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A Proof of Lemmal(l

Proof. By the strong law of large numbers, for all 4, j € [p], it holds that

E[f;] <25 Eln;] and E[j;;] =5 E[ni;] as n — oo.
The functions g are continuous since they are continuously differentiable by [(A2)} therefore, for all ¢ € [p], it holds that

fri = gi(E[0:]) == gi(E[m:]) = ps as n — oo;
similarly, for all ¢, j € [p], it holds that
frij = 9i (Elfi;]) == 9i5(Elnij]) = pij as n — oc.

Therefore,

- ~ PN a.s.

(Bij) = fuij — frafty = pij — paptj = (X)i; as n— 00
and the correlations A
(X)) as. ()i

Y e, Vs

= pij as n — 0.

Recursively applying a similar argument to equation proves that p;;.x is consistent, thereby completing the
proof. O

B Proof of Theorem [I]

We start by defining the vectors of all correlations estimated from Algorithm|[T]and all true correlations of Z as

[312 P12
P13 P13
pi= j and p:= j , (S.1)
Plp—1)p P(p—1)p

respectively. We use 7 to denote the vector obtained from concatenating all monomials in X; and X; that appear in 7;
and n;; for ¢, j € [p] in Assumption [(A2)| i.e.,

ni=0ml n ... o .. onhy nly nl).
We let
ie=00 03 o0y o0 il 0.

be the analogous concatenated vector with 7j; and 7;; for i, j € [p| of sample monomials in X; and X ; calculated from
the data X = (X1, X . X)),

The following lemma is concerned with the asymptotic distribution of the correlation vector p.



Lemma S.1. Under Assumptions|(Al)|and|(A2)
R D
Vil = p) 2 Nyl (0,Aw)),

where v is the vector of all first and second order moments of n and A is a continuous function of v.

Proof. Assumption[(AZ)|asserts that the covariance of 1) is finite. Hence, we can apply the Central Limit Theorem to
obtain

A D

V(E[)] — Enl) = Ny (0, 4, (v)), (S.2)

where A, is the covariance matrix of 7. The elements of the covariance matrix A,, can be written as a continuous
function of the first-and second-order moments of 7, i.e., they can be written as a continuous function of v.

Assumptions|(A1l)|and|(A2)|imply that we can write for all 7, j € [p],
_ 9i3 (Eni;]) — 9i(E[n:])g; (Eln;]) ‘ (5.3)
V9ii Elnial) — 9i(Emi])? /955 (Elny5]) — g;(Eln])2
We compute sample correlations p;; in our algorithm as
95 (Bl0i;]) — 9i(E[2:]) g, (E[;]) .
V9ii Eliial) — 9i(Ei])2/ 955 (Elny5]) — 95 (El7])2
Based on equation (S.3) we can define a function w : RI"l — RI?l such that w(E[n]) = p and w(E[7)]) = p. Applying
the Delta method to equation (S.2)) with the function w, we get

Vs = p) 2 Nipy (0,4,)),

where 4, (v) = Vw(E[n])T A, (v)Vw(E[n]), since the elements of the mean vector E[)] are elements of v. Notice that
under the assumption that the variance of X; = F;(Z;) is non-zero, which we mention in Section the denominator
in (S.3) is non-zero, and therefore p is continuously differentiable in g(E[n]), which is continuously differentiable in
E[n] by Assumption [(A2)} Hence, Vw(E[r)]) is continuous in E[r], and therefore continuous in v. Since A,(v) is a
matrix product of functions continuous in v, it is also continuous in v, which completes the proof. O

Lemma S.2. If

Pij

pij =

. D
Vip=p) 2 Ny (0.4,(0)),
where v is the vector of all first- and second-order moments of 1, and A, (v) is continuous in v, then under Assump-

tionsandfor any i,j € [p]and K C [p] \ {i,7},
Vn(pij.x — piji) EEN N1(0, 7455 (V)),

for some 7;;. that is continuous in v, where p;;. i are the partial correlations estimated by Algorithm

Proof. We take any arbitrary but fixed ¢, j € [p] and subset K € [p], and we prove the lemma for j;;.x . Let k := |K|+2,
where | K| is the size of the conditioning set K. We begin by relabeling the variables of interest for clarity. We relabel 4

to 1, j to 2 and the elements of K to S = {3,--- , k}. Furthermore, we define the sets
g . {m,m+1,--- k} 3<m<k
0 m=k+1"

