrepancy values of the pending points
(i.e. points that have been already chosen to the current
batch) is highest. The resulting acquisition functions are
immediately obtained as the integrands of (19) and (20).

This result generalizes EIV in Jarvenpaa et al. (2019) to
the batch setting. The proofs are given in Appendix A.1.

4.2 DETAILS ON COMPUTATION

Finding the one-batch-ahead optimal desigH requires
global optimisation over P for both EIV and EIMAD. As
this is infeasible with large batch sibeand/or the dimen-

sionpof , we use greedy optimisation: Fo= 1;:::;b,

the rth pomt P! in the batch is chosen by optlmls 5 UNCERTAINTY QUANTIFICATION
ingL¢([ 1;:::; ]) with respectto , when the earlier OF THE ABC POSTERIOR

points ;;:::; , ; arekept xed to their already deter-

mined values. This simpli es thpb-dimensional opti- Pointwise marginal uncertainty of the unnormalised ABC
misation problem to a sequence of eagiglimensional  posterior~h5. was used in previous section for selecting
problems. Similar techniques have been used in batcthe simulation locations adaptively. However, knowing
BO, see Ginsbourger et al. (2010); Snoek et al. (2012)he value of~LBC and its marginal uncertainty in some
Wilson et al. (2018). Theory of submodular optimisation individual -values is not very helpful for summarising
has been used to study greedy batch designs (Bach, 201&xd understanding the accuracy of the nal estimate of
Wilson et al., 2018; Jarvenpaa et al., 2020). Unfortunatelythe ABC posterior. Computing the distribution of the
such analysis hardly extends to our case because the agements and marginals of the normalised ABC posterior
quisition functions in Proposition 4.2 depend onin a LBC in (10) is clearly more intuitive. See Fig. 1 for a 1D
rather complex way. Using the facts tHa(h; a) is non-  demonstration of this approach.

decreasing fon Oand 2( ; ) cannot decrease as
more points are included to , we nevertheless see that ; i S
both EIV and EIMAD are non-increasing as set functionsP!e pathf © D, then use it to x a realisation
of . We can thus expect the greedy optimisation to beof the ABC posterior ABC usmg (10) and nally use
useful in practice as is seen empirically in Section 7.

To access the posterior OILBC, one could x a sam-

e.g. MCMC to sample fromABC. This would be repeated
2Mean absolute deviation (around median). s times and the resulting set of samptes (¥ )gj”:l (o)



is a set of weighted sample sétg(! (); ()gr, g8,
from which moments and marginal densities can be com-
puted using standard Monte Carlo estimators for each

sampling from the instrumental density which scales as
O(nt?), i.e. only linearly with respect tn, so thain can
be large. Total cost i®((n + A)t% + A%(t + s) + A3).

This approach has nevertheless some limitations: The

computations are only approximate becamssds are -

nite. Also, if the uncertainty of;MBC is substantial, choos-

ing a good instrumental density can be dif cult. This is

because some of the sampled posteriors are then neces-

sarily quite different from any single instrumental density
Figure 1: Demonstration of ABC posterior uncertainty Producing possibly poor approximation. In our experi-
quanti cation using Lorenz model from Section 7.2 with Ments this however happened only with early iterations
parameter, xed. (a) GP model for | (blue dashed and can be detected e.g. by monitoring the distribution

line ", blue star® discrepancy evaluations), (b) uncer- ©f effective sample sizes for=1;:::;s. In Section 7

tainty of unnormalised ABC posterioﬂBC (c) evolution ~ We demonstrate that the uncertainty quanti cation is still
of model-based ABC posterior expectation (black ”ne)fea5|ble and bene cial for Iow-dlmensmnal cases. T_he
and its 95% CI (dashed black) féDiterations, (d) uncer- Proposed approach also works with other GP modelling

tainty of ABC posterior ,fABC corresponding (b). situations such as Jarvenpaa et al. (2020).

