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Abstract

We propose a novel probabilistic framework to
model continuous-time interaction events data.
Our goal is to infer the implicit community
structure underlying the temporal interactions
among entities, and also to exploit how the
community structure influences the interaction
dynamics among these nodes. To this end, we
model the reciprocating interactions between
individuals using mutually-exciting Hawkes
processes. The base rate of the Hawkes process
for each pair of individuals is built upon the
latent representations inferred using the hier-
archical gamma process edge partition model
(HGaP-EPM). In particular, our model allows
the interaction dynamics between each pair of
individuals to be modulated by their respective
affiliated communities. Moreover, our model
can flexibly incorporate the auxiliary individ-
uals’ attributes, or covariates associated with
interaction events. Efficient Gibbs sampling
and Expectation-Maximization algorithms are
developed to perform inference via Pdlya-
Gamma data augmentation strategy. Experi-
mental results on real-world datasets demon-
strate that our model not only achieves com-
petitive performance for temporal link predic-
tion compared with state-of-the-art methods,
but also discovers interpretable latent structure
behind the observed temporal interactions.

1 INTRODUCTION

There has been considerable interest in modeling and
understanding the information diffusion pathways and
interaction dynamics among entities from continuously
generated streams of data. These streaming data include
the timestamped interaction events among entities (e.g.,
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question-answering threads (Mavroforakis et al., [2017)),
email communications (Yang et al.,|2017) and interaction
events among nations (Schein et al., 2016} |[Yang et al.,
2018 [Schein et all [2019)), and the auxiliary contents
created by these interacting entities. Such temporal inter-
action data enable us not only to track the fopics underly-
ing the human-generated contents, but also to understand
the network formation and evolving process among these
interacting entities.

A fundamental problem in the analysis of continuous-
time interaction events is to capture the underlying com-
munity structure and reciprocity in these interactions.
Reciprocity is a common social norm, in which an
individual’s actions towards another will increase the
likelihood of the same type of action being returned
in the near future (Blundell et al. 2012). Specifically,
Hawkes processes are well-fitted to model such recip-
rocating behaviors in temporal interactions. To further
capture the underlying community structure, some re-
cent works (Blundell et al., 2012; DuBois et al., 2013}
Linderman et al., 2014; |Yang et al.l [2017; Miscouri-
dou et al., 2018) attempt to hybridize statistical mod-
els for static networks with Hawkes processes to model
both implicit social structure and reciprocity among en-
tities. The Hawkes stochastic block models (Hawkes-
SBMs) (Blundell et al.l 2012; Junuthula et al.l [2019;
Arastuie et al., 2019) characterize the interaction dy-
namics between groups of individuals using mutually-
exciting Hawkes processes. To further capture the reci-
procity between each pair of two individuals, Miscouri-
dou et al.| (2018) proposes to model pair-wise reciprocat-
ing dynamics by letting the base intensities depending on
the underlying community structure.

Despite having many attractive properties, the Hawkes-
CCRM (Miscouridou et al., [2018) is restrictive in that
the reciprocity in all the interactions are captured via the
same triggering kernel, and thus cannot interpret the dif-
ferences in interaction dynamics across individuals. For
example, an employee may reply back to the emails from
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Figure 1: An illustrative example. The top left figure plots the aggregated directed networks from the interactions
among five nodes. The bottom left graph shows the underlying community structure. We see that both Bob and Helen
have interest in “baseball” and “hiking”. The top right graph plots the intensity functions of the interactions from Bob
to Helen, and from Helen to Bob, respectively. The bottom right graph plots the interactions from Bob to Helen, and
from Helen to Bob, respectively. These interactions may represent the messages between the involved nodes. As in this
example, some of their interactions are about “baseball”, and others relate to “hiking”. We assume that behind each
interaction, the latent patterns of the involved nodes determines the excitation effects of that event on the opposite

direction.

his/her department more quickly than responding to non-
urgent emails from outside. A fundamental problem in
modeling such temporal dynamics is to infer the latent
struture behind observed events (Du et al.,2015; Mavro-
forakis et al., [2017; | Xu et al., 2017; [Tan et al., [2018a)).
To account for heterogeneity both in how two individu-
als initiate interactions as well as in the dynamics within
each specific event, [Yang et al.[|(2017)) proposes to mod-
ulate both the base and reciprocate rate with a dual latent
space model, instead of exploiting the latent structure un-
derlying observed events.