Note that S3 = S, and thereby, the partial correlation of interest is pi2.5 = pi2.5,. Now we define for m €
{3, ,k + 1}, the vectors

P1,2-5m P1,2-Sm

£1,3-Sm P1,3-Sm

£2,3-Sm P2,3-Sm

£1,4-Sm P1,4-Sm

P 1= P2,4-Sm and  py, = P2,4-Sm
P1,m—1-Sm P1,m—1-Sm
P2,m—1-Sm P2,m—1-Sm

ﬁm—Z,m—LSm Pm—2m—1-Sm



It follows from the definition of Sy that prr1 = p and px41 = p. In order to prove the lemma, we proceed by
induction on m starting with the base case of m = k + 1 and showing that for all m such that 3 < m < k,

Vitlpm = pm) 2> N (0. A4 (v)) (5:4)

for some A,, that is continuous in v. Note that the base case is given by the hypothesis in the lemma. Moreover, the
statement of the lemma is that the above holds for m = 3, and therefore, completing the inductive step proves the
lemma.

To complete the inductive step, assume that for m such that 3 < m < k + 1, we have

. D
\/ﬁ(pm+1 — Pmt1) — N\pmﬂ\ <0a Am+1(V))' (S.5)
Note that for any «, 8 € [p], the recursive formula for the partial correlations

PaB-Sm+1 — Pam-Sm+1PBm-Sm+1
PaB-Sm = 3 3
\/1 ~ Pam-Sm1 \/1 ~ PBm-Smat

implies that the vector p,, can be written as a function of p,,41. Let f,, : RlPm+1l — RIPml be this function, then we
have

(S.6)

p1’2'5m+1 pl,Q'Sm

£1,3-Sm+1 £1,3-Sm

P2,3-Sm+1 P2,3-5m

P1,4-Sm+1 P1,4-Sm

p2.4-S, P2,4-8

e e B e s

P1,m-Sm+1 pl,(mfl)-Sm

P2,m-Sm+1 p2,(m—1)-5m

Pm—1,m-Sm+1 Pm—2,(m—1)-Sm

Note that this implies f,,(pm+1) = pPm since our procedure uses this recursive formula to estimate the partial
correlations. Applying the Delta method to (S.3)) with the function f,, gives

\/ﬁ(/}m - pm) £> Mpm\ (07 Am(”v pm+1)>a

where A, (v, pms1) = Vm(pms1) Ami1 V)V frn(pme1)T. The matrix V £, (pmi1) can be computed to be the
following matrix

a2 0 O 0 b1271 b1272 0 0 . 0
0 ais 0 0 b13,1 0 b1373 0 -0
0 0 a3 0 O b2372 0 b2373 . 0
D := vfm(pm-l—l) - . 0 . . . . . . 5
0 0 0 - am nm
2
where
1
Ayy = )
\/1 - pi,m'sm+1 \/1 - pzam'sm+1
b _ Pz,y-Sm+1Pz,m-Sm+1 — Py,m-Sm-+1
Ty, — 2 3 5 ;
\/(1 - px,m-Sm+1) \/1 - py,m~Sm+1
and

b Pz,y-Sm+1Py,m-Sm+1 — Pzr,m-Sm+1

zy,y — .
VI s/ (U= P s)?




To simplify indexing, we define the index function

I(z,y) =x+w.

)" row and column of the Jacobian D. We can now compute the elements

Then, the element a,, ,, will be on the I(z,y
of the matrix A,, in terms of the elements of A,, 1. Namely, defining d := (m=2)(m=1) ,nq using the notation M,

2
to denote the entry in the 2 row and y** column of M, we can compute the element in the I(z, y)*" row and I(z, w)*"
column of A4,,, to be

I(1,m) I(1,m)
T
Am[I(x,y),I(z,w)] = Z Z Dm[l(z,y),p]Am+1[p,q]Dm[q,l(z,w)]

p=1 q=1
I(1,m) I(1,m)
= D Dulicaral D Am+iipag Pl
p=1 qg=1
I(1,m)
= Z Dm[[(m,y),p] (az,wAm+1[p,I(z,w)] + bzw,zAm+1[p,d+z] + bzw,wAm+1[p,d+w]>
p=1