6 ON RELATED GP-BASED METHODS
(wheren is the length of the MCMC chain for each poste-
rior reglisatiofri =1;:::;s) approximately describes the |n this section we brie y discuss the relation between
posterior of ,gc givenD. (see Fig. 1d). The uncertainty Bayesian ABC, BQ and BO to facilitate better under-

of the GP hyperparameterscould also be taken into ac- standing of these conceptually similar inference methods.
count by drawing ) ( jDy) as the very rst step

but we here consider as known for simplicity although = ;1 Be| ATION TO BAYESIAN QUADRATURE
this can cause underestimation of the uncertainty;gg. '

The outlined approach involves a major computationaln Baygsian quadrature one aims to compute integral
challenge as evaluating tsesample paths at distinct |, () ()d , wheref : RP ! Risan ex-

sets of test points scafeasO(s(nt? + tn?) + sn?). pensive black-box function and ) is a known density,

We propose the following computationally cheaper ap€-9- Gaussian. If a ?P prior is placed fongiven some
proach: In small dimensions, when 2, we evaluate €valuations (fi; i)gi-; wheref; = f( i), the poste-
each sample path®:i = 1::::;satnP xed grid points rior of 1¢, describing one's knowledge of the value of
and compute the required integrations numerically. Thighis integral, is Gaussian whose mean and variance can
approach scales &(nPt2+ n?P(t+ s)+ n%). If p> 2, be computed ana]yucally for some ch0|ceskcm_c 9

then self-normalised importance sampling is used. wénd ( ) (for details, see O'Hagan (1991); Briol et al.
drawn samples from an instrumental density, de ned so(2019)). AJSO' BQ methods for computing integrals of
that its unnormalised pdf at equals the -quantile of ~ the formlI¢ g(f () ()d with some known

~LBC( ). This is computed using (A.23) of Appendix (non-negative) functiog : R! R, , such as marginal
and we use = 0:95. The samples are thinned and likelihoods, have been developed by Osborne et al. (2012);

the resultings n representative samplés (i )gjn:l Gunter et al. (2014); Chai and Garnett (2019).
are used to compute the normalised importance weight§yr approach in Section 5 is instead developed for

! () for each sampled posteripr 1;:::;s. The output  quantifying the uncertainty in either the whole function

- tsc: ! Rs,whichwe here write as
3Approximations such as random Fourier features (RFF)

(Rahimi and Recht, 2008) and those by Pleiss et al. (2018) can ; gf () ()

be used to reduce this cost, e.g. Hernandez-Lobato et al. (2014); ABC( )= R 0 (22)

Wang and Jegelka (2017) used RFF to approximately optimise g(f ( 0)) ( O)d

GP sample paths. However, this produces tradeoff between . .
exact GP but smafi vs. inexact GP but large which we do & Some corresponding moments such as the expectation
not analyse in this work. asc( )d 2 RP. To our knowledge, computation



of these quantities probabilistically has not been considProposition 6.1. If the prior is uniform over (and may
ered before. In particular, we used the “0-1 kerriel” - be improper),i.e.if ( )/ 1 , ,then the point chosen
in (2) corresponding tg(f ( )) = (( * f( ))=n,) bythe LCB acquisition function with parameteris the
in (22). Osborne et al. (2012); Gutmann and Coransame as the point maximising tlfe )-quantile of the
der (2016); Acerbi (2018); Jarvenpaa et al. (2020) inunnormalised ABC posteriofys.( ) for any”.
stead modelled the log-likelihood with GP to reckon the
non-negativity of the likelihood and the high dynamic This result gives an interpretation for the LCB tradeoff
range of the log-likelihood. This would correspond to parameter ; in the ABC setting. However, instead of us-
g(f ( ) =exp(f())in(22). ing LCB for Bayesian ABC, it is clearly more reasonable

) to evaluate where the variance (or some other measure
Osborne et al. (2012); Gunter et al. (2014); Chai andyt ncertainty) is large as already discussed e.g. by Kan-
Garngtt (2019) usgd Imea_rlsatlon approximations in the'rdasamy et al. (2017); Jarvenpaa et al. (2019). Jarvenpaa
algorithms for estimating integrals of the forllfn..8|m|- et al. (2019) showed empirically that EIV consistently
larly, if both (' )-terms in our case in (10) were linear for s petter than LCB in their sequential scenario when

f', then the numerator and denominator in (10) would haveyg ¢4 is to learn the ABC posterior. For this reason, we
joint Gaussian density leading to tractable computationgy, not use (batch) BO methods in this article.
However, we observed that the resulting densities can be

highly non-Gaussian so that any linearisation approach
can result poor quality approximations. For this reason/ EXPERIMENTS

we considered simulation-based approach in Section 5. _
We rst consider four 2D toy problems to see how the pro-

posed method performs with a well-speci ed GP model.
We then focus on more typical scenarios where the GP
modelling assumptions do not hold exactly using three
real-world simulation models. We compare the perfor-
mance of the sequential and synchronous batch versions
of the acquisition methods of Section 4. As a simple
baseline, we consider random points drawn from the
Prior (abbreviated as RAND). We also brie y demon-
strate the uncertainty quanti cation of the ABC posterior.