In this paper, we attempt to develop a new framework,
the Hawkes edge partition model (Hawkes-EPM) , which
hybridizes the recently advanced hierarchical gamma
process edge partition model (HGaP-EPM) (Zhou, 2015}
with Hawkes processes. More specifically, the base in-
tensity of the Hawkes process is built upon the latent
representations inferred by the HGaP-EPM, which en-
ables us to capture the overlapping communities, degree
heterogeneity and sparsity underlying the observed in-
teractions. To accurately capture the interaction dynam-
ics between two individuals, our model augments each
specific interaction between them with a pair of latent
variables, to indicate which of their latent communities
(features) leads to the occurring of that interaction. Ac-
cordingly, the excitation effect of each interaction on its
opposite direction is determined by its latent variables.
For instance, as shown in Figure El, Bob and Helen have
many common interests (features), and some of their in-
teractions are due to their common interests in playing

baseball. Moreover, our model can automatically deter-
mine the number of the underlying communities via the
inherent shrinkage mechanism of the hierarchical gamma
process (Zhou and Carin, [2015). Furthermore, our model
construction can flexibly incorporate the auxiliary indi-
viduals’ attributes, or covariates associated with interac-
tion events.

Contributions. We make the following contributions:
(1) We propose a statistical model for continuous-time
dynamic networks by capturing the underlying commu-
nity structure via the base rate of the mutually-exciting
Hawkes process, and estimating the number of commu-
nities with the hierarchical gamma process. (2) The pro-
posed model accounts for heterogeneity both in exoge-
nous and endogenous activities. (3) Efficient approxi-
mate inference can be performed with closed-form up-
date equations using data augmentation techniques. (4)
The developed model is applied for temporal link predic-
tion using real-world data, and shows competitive perfor-
mance compared with state-of-the-art models.

The paper is organized as follows. Section 2 shortly re-
views the necessary background. Section 3 describes the
Hawkes-EPM model. Section 4 discusses how the pro-
posed model relates to previous works. Section 5 de-
scribes the developed inference procedure. Section 6
presents the experimental results on real-world interac-
tion event datasets.



2 BACKGROUND

The proposed Hawkes edge partition model is built upon
the hierarchical gamma process edge partition model,
which infers the underlying community structure be-
hind the aggregated temporal events, and also relies on
Hawkes processes, which capture the reciprocating be-
haviors between nodes. Next we shall briefly review the
two building components.

2.1 HIERARCHICAL GAMMA PROCESS EDGE
PARTITION MODELS

The hierarchical gamma process edge partition (HGaP-
EPM) model (Zhou, 2015)) was recently proposed to de-
tect overlapping community structure in static relational
data. Formally, let V denotes a set of nodes, and the
(static) relationships among V' = |V| nodes be repre-
sented by a binary adjacency matrix £ € {0,1}V*V,
where ¢, ,, = 1 if there is an (directed) edge from nodes
u to v, and 0 otherwise. We ignore self-edges {€,,  }uey
as a node never interacts with itself. The (truncated)
HGaP-EPM is generated as

¢u,e ~ Gammal(a,, 1/c,), a, ~ Gammal(eg,1/fo),

ry ~ Gamma(rg/K,1/c),

Gamma({rk, X),
Qp g ~
Gamma(rgrg, x),

ifk =k

. )
otherwise

K
Cu.v ~Bern0ullil1— H exp(—(bukak,k/gbv,k/)],

k k=1

where each node u € V is chacterized by a positive
feature vector [¢y 1,...,Pux|* with ¢, measuring
how strongly node « is affiliated to each community
k=1,..., K. a, captures the sociability of node u, and
thus node v exhibiting a large number of interactions will
be characterized by a large a,. The prevalence of each
community k is captured by a positive weight rg. The
HGaP-EPM can infer an appropriate number of commu-
nities via its inherent shrinkage mechanism: many com-
munities” weights {r} tend to be small as K — oo, and
thus most redundant communities will be shrunk effec-
tively. The parameters €0y ;, and €2 5/ capture the intra-
community and inter-community interaction weights, re-
spectively. In particular, £ prevents overly shrinking €0,
for small communities. The probability of there being
an edge from node u to node v is parameterized under
the Bernoulli-Poisson link (BPL) function Pr(y = 1 |
¢) = 1 — e~¢, where ( defines the positive rate. Fol-
lowing (Zhoul [2015)), we impose the Gamma(1, 1) prior
over the hyperparameters c,,, cg, €g, fo, 70, &, X, indepen-
dently. Interestingly, the probability of an edge e,, ,, mod-

eled by the BPL can be equivalently generated as

Cuw = l(éu,v = 1)7

K K
Cuv ~ Poisson( Z Z (bu,ka,k/@,’k/),

k=1k'=1

where ¢y, 1 1 @y 1 capture the connecting strength be-
tween nodes u and v due to their affiliations to communi-
ties k, k', respectively. Note that the HGaP-EPM not only
captures the overlapping community structure, degree
heterogeneity, but also characterizes structured sparsity
patterns in community-community interactions (Zhou)
2018a).