= Qgy (az,wAm—i-l[I(z,y),l(z,w)] + bzw,zAm+1[I(m,y),d+z] + bzw,wAm—o—l[I(m,y),d—o—w])
+ bwy,w (az,wAm+1[d+:z:,I(z,w)] + bzw,zAm+1[d+m,d+z] + bzw,wAm+1[d+:c,d+w])

+ bayy (Gds 2 drwAmt1[dy,1(zw0)) T Dzw,zAmt1(dty,dtz] + Ozw,wAm+1(dty,dtu])-
(S.7)

Note that equation (S.6) shows that p,,+1 is a continuously differentiable function of p,,2 since it is a composition of
continuously differentiable functions. Hence, D is continuous in p,, 2. Furthermore, p,, 2 is continuous in p, which
can be seen by applying a similar argument recursively. Therefore, p,, is continuous in p. By Assumption[(AZ)] for

alli,j € [p],
_ 9i3 (Eni;]) — 9i(E[n:])g; (Eln;]) .
\/gu(]E[mv]) - gi(E[m])z\/gjj (E[nj;1) — g;(E[n;])?
Hence, p is continuous in v. Therefore, p,,1 is continuous in v. A similar argument shows that each of azy, by, »
and b, ,, are continuous in v. Finally, the I(x,y), I(z, w) entry of A,, is continuous in the elements of A,,1(v) for

arbitrary x,y, z and w. Therefore, we can reparameterize A,, (v, pm+1) = A (v), and the inductive step follows for
m € {3,---,k}. Specifically, for m = 3, we have the desired statement:

Vn(ps — ps) 2, N1(0, A3(v))

for A3(v) continuously differentiable in v. Relabeling back to 4, j and K, and defining 7;;.x () := A3(v), we have

Pij (S.8)

. D
\/ﬁ(pij-K — pij-K) — N1(0, Tij.[((l/)),
which completes the proof. O

Note that it was not necessary to find the form of the elements of A,,, explicitly to argue that it was continuous. However,
the proof of this lemma gives us a recursive formula to compute the elements of A3. Furthermore, this recursive
formula is independent of the choice of noise functions F' and the associated functions g. Hence, this recursion can be
used for all noise models, as long as the base case is derived for that noise model, i.e., as long as the elements of the
matrix A(v) in LemmalS.1|can be found.

Proof of Theorem([l] Follows directly from combining Lemma|[S.T|and Lemma [S.2] O

C Proof of Corollary 1]
Proof. By Theorem|[I]and the hypothesis of the corollary,

Valpijx — pijerc) 2> Ni(0, 7.k (pijoxc)).-



By application of the Delta method with

dp+C,

1
zij.x (p) = / Nere)
we obtain
Vi (i) = s (pigerc)) 2 N1 (0, (2.1 (0)) Figac (i) ) = N1(0, ).

Note that the condition imposed on C, z;;.x(0) = 0, by the corollary is not required to prove the result, but is only
needed to prove Theorem 2] O

D Proof of Corollary 2|

Proof. By the Law of Large Numbers, 7 —*% v as n — oo. Therefore Tij k(D) N Tij.k (V) since 7;;.5 is
continuous in v by Theorem[I} Combining this with the convergence result of Theorem [I] gives

Vipigx = pigerc) = N1 (0,7i5.5(9)),

and hence A
\/ﬁ( Pi,ngA _ pi,j~KA ) 2>N1 (071).
Vi (@) /T ()
If we define
Gy (Y, 9) = — e,
we obtain
VGt (Pagcs#) = G (pigese, ) 2> N1(0,1),
which completes the proof. ]

E Proof of Theorem 2]

We rely on the consistency of the causal discovery algorithm that our procedure uses such as PC (Spirtes et al., | 2000) or
GSP (Solus et al.| [2017)) in the oracle setting, i.e., when the conditional independence statements of the underlying graph
are known. Hence, to prove consistency of our procedure, it is sufficient to show that the conditional independence
statements that our procedure estimates from the observed data converges to the true set of conditional independence
statements under the faithfulness assumption in[(AT)]

First, recall that our procedure estimates the CI statements implied by P through declaring X; I X ;| X if

e

T (pij.r)| < @7 5 ), (S.9)

where T could be one of two statistics:

(i) T is chosen as in Corollary I]to be
. . 1 .
T(pij.x) = Vnzij.x (Pijr) = \/ﬁ(/ ————dpij.x + O) (S.10)
Tij~K(pij-K)
with C' chosen such that z;;.x (0) = 0 if the conditions of Corollaryare satisfied,
(ii) or 7' is chosen as in Corollary [2]to be
. . . N Pij K

T(pij.-x) = VnCijx (pij, V) = Vn ——2——. (S.11)

Tij~K(pij-K7 V)

The first step in proving the theorem is the following lemma.

Lemma S.3. As n — oo, the CI statements that our procedure estimates from the observations of X converge to the CI
statements implied by P.



Proof. Take any arbitrary;j 2 [p] andK [p] n fi;j g: First, note that in both settings af("; « ) in (S.10)
and(S.11) T("; ) is monotonic and continuous it « : In the rst setting it is the anti-derivative of a strictly
positive function ofy; k and in the second, it is linear ity k with positive slope. Monotonicity and the de nitions of
zj k and j ¢ implythatforn 60, T( j k) =0 ifandonlyif j « =0. Continuity and Lemma 1 imply that

TN k)™ T(«) as n!l
LetH be the event thaX; 6? X;jXk was declared by the test {$.9) LetH be the event thaX; 6? X;jXk
according to the measufe Let H° be the event thaX; i X;jXx according toP. We analyze the limits of the

probability of declaring a CI statement correcf(H jH), and the limits of declaring a Cl statement incorrectly,
P(H jHOY: First, forall 2 (0; 1],

P(H jH)= PGT(% k)i> M1 5)i i« 60)
LOPGT( 4 x)i> '@ )i« 60)
I 1 as n!l ; (S.12)

where to obtair{S.12) we used thal ( j k) 6 0 since jj k 6 0. HencejT( j k)j = jpﬁ ¢!l forc60 as
n!l . Moreover,

P(H jH9
PiT(hy «)i> '@ 5) j k=0

P T k)> ' ITC5x)=0 +P Ty )<  3) T(i«)=0
! as n!'l ; (S.13)

where(S.13)follows from Corollaries 1 and 2 that assert the asymptotic normalifly of both settings. Hence, for any

> 0,wecanset = =2andwe will obtairP(H jH9! < asn!1l . Therefore both errors in estimating
the Cl statements implied By vanish asymptotically, implying that the set of Cl statements obtained from observations
X converge to those implied 1, thereby completing the proof. O

Proof of Theorem 2Under faithfulness, the ClI statements implied®gre those implied by, Hence, by Lemma S.3,
the set of Cl statements obtained fradfnasn ! 1 converge to those implied B3. Therefore, if the causal discovery
algorithm used in step 6 of Algorithm 1 is consistent in the oracle setting, then Algorithm 1 is consistent. [

F Derivation of the transforms for the dropout model

In this section, we derive the transforms for the dropout model. Recall, in the dropout model introduced in Section 3,
we consider an anchored causal model wiereN (; ) satis es (Al). In Example 3.2, the corrupted observation
vectorX is modeled as

Zi wp g

Xi = Fi(Zi) = 0 wp 1

forall i2 [p]; (5.14)

with g 2 (0; 1]: Note that Assumption (A2) is satis ed since eaxhis independent of all other variables given its
parentZ;. We can nd the moments df in terms of the moments of :

EXil=g i; EXA=g i: EXiX;]=dq j (S.15)
foralli;j 2 [p]withi 6 j, where we de ned j := E[Z;Z;]: From this, we can see that Assumption (A2) is satis ed
with

=X = XE = XX (S.16)
and
g(y) = %; gi (y) := %; gj () = %: (S.17)



F.1 Derivation of the Dropout Stabilizing Transform

In this section, we derive th#ropout stabilizing transforminder the assumption that = 0 foralli 2 [p] andK = ;,
i.e., we nd a variance stabilizing transformatiap = z; , for the correlationsj = j .. We rstshow that j ( )
can be reparameterized gs( j ) and then solve for the dropout stabilizing transfaip( ). We follow the proof of
Lemma S.1 and later impose the= 0 assumption.
We take any arbitrary, but xed distinct node$ 2 [p] and de ne