6.2 RELATION TO BAYESIAN OPTIMISATION

Suppose nov : RP ! R s an expensive, black-
box function to be minimised. In BO, a GP prior is
placed orf and the future locations for obtaining (pos-
sibly noisy) evaluations of are chosen adaptively by
optimising an acquisition function that, in some sense
measures the potential improvement in the knowledge o

the minimum pplnt ' a})rg min 2 f () orthe corre We do not consider synthetic likelihood method (as e.g. in
sponding function valué®, min , f( ) brought by N : .
. . Jarvenpaa et al. (2020)) because it requires hundreds of
the extra evaluation. For example, (predictive) entropy . .
. ) , evaluations for each proposed parameter and is thus not
search (Hennig and Schuler, 2012; Hernandez-Lobatg . o .
. . applicable here. For similar reason, we do not consider
et al., 2014) use an acquisition function that measures. i based ABC methods
the expected reduction in the differential entropy of the Piing '
posterior of *. Wang and Jegelka (2017) similarly con- Locations for tting the initial GP model are sampled
sidered the posterior df?. The important difference from the uniform prior in all cases. We taKe ini-
between these methods (or BO in general) and Bayesiatial points for 2D and20 for 3D and 4D cases. We use
ABC is that the quantity of interest in Bayesian ABC is b = 0, Bj =1021;-; and include basis functions of the
not the minimiser of but the full ABC posterior den- form 1; ;; 2. The discrepancy is assumed smooth
sity LBC (or ~LBC). Also, BO is rarely introduced this and we use the squargd exponential covariance function
way in literature, simple acquisition functions such ask( ; 9= Zexp( 3 P, (i  92=P). GP hyper-
the expected improvement and lower con dence bouncharameters = ( 2;lq;:::; lo; f2) are given weakly
(LCB) are often used and the posterior of or f? is  informative priors and their values are obtained using

rarely considered. MAP estimation at each iteration.

In the BOLFI framework (Gutmann and Corander, 2016), ABC-MCMC (Marjoram et al., 2003) with extensive sim-
the functionf was however taken to be the ABC dis- ulations is used to compute the ground truth ABC pos-
crepancy , and LCB acquisition functiohCB( ) = terior for the real-world models. For simplicity and to
me( ) tSe( ) (Srinivas et al., 2010) was used for il- ensure meaningful comparisons to ground-truth, wé x
lustrating their approach of learning the ABC posterior.o certain small prede ned values although, in practice, its
This is reasonable because to learn the ABC posterior ongalue is set adaptively (Jarvenpaa et al., 2019) or based on
needs to evaluate in the regions with small discrepancyilot runs. We compute the estimate of the unnormalised
We have the following new result that relates LCB to the ABC posterior using (12) for MAXV, EIV, RAND and
Bayesian ABC framework: (14) for MAXMAD, EIMAD. Adaptive MCMC is used



Figure 2: Results for the 2D toy simulation models o§@0iterations and two batch sizés

Figure 3: Results for 2D toy simulation models with two acquisition functions and various batch sizes.

to sample from the resulting ABC posterior estimates anchas two parameters=( 1; 2) which we estimate from
from the instrumental densities needed for the IS approxitimeseries data generated using (2 ; 0:1). See Thomas
mations. TV denotes the median total variation distancest al. (2018) for full details of the model and the experi-
between the estimated ABC posterior and the true onenental set-up that we also use here, with the exception
(2D) or the average TV between their marginal TV valuesthat we use wider uniform prior U ([0;5] [O; 0:5]).