2.2 HAWKES PROCESSES

Let N(t) be a counting process recording the number of
events occurring at times {¢;} with ¢; < ¢. The probabil-
ity of an event occurring in a small time interval [¢, t+d¢)
is given by Pr(dN(¢) = 1| H(t)) = A(t)dt, where
H(t) = {t; | t; < t} denotes the history of events up
to but not including time ¢, dN(¢) is the increment of
the process, and A(¢) is the conditional intensity func-
tion (intensity, for short) of N(¢). A Hawkes process is
a stochastic point process (Daley and Vere-Jones), [2003))
with intensity function defined as

/\(t):u—i—Lv(t—s)dN()—/H— Dot —t))

Jit;eH(t)

where 11 > 0 is the base rate capturing the exogenous
activities, and () is the nonnegative triggering kernel
modelling the endogenous activities. Note that this inten-
sity function characterizes the self-excitation effects that
past events have on the current event rate. Here, we con-
sider an exponential kernel y(¢t—s) = a exp[—(t—s)/d]
where a > 0 determines the magnitude of excitations,
which exponentially decays with a constant rate 6 > 0.
The stationary condition for Hawkes processes requires
ad < 1. Recent work (Blundell et al.|, 2012} [Yang et al.}
2017; Miscouridou et al., 2018; Junuthula et al.l 2019}
Arastuie et al., 2019) were proposed to capture the reci-
procity in communications between a pair of individu-
als using mutually-exciting Hawkes processes. Formally,
for a pair of nodes u,v € V, we have the counting pro-
cesses Ny, (1), which defines the number of directed in-
teractions from node « to node v in the time interval
[0,). Let the history of interactions from nodes u to v
be denoted as ., , (t). Accordingly, Ny, ., (t) and N, ,,(t)
are mutually-exciting Hawkes processes if their intensity
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Figure 2: A simple example for the Hawkes-EPM model. The top left figure shows the inferred matrix of node fea-
tures ®, and the community-community interaction strength €2. Here, node u connects to node v through the intra-
community interaction (1, 1) and inter-community interaction (2, 3). The top right figure plots the interaction events
between u and v. Each event is denoted by a bar, under which we use (a, b) to indicate the latent variables a, b of nodes
u, v in thatevent, e.g., z{' = 1, 2{ = 1 for 1-st event. The bottom left figure plots the intensities of the interactions from
u to v, and from v to u, respectively. Equivalently, A, ., (¢) can be represented by the summation of { Ay x kv (¢) }x ks
where A\, k.1, (t) denotes the interaction intensity from w to v via the inter-community (k, &).

functions take the forms

)\u,v(t) = Hyv + 2 ’Y(t - tj)v
tjEHvyu(t)

Av,u(t) = Hov,u + Z 7(t - ti)a
tiGHuyv(t)

respectively. Note that mutually-exciting Hawkes pro-
cesses capture the reciprocating interactions from node
u to node v at time ¢ as a response to the past interac-
tions from v to u.

3 THE HAWKES EDGE PARTITION
MODEL

Let {(t;, si,d;)}}, be a sequence of temporal interac-
tion events, where (¢;,s;,d;) is a directed interaction
from node s; (sender) to node d; (receiver) at time t;.
To capture reciprocity in interactions, mutually exciting
Hawkes processes (MHPs) assume that a specific event
(t;, si,d;) is either an exogenous event triggered by the
base rate /i , 4,, OF is an endogenous one, responding to
a past event.

To further capture the underlying community structure,
we augment each event (¢;,s;,d;) with two auxiliary
variables z{ and z¢, which refer to the latent com-
munities affiliated with respectively the sender and re-
ceiver. Hence, for the event sequence from node u to
node v, the first event is driven by one of the sub-rates,
{u ke k' v}y Where fiy, 1 k7 denotes the sub-rate ac-
counting for the exogenous interactions from w to v due
to their respective affiliations to k, k’. Accordingly, each
subsequent event from « to v is either driven by one of its
corresponding sub-rates, or driven by a past event of the

opposite direction. Figure[2] presents a simple illustrative
example for the Hawkes Edge Partition Model (Hawkes-
EPM).