L T

S | N
as the vector of monomials i; andX; from (S.16). Similarly, we de ne

A= AN A A AT

[ T TR |
as the analogous vector of monomialdn and)(‘,- estimated from the observed data.
Then, applying the Central Limit Theorem gives

PREN BN s(0As( );
whereAs( ) is the matrix
Cov(Xi; Xj) COV(XJ';Xi) COV(XiZ;Xi) COV(XJ-Z;Xi) COV(Xin;X
Cov(Xi; Xj) Cov(Xj;Xj) Cov(X ?;X;) Cou(X % X)) Cov(XiXj;Xj)
Cov(Xi;X?2) Cou(X; X ?) Cov(X 2, X?) Cou(X % X?) Cou(XiXj;X?) &
COV(Xi;Xin) COV(Xj;Xin) COV(XiZ;Xin) COV(XjZ;Xin) COV(XiX]';X'Xj)

and is the vector of all rst and second order moments ofNow, de new : R®! Rl as

0 1
ap
a
as aa
W%&gg:p e
2 as a2 a a3
as

Note that we havev(E[ ]) = i andw(E["]) = *; . Applying the Delta method witw gives

pﬁ("ij iR Lo ) (S.18)
where

i ()= 1 w(E[ DTAs( )r w(E[ ]): (S.19)

Carrying out the multiplication gives the asymptotic variang€¢ ) parameterized by elements af In the case of the
dropout model, any moments Xf are linear in moments &, for example,
EIXiX£Xj]1= gag E[ZiZkZ;]:

Furthermore, any moments @f, which is a Gaussian random variable, can be written as polynomials in the rst and
second order moments &f, i.e., the elements of and . Hence, after imposing the constraint that 0, we can
reparameterize; () interms of as

1 2(=b—)*> 9(»—b—)> 9(p=—b—)2 (p—b—)
+ +

i()= — - o o ii2“ +( p—p—)%

a9 Gq 4q 4q i ]
where  =() «. The details of the computation are included in the Supplementary Mathematica Notebook. Now,
using j = p:UPT we can reparameterizg () once more to obtain

22 9?2 9?2 2
W)= oo oE Sh By
44 99 49 49 2
Hence, inthe =0 case, we can rewrite (S.18) as

pﬁ("ij iR 10 ()




In order to nd a variance stabilizing transform fof , we can now solve
z

B()= P+ C
i

with C chosen such tha; (0) = 0. Then, by Corollary 1, we have

Pa zi (%) oz () !N (05 2):

There is no closed form far; () in this case. However, it can written as

r
Z jarcsin 2 22i+q1
8giq 2 8giq 2 Zv a2 1
1 . 1+ = (1+ >=sin“ ) 2d
— H 0 .

Zii = i e ; S.20

i () N (Zq‘ g )(4+(8 9gi 9q; +2 qigi) 2+4qi g 4) ( )
Zy gi g;

wherei = P ~1;and
q
z, =+8 93 9q +2gqg+ 64qq +(8 93 9g +2Gq)%
q
z = 8+9g+9qg 2gq+ 64q+(8 99 9q +2qGq)x

The integral that appears in the expressiozjof ) is the elliptic integral of the rst kind, and can be computed
numerically.

F.2 Conditions for the Dropout Stabilizing Transform

As mentioned in Section 4, the dropout stabilizing transform only exists whef andK = ;. If the derivation was
done with non-zero means, it would not have been possible to reparameterize the asymptotic variance of the correlations
i ( ) interms of only the correlation; to satisfy the conditions of Corollary 1. In Figure S.1, we demonstrate the
dependence ofj ( ) from equation(S.19)for xed j on := i = j , which are elements of, when 6 0.
This can be additionally veri ed through the Supplementary Mathematica notebook. Figures S.1 (a)-(e) show that
ij is still dependent on elements ofeven for a xed correlation;; forq6 1 when 6 0, and hence a transform
of the kind in Corollary 1 does not exist for6 0. Forq = 1, i.e. no dropout, the dropout model reduces to the
measurement-error-free Gaussian, anao longer depends onand for xed j . In this case, a transform of the
kind in Corollary 1 does exist and as shown in Lehmann (1998), it is the Fisher's z-transform.