(3D, 4D) computed numerically ové&0 repeated runs. The discrepancy is formed as a Mahalanobis distance
Iteration (i.e. number of batches chosen) serves as a proXyom the six summary statistics by Hakkarainen et al.
to wall-time. The number of simulations i.e. the maxi-(2012). The results are shown in Fig. 4(a). Furthermore,
mum value oft is xed in all experiments and the batch Fig. 4(b-c) demonstrates the uncertainty quanti cation

methods thus nish earlier. of the model-based ABC posterior expectation. See Ap-
pendix B.1 for the details of the numerical computations
71 TOY SIMULATION MODELS used. The effect of batch size is shown in Fig. 5(c).

) . . Bacterial infections model.This model describes trans-
Fig. 2 shows the results with sequential methdss {)  yissjon dynamics of bacterial infections in day care cen-
and the corresponding batch methods vt 5 for four  rag and features intractable likelihood. The model has
synthetically constructed toy models. These were takepoap, developed by Numminen et al. (2013) and used
from Ja_rvenpaa_et al. (2019) and are |I!us.trated. in thepreviously by Gutmann and Corander (2016): Jarvenpaa
Appendix B. In Fig. 3 thg effect of batch sibas studied o 4 (2019) as an ABC benchmark problem. We esti-
for the two best performing methods. mate the internal, external and co-infection parameters

2 [0;11] 2 [0;2]and 2 [0; 1], respectively, using
7.2 REAL-WORLD SIMULATION MODELS true data (Numminen et al., 2013) and uniform priors.
The discrepancy is formed as in Gutmann and Corander
Lorenz model. This modi ed version of the well-known (2016), see Appendix B.3 for details. The results with all
Lorenz weather prediction model describes the dynamicgnethods are shown in Fig. 5(a) and Fig. 5(b) shows the

of slow weather variables and their dependence on unokffect of batch size for the two best performing methods.
served fast weather variables over a certain period of time,

The model is represented by a coupled stochastic diﬁeédditiona_l details, e.g., on the optimisation of t_he acquisi-
ential equation which can only be solved numericallyt'on function, MCMC methods used, computational costs,

resulting in an intractable likelihood function. The model and additional experimental results can be found in the



Figure 4. (a) Lorenz model. The intervals show #@86variability. See Fig. 2 for the legend. (b-c) Black line is the
mean and dashed black tB8% CI of the ABC posterior expectations. Red line shows the true value.

Figure 5: (a) Bacterial infections model. The intervals showd®i variability. (b) Bacterial infections model with
different batch sizes and two chosen acquisition methods. (c) Additional experiments with Lorenz model.

Appendix B and C. The results for our third, additional Fig. 4(b-c) shows the evolution of the uncertainty in the
ABC benchmark scenarigrand-k model are shown in  ABC posterior expectation of the Lorenz model 0860

the Appendix D. iterations in the case of sequential EIV. The convergence
is approximately towards the true ABC posterior expec-
tation due to a slight GP misspeci cation. Similarly, the
ABC posterior marginals of the bacterial infection model
in Appendix C contain some uncertainty afé@0itera-

In general, we obtain reasonable posterior approxXima;., o which our approach allows to rigorously quantify.

tions considering the very limited budget of simulations. L . .
Due to the approximations involved and because this ap-
EIV and EIMAD tend to produce more stable, accurate . .
roach is not designed to account for the error due to

but also more conservative estimates than MAXV a”dg roximating the intractable ground-truth posterior with
MAXMAD. Difference in approximation quality between PP 9 g P

EIV and EIMAD, both based on the same Bayesian det_he ABC posterior in the rst place, we however suggest

- . . . to interpret the uncertainty estimates with care. Devel-
cision theoretic framework but different loss functions, . . . .
: . oping more effective (analytical) methods for computing
was small. While RAND worked well in 2D cases and . . . . X
: . . L these uncertainty estimates is an interesting avenue for
is fully parallellisable, it unsurprisingly produced poor

. o S ; . future work. The connection to BQ methods outlined in
posterior approximations in higher dimensions. In all

cases, our batch strategies produced similar evaluatio%ectlon 6.1 can be helpful for achieving this goal.

locations as the corresponding sequential methods lead-

ing to substantial improvements in wall-time when the8 CONCLUSIONS

simulations are costly. Unlike in the related problem of

BO, batch points need not always be diverse because th&e considered ABC inference with a limited number of
simulations are stochastic and simulating multiple timessimulations {. 1000. We outlined a GP surrogate mod-
at nearby points can be useful. On the other hand, alreadsiling framework called Bayesian ABC where the uncer-
a single simulation can be enough to effectively rule outtainty of the ABC posterior distribution due to the limited
large tail regions. The proposed methods automaticallgomputational resources is approximately quanti ed. We
balance between these two situations. also developed batch-sequential Bayesian experimental

7.3 DISCUSSION ON THE RESULTS
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A Proofs and additional analysis

A.1 Proofs

Proof of Lemma 4.1We consider the case of integrated variance rst. A result corresponding to (17) but with zero
mean GP prior is shown as Lemma 3.1 in the article by Jarvenp&a et al. (2019). However, its proof works as such also
for our GP model in Section 3 and (17) follows immediately.