Formally, for a pair of two nodes u and v, the base rate
Hu,v is built upon the latent parameters {¢y  }o.r and
{Q% 1 }x inferred using the HGaP-EPM. More specifi-
cally, we define the intensity function for nodes » and v
as

)\u,v(t) = Z )\u,k,k/,v(t)v
k,k’
Au,k,k/,v(t) = kK v + nyk,k' (t — tj), (1)
JtiEH, gt g (F)

Ve x' (t = 8) = ap o exp[—(t — 5)/0],

where A, ,(t) factorizes into the summation of the sub-
intensities {\y, k. k.0 (t) } i k- We set the base rate ji,, , =
Dok Mk ko> WheTe fiy ki o = Gu kS i Go ks Puk
captures the affiliation of node w to community %, and
Qy, v the inter-community interaction strength between
k and k’. Hence, the base rate j,, ,, naturally models that
two nodes sharing more features are more likely to inter-
act with each other.

In this work, we assume that if an occurring event is
driven by a past event, the latent pattern of the occurring
event is also determined by that past event. To this end,
the rate Ay, ki, (t) from w to v under the pattern (k, k'),
is only allowed to be influenced by the past opposite in-
teractions under the pattern (', k), {(t;,s;,d;) | t; <
tysj = v,dj = u, 28 = K, zf = k}, which we de-
note by {t; € My i k,u(t)}. Therefore, in Eq. (2), we de-
fine a nonnegative kernel function v, ;+, which captures
the decaying influence of past events under the pattern
(k', k) on the current intensity. More specifically, a x/



controls the excitatory effect under the pattern (', k),
and we impose a gamma prior over oy i/, 1.€., Qg 1 ~
Gamma(1, 1). As reported in related works (Yang et al.,
2017; Mavroforakis et al., 2017), we find that inferring
time scale § suffers from identifiability issue. Instead
of modeling temporal dynamics via weighted combina-
tions of basis kernels, we allow «y, i/ to be varying be-
tween different patterns but fix J as a constant. Putting
all this together, the conditional intensity function of the
Hawkes-EPM, for the directed events from w to v, is

Auo(t) = pruw + Xw (= 1))
Jti €My kot gu ()

= Z{Mu,k,k/,v + D ag g exp[—(t — tj)/é]}>

kK Jti€H gt goyu (F)
(2)

The latent patterns associated with each interaction is
sampled as follows. If (¢;, s;,d;) is an exogenous event
induced by jis, 4,, the latent patterns 27, z¢ for s;, d; are
determined by their affiliated communities via ¢, , @4,
respectively. In case that (¢;,s;,d;) is an endogenous
event, z;, z7d are determined by the past opposite interac-
tions from d; to s;. More specifically, the latent patterns
associated to ¢-th event can be generated as

Pr(zf =k, 28 = k' | ti,si = u,d; = v)

= (Mu,k,k’,v + 2 ag e exp[—(t; — tj)/5]> [Auo(ti),
Jti€H 1t go,u (T)

fork, ¥ =1,... K.

3)
In real temporal interactions, some additional informa-
tion such as auxiliary node attributes, explicitly declared
relationships among entities, and communicating con-
tents are also available for accurately modelling tempo-
ral interaction dynamics when interaction events are in-
complete (say, due to the privacy issues of individuals).
Formally, let X, = [z}, ,,...,2,]" denotes the co-
variates of D-dimension associated with a pair of nodes
u and v. For example, the covariates x,, , may represent
the common attributes shared by v and v, or the word
embeddings inferred from the communicating contents
between v and v. We generalize the Hawkes-EPM model
by letting

L e v ~ Gamma(fi k0, 1/ (exp[—X, , Bk k1)),

“

where fiypr0 = Ou kO Por, and Brp =
(6é7k,, el ﬁ,gk,)T is the regression coefficient vector of
latent pattern (k, k’). The base intensity in (4) is drawn
from a gamma prior where the shape parameter incor-
porates the underlying community structure information
via fly k k' v, and the scale parameter is a function of the

input auxiliary covariates. To our knowledge, the regres-
sion component in closely relates to (Rai et al., [2015j
Zhou, 2018b), but firstly applied in this context and the
inference derivation is non-trivial.

Remarks. Note that the proposed model allows an un-
bounded number of latent patterns to be shared across
all pairs of interacting nodes via the hierarchical gamma
process (HGaP) (Zhou and Carin, [2015). As shown in
Eq. , the sub-rate pi,, &, Of the