F.3 Derivation of the Dropout Normalizing Transform

In this section we give a way to compute tii®pout normalizing transforrorresponding to Corollary 2 under the
dropout model. We begin by showing how to compute the asymptotic variance of the partial correlgtigrs).

In the proof of Lemma S.2, we showed that if we know the continuous funétign) such that
pﬁ(’\ )'Rl ii A (), (S.21)

then we can recursively compute the functigng ( ) beginning with the matriA (). Hence, to give a way to
compute j g for the dropout model, it is suf cient to describe the elements of the maitrix ) and thus we nd a
formula for each element of th® () matrix. First, recall that the elementsAf ( ) correspond to the covariances of
the sample correlations of the latent variatlsestimateq)in step 3 of Algorithm 1. That is, each elemem of )
will correspond to the asymptotic covariance oy, and™ n”¢4 for somea; b; c; d2 [p] such that 6 bandc 6 d.
There are three different cases for each ent il ), corresponding to different casesayb; c; d

@) fabbg = fc; dg are distinct, and the element is along the diagonal, corresponding to the asymptotic variance
Of ﬁ/\ab,

(b) a62 t;dgandb?2 f c;dg,

(c) all of a; b; c; dare distinct.



@ =2 (b) =2 © =2

@ =1 ) =1 M =1

(@ =0 (hy =0 @ =0

Figure S.1: Plots of; . when j is xedto 0:5, 2f0;1;2g, with allowed to vary. This shows that we cannot
reparameterlze” as afunctlon of only; for non-zero mean, unless= 1. Forg =1 the transform corresponding to
Corollary 1 is the Fisher's z-transform.

To analyze all three cases, it is suf cient to take four arbitrary, but xed distirjck;| 2 [p]. We begin by noting that
for the dropout model, we can write

A A
Y [ [

TP

. GEEM dEmien

+ Ev <q%E[“iD2%Em (3 END?
. E[Y ] EMIEN] : 622
G EM] EMNP gEMy] ENP

De ne
AN NN NN )T
as the vector of estimated correlations<af, X; ; X; X obtained fromE["] by (S.22). Similarly, let
=i ok i gk k)T
be the analogous vector of true correlations. In the next part of the derivation, we will apply the Delta method to the
vectors of moments of the monomialsXn, X; Xi; andX; of Assumption (A2), to obtain the asymptotic distribution

of the vector®, as in the proof of Lemma S.1, We begin by de ning the vector of relevant monomixls, X; ; X;

andX;
T

=00 ki i ik i ikl kk K



where the components are de ned for our model in equation (S.16). Then, by the Central Limit Theorem, we have
p_
nEMN ELDIN 1w 0AL() (S.23)
whereA14( ) is the covariance matrix of the vectorand is the vector of all rst and second order moments oflo

obtain the convergence result stated in Lemma S.1, we de ne the funvetioR* ! R® based or{S.22)such that
w (E[ )= andw (E["])=". Then

PR IR 6 0w (EL DT Ase( )r w (EL ) : (S.24)
Since the moments inare included in the vector of momentswe can de ne
As( ):=rw (E[ DT Aw( )r w (E[ ]): (S.25)

The explicit form ofAg( ) can be found by carrying out the matrix multiplication(8125) Before performing the
matrix multiplication, we note that for the dropout model, we can write any momextas a linear function of a
moment ofZ , for example,

EIXiX¢Xj]1= gag E[ZiZkZ;]:
Furthermore, sincg is a Gaussian random vector and all moments of a Gaussian random vector can be written in

terms of its rst and second order moments, we can parameterize the asymptotic covariance with the moments of the
Gaussiary as
A )= Asl( )

For each entry ifAg( ), we list the three cases mentioned previously in terms of the parameterizatdn a} .