Let us now consider integrated MAD in (18). To simplify notation, we msefor m;( ), s? for s?( ) andf forf ( ).
We then see that

z "f " m
Ef b, () () d (A1)
Z Z N "n § n
_ f m L2 .
= () N( jm ;s7)df d: (A.2)
1 n n
For the inner integral with xed we obtain
Z 1 n n
f M N(¢E jm ;s?)df (A3)
1Z n n
m " f " m . 2
= N(f jm ;s7)df
Yz, " . " (A.4)
+ N(@f jm ;s?)df
Z " m . f n n Z L ) f
= N jm ;s?)df N(f jm ;s?)df (A.5)
1 n m n |
Zm "f " m
=2 N jm ;s?)df P (A.6)
1 n 2+ s?
where on the last line we have used the fact
Z1 "f " m |
N jm ;s?)df = P (A7)
1 n ﬁ + g2
shown by Jarvenpaa et al. (2019). We further see that
Z "o
N(@f jm :s?)df (A.8)
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where , denotes the bivariate Normal cdf aB&N(a; b; ) denotes the zero-mean bivariate Normal cdf with unit
variances and correlation coef cientevaluated afa; b” . Finally, using a connection between bivariate Gaussian cdf
and Owen's T function (Owen, 1956), we obtain

m S "m S 1 m
BvN p ;0 p =T p—; + = P (A.15)
2+ g2 2+ g2 2+s” g 2 2+ g2
When we combine the equations, we see that(thg-terms cancel out and we obtain (20). O

Proof of Proposition 4.2.The formula for the EIV can be derived in a straightforward manner by combining the GP

lookahead formulas given by Lemma 5.1 in Jarvenpaa et al. (2020) with the proof of Proposition 3.2 in Jarvenpaa et al.
(2019).

The case of EIMAD requires some extra work. First, using an equation from the proof of Lemma 4.1, we obtain

f
E j ;Dth(ZDt[D.) 14 (A.16)
0 "omge( )y . "omy ()
=E | op, () 2 — U7 7 ON(yjO;s2,( ) dy qtiz d (A17)
" ! " 2+ s2p()
Z Z,
"ome () Y .
= 02 E —— 7 2 N(yj0;s2,( )dy
n
I# (A.18)
"om ()
E | o, qtiiz d:
%+St+b()

Note that in m,, ,( ) ands,2,( ) is used to emphasise that these quantities depend oand/or . Since
s2,()=s3) Z(; ) ie.thereduction ofthe GP variance functigi{ ; )at due to thebextra evaluations
D is deterministic and depends only on (and not on ), we obtain for each that

Comg () Y .
E j o, —— > NjosZ()) (A.19)
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= T NmeO)im); ZCs Ndmu(ON@IoSI()  2(: ) (A20)
n
!
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where we have used Lemma 5.1 by Jarvenpaa et al. (2020) and (A.7). Similarly, we see that
0 1 I
omg () "om
E | o, @quizA = p% : (A.22)
2+52,() ft+sp()
The result now follows by proceeding as in the second part of the proof of Lemma 4.1. O

Proof of Proposition 6.1.Jarvenpéa et al. (2019) showed that thquantile for~agc( ) atany xed 2 s given
by

1 "
2 ()= () 200 mOxt (.29

n

Using this fact when ( ) is assumed a constant inshows that

P'=argmax z; ( ) (A.24)
2



=argmax fse( ) () m( )g (A.25)
2
=argmin fme( ) O)s( ) (A.26)
Comparison of (A.26) and the LCB acquisition functib@B( )= m{( ) s:( ) showsimmediately that these
coincideif =  I( )ie.if = ( ). O
A.2 Onthe Gaussian assumptions