The full computation is carried out in the Supplementary Mathematica notebook. We use the ngtato() j to
denote the elements of. Fora; b;c;d2 f i;j; k;1 g,

(a) If the element corresponds to the asymptotic covariané)eﬁ)’fab andIO n”y with fa;bg= fc;dg, thenitis

equal to
1 aa bb
aa bb Calb
2 2 b ab, b abyl
+( bb 4 + R+ )
a a b a b ab
42 2 b G
2 2 2 a 2b 3 2b 1
a a
+( b aa ab 4apat 2a+ 2)
4aa 2aa qa
1
2 2 2
+( 32t + +4 4 pabt2 ) —
a b aa ab a a ab
GG
a 2b A 2b g 2b b 2b 4b 2 2 2b
a_al a_a a a al a
22 2 42 24 tabttavat
aa aa bb bb aa bb
2
9ab(i+i .
4 " O

(b) If the element corresponds to the asymptotic covariangeﬁnrfa,J andp N with a 62 £;dg andb = d, then
the element is equal to

2 2
20b b be( ab ac bb 2 aa ac bb bct aa ab bc)

cc(l Cb) ﬁ aa ab bc
+2(1 Q)) g aa bb cc ab bc
(1+ Cb) ﬁb cc aa ab bc
+ §b aa( ab bc 4 ac bb)

1
4§b ac cc(Q) §b+(% 1)gaa+ bb aa) 3p73;
4 5 ( aa cc)

10



(c) If the element corresponds to the asymptotic covariangeFdfab andp n”\q with a; b; c; ddistinct, then the
element is equal to

2 2
cc cd( ab ad bb 2 aa ad bb bdt aa ab bd)

+ aa bb( ad bc cct ac bd cc ac bc cc ad bc Cd) dd
2 ac ad bb] cc dd ab

2
+ 3 bb cd dd ab
1

P —:
2 ( aa bb cc dd)3

+ aa bc dd ab( bc cd 2 bd cc)

These expressions can be used as the base case of the re(SrBjomhich allows us to indirectly ndj ¢ for any
i;j 2[plandK [p] nfi;j gunderthe dropout model.

The dropout normalizing transform is then computed using

i k(M=M= 5 k(M)

F.4 Derivation of the Dropout Normalizing Transform with Shrinkage

In this section, we derive the dropout normalizing transform when the partial correlations are estimated from the

shrinkage matriX' for a xed shrinkage coef cient . The derivation closely follows Section F.3. First recall that from
Section 4

STCREED A

P . .
whereS = [, X ()X OT js covariance matrix of the observationsXf Then, denoting’; = (J j ; we can
express correlations as

N = iy (S.26)

where the elements df are
A 1 1 1
i =@ ) 39 E[% ] EE[Ai]a ENT + EN ] EINIENY]

AN

= )qiEm (qiE[A.l)z v EN] ENP (.27)

1 1
Bi= ) GENT (GENDT o Ely] BN
We can de ne the functiow of equation(S.24)based on equatior{$.26)and(S.27)and proceed as in Section F.3
to derive the corresponding elements of the asymptotic covariance matrix. The derivation of the dropout normalizing

transform with shrinkage, in addition to the result is shown in the Supplementary Mathematica notebook. Note that in
this case, the elements of the asymptotic covariance mattixndfwill be functions of .

G Experiments

We include additional simulation results for varyip@ f 10; 30g, n 2 f 1000 2000 1000Q 5000@ andd 2 f 2; 3; 5g.

Speci cally, we evaluate the estimated skeleton as well as the CPDAG in recapitulating the trué 0gw® ROC

curves and SHD. For the majority of the settings, the dropout stabilizing transform outperforms the naive Gaussian
Cl test applied on the corrupted data. As pointed out in Section 5.1, both dropout transforms tend to outperform the
Gaussian ClI test when the number of samples is high. In plotting the ROC curve for the CPDAG ffdi0; 30g, we
consider an undirected edge in the CPDAG a true positive if a directed edge exXists éither direction, and a false
positive otherwise. We consider a directed edge in the CPDAG a true positive if a directed edge of the same direction
exists inG, and a false positive otherwise.

We also include the inferred gene regulatory network for the pancreatic type Il diabetes data set, collected with inDrop
single-cell RNA-seq technology. We use the dropout stabilizing transform and Algorithm 1 to obtain causal relationships
between latent genes.
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Figure S.2: Q-Q Plots for empirical distributions of the statistic computed from the dropout normalizing and dropout
stabilizing transforms under the null hypothesis
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Figure S.3: ROC curves for evaluating the estimated skeleton of the true DAG using dropout stabilizing transform,

dropout normalizing transform, and Gaussian CI test in simulations with p = 10 and n € {1000, 2000, 10000, 50000}
and d € {3,5}.
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