We justify the seemingly strong Gaussianity assumption of the discrepancyVe brie y analyse a typical case where
the discrepancy is formed as a Mahalanobis distance

q
= (So sS)YW(so s); (A.27)

whereW 2 RY 9 is a positive de nites,, S(Xo);S , S(x ),ands: X ! RYisthe summary statistics function
usually withd  p. Recall thap is the dimension of the parameter spacdf we assumés is jointly Gaussian for
each , some in the posterior modal area satisess N (S,; o) with positive de nite o and if we further
chooseW = ¢, then 2, 2(d), the chi-squared distribution with degree of freeddnThis follows by noticing
that there existd 02 RY 9 suchthat o= L oL, becausé i(s, so) N (0:1)and because the chi-squared
distribution 2(d) can be characterised as a sum of squaredrmdependent standard Normal random variables. Further,
using the last-mentioned fact, the central limit theorem (CLT), the delta method and the obvious fact that the square
root is a smooth function, one can reason that = ( 2,)172 is approximately Gaussian for large enoughn fact,

0 (d), the chi distribution with degree of freedatnwhich is fairly close to Gaussian distribution already with
d=5.

If so s, hasnonzero meananddf 6 &, then 2 is no longer chi-squared distributed but follows generalised
chi-squared distribution. Detailed analysis of this general case seems dif cult. However, if we further assume that
the individual summaries, i.e. the elementssof, are independent, and W is diagonal and scaleso s, SO

that its elements do not have too variable means and variances which are requirements for a sensible discrepancy
function (Prangle, 2017), then CLT (with Lindeberg or Lyapunov condition) and delta method might apply so that the
approximate Gaussianity still holds for large enougln this case, the Gaussianity assumptios ofis in fact not
necessary.

While 2 can be heteroscedastic, i.e. depend @s empirically investigated by Jarvenpaé et al. (2018), we can expect

by continuity that it is often approximately constant on the modal area of the posterior where the GP t only needs to
be accurate. Also, while the discrepancy is not exactly Gaussian becausdA.27) is obviously non-negative, the
amount of probability mass of the Gaussian density on the negative valueswill typically be very small. Finally,

while the analysis of this section and our empirical investigations shown in Fig. A.1 support the Gaussian assumption,
for a particular problem at hand and as in all Bayesian modelling, the goodness of the model t should be assessed.

B Additional details on implementation and experiments

B.1 Implementation details

We present additional implementation details of our inference algorithm. The batch-sequential EIV method is shown as
Algorithm 1. Other methods for acquiring evaluation locations (EIMAD, MAXV, MAXMAD and RAND) can be used
similarly. The accuracy of the resulting ABC posterior can be assessed as described in Section 5 either at each iteration
(e.g. immediately after line 15) or only nally (line 19).

“This assumption is also made in the synthetic likelihood method (Wood, 2010; Price et al., 2018).



Figure A.1: Empirical distributions of the discrepancy of the three real-world problems used in this work at their true
parameter values. The histogram shows the discrepancy values correspori&lifgitnulations and the red line

shows corresponding Gaussian densities. The discrepancy for the Lorenz and g-and-k model model is formed as a
Mahalanobis distance (see Section B.3 for details). It is seen that the Gaussian assumption is reasonable.

Algorithm 1 Bayesian ABC using EIV with synchronous batch design

Input: Prior ( ), simulation model (xj ), GP prior f, discrepancy( x,;x), batch
sizeb, initial batch sizey, max. iterationsmax, NumMber of IS sampless, number of

MCMC samplesyc

1. forr=1:Ipdo . Can be run in parallel.

2: Sample . O) . Space lling designs can be alternatively used.
3 Simulatex, " (j ) andcompute ; = ( Xo!Xr)

4: end for

5 SetDp, f ( r; r)o™,

6: fori =1: imaxdo

7 Obtain GP hyperparametergyap UsingDp+(i 1)b

8. Sample 1), using MCMC and compute IS weights) forj = 1;:::;ss

9: forr=1: bdo . Batch is constructed using greedy optimisation.
10: Obtain , as the minimiser of the IS approximationlof([ ;.. 1; 1) in (19)
11: end for
12: forr =1: bdo . Can be run in parallel.
13: Simulatex, """ (j ,)and compute , = ( XoX,)
14: end for
15:  Update training dat®p,+i6  Dio¢i 1y [f ( 15 1)OP=1
16: end for
17: Obtain GP hyperparameter§ap USiNgDp, + i .0
18: Sample#®:sv) from (12) using MCMC . (14) can be alternatively used.
19: return Samplest (d:swe) from the approximate ABC posterior

When the dimension of the parameter sppce 2, we used the adaptive MCMC method by Haario et al. (2006) to
sample from the model-based estimates of the ABC posterior (line 18) and from the instrumental densities needed
for the IS approximation of EIV and EIMAD acquisition functions (line 8). Adaptive MCMC was also used for the

IS approximation needed for ABC posterior uncertainty quanti cation. In all of these cases, we run multiple chains
initialised at the point with the highest log-density value computed over the current poidts The rst half of each

chain was neglected as burn-in and the chains were then combined and thinned. In 2D, similar grid-based numerical
computations were used instead.

When sampling from the model-based estimate of the ABC posterior (line 18), the samples were thinned to the size of
10* and kernel density estimation was used to estimate the (marginal) densities from the resulting samples. For the
grid-based numerical computations in 2D, we u$8@ 100grid of points.



To evaluate EIV and EIMAD acquisition functions, we rst sampled from the instrumental density (denotgd as

on line 8 of Algorithm 1) which is the current loss surface interpreted as a pdf as mentioned in Section 4.2. These
samples were thinned to the size5f0 points used for computing the normalised importance weights In 2D,

50 50grid-based computations were used instead. The same instrumental density and thus the same set of importance
samples was used for greedily optimising each point in the batch (line 10) although it is also possible to use different
instrumental densities. The global optimisation of the acquisition functions was performed by rst using random search
(with 1000points in 2D and2000in 3D and 4D) to roughly locate good regions and then improving thelgsbints

found this way by initialising gradient-based algorithm at these p6ifitse best point evaluated was taken as the
optimal solution. While other optimisation strategies are also possible, our method already produced good results.

We used the following settings for the uncertainty quanti cation of the ABC posterior in Section 5: The 2D integrals
over were computed numerically in&@ 80grid, i.e. we useth = 80 producing6400grid points. Foip > 2, we

used the adaptive MCMC with5 chains each with length000Q The chains were nally combined and thinned to

i = 7500 representative points for computing the importance weights. Wesuse2D00 GP sample paths. Marginal
densities for e.g. Fig. C.5 were computed from the resulting weighted sample sets using weighted kernel density
estimation.

B.2 Computation times for optimising the acquisition functions

The computational cost of evaluating the acquisition functions of Section 4 depends on various factors. We here report
computation timesof our MATLAB implementationd when the simulation budgetis= 810 in 2D (Multimodal toy

model) and = 820 in 4D (g-and-k model). We report the computation times at both the rst and the last iteration.
These show the minimum and maximum costs, respectively.

In 2D, where grid-based numerical computations were used, sequential MAXV reQuBred.;5s and its batch version

5 35s for constructing the whole batch of size 5. In 4D, the computation times roughly doubled. In 2D, sequential

EIV required2:5 13s and its batch versiob8 80s for the whole batch of siZze= 5. In 4D, these times were

9 80sand27 250s, respectively. The computation time of EIV scales better than linearlyifodD because we

sample once from the instrumental density in the beginning and re-use the same importance weights for selecting each
point in the current batch. In 2D, this scaling is roughly linear.

The difference in computation times between MAXMAD and MAXV, as well as between EIMAD and EIV, was small.
This is because the computation costs are dominated by the GP-based computations and evaluations of the Owen's T
function needed for both. Finally, we emphasise that while the GP computations and the optimisation of the acquisition
function are not particularly cheap, the simulation times for realistic models typically dominate the total cost. The
reported computation times can be also reduced by more ef cient implementation. However, if running the simulation
model is very fast (e.g. less than a fraction of a second), standard ABC methods should be preferred even if they require
substantially more simulations.

B.3 Additional details on experiments

We describe additional details of the experimental set-up. Fig. B.1 visualises the four synthetically constructed 2D
posteriors used in Section 7.1. These examples were taken from Jarvenpaa et al. (2019) where further details can be
found.

We used ABC-MCMC to obtain the ground truth ABC posterior. The algorithm was initialised with the true value or, in
the case of the bacterial infections model, using a point estimate from earlier studies (Numminen et al., 2013). The
proposal density for ABC-MCMC was hand-tuned. For Lorenz model we 8sbains with lengtt8 10° and for

g-and-k modeB chains with lengtti0’ samples. For bacterial infections model we ug8dhains with lengttv:5 10*
samples. The chains were nally combined and thinnetidbsamples to represent the ground truth ABC posterior.

Mahalanobis distance as in Eq. A.27 was used as the discrepancy for Lorenz and g-and-k models. The simulation

SWe usedmincon in MATLAB. The gradient was approximated by nite differences for simplicity but analytical gradient
computations could be also used to improve optimisation.

5These times were obtained on a standard laptop with Intel Core i5 2.3GHz CPU and 8Gb RAM.

"Owen's T function values were computed using an ef cient C-implementation of the algorithm by Pate eld and Tandy (2000).



Figure B.1: Synthetic 2D posterior densities used in the experiments of Section 7.1.

model was rurb00times to estimate the covariance matrix of the summary statistics at the true parameter and the
matrix W was chosen to be the inverse of the covariance matrix. Of course, such discrepancy is unavailable in practice
because the true parameter is unknown and the computational budget limited. However, as the main goal of this paper
is to approximate any given ABC posterior with a limited simulation budget, we chose our target ABC posterior this
way. For this reason we also xédto small prede ned value for each test problem. Investigating whether one could
adaptively adjust the discrepancy in our Bayesian ABC framework (without using a large number of replicates at each
proposed point as is required e.g. in the synthetic likelihood method (Wood, 2010)) is left as a topic for future work.

Gutmann and Corander (2016) de ned a discrepancy for the bacterial infections model by summint-tistances
computed between certain individual summaries. For details, see ex@mmp&utmann and Corander (2016). We used

the same discrepancy except that we further took square root of their discrepancy function. We obtained a similar ABC
posterior as the original article (Numminen et al., 2013) where ABC-PMC algorithm and a slightly different approach
for comparing the data sets were used.

C Additional results and illustrations

We show additional results and illustrations of the experiments in Section 7. Fig. C.1 and C.2 show the evaluation
locations and the resulting estimates of the ABC posteriors aft@simulations for two synthetic 2D models of Section
7.1.

Fig. C.3 and C.4 show typical estimated ABC posterior densities of the Lorenz and bacterial infections models of
Section 7.2, respectively. These results are shown to demonstrate the accuracy obtainable with very limited simulations.
These particular results were obtained with the sequential EIV method &8iterations corresponding 110
simulations (Lorenz model) @20simulations (bacterial infections model).

Fig. C.5 illustrates the ABC posterior uncertainty quanti cation for the bacterial infections model. Fig. C.6 shows the
evolution of the uncertainty of the ABC posterior expectations 60&iterations. Sequential EIV method was used

and one typical case is shown. The results suggest that while the ABC posterior is well estimated at the last iteration,
there is some uncertainty left about its exact shape. Similar observations were also done with g-and-k model of the
next section (results not shown). The true value is not always contained #% €l which is likely because the
uncertainty in the GP hyperparameters is ignored for simplicity and because the GP is reasonable but imperfect model
for the discrepancy.

Although we used quadratic GP mean function to encode the prior assumption of unimodal posterior, we observed that
the uncertainty of the ABC posterior near the boundaries of the parameter space during the early iterations can be high
leading to multimodality. Such cases can be dif cult for the MCMC as it can fail to locate all the modes or sample
suf ciently from them. For this reason, the uncertainty quanti cation based on the proposed IS approach needs to be
interpreted cautiously. More sophisticated sampling techniques as considered now here might be useful.



Figure C.1: Multimodal test problem. The rst row shows the sequential methods and the second row the corresponding
greedy batch methods. The blue diamonds showl@haitial points and the black dotsDOadditional points selected

using each acquisition function (the last two batches in the second row are however highlighted by red plus-signs and
crosses). TV shows the total variation distance between the true and estimated ABC posteriors for each particular case.

Figure C.2: Banana test problem. See the caption of Fig. C.1 for description.

D Additional experiments: g-and-k model

We present the g-and-k distribution and our additional experiments with this benchmark model. The g-and-k model is a
probability distribution de ned via its quantile function

N 1 exp( g *(q) .
QU Mo )=a+b leopSr — o @+ @)D @) (D.1)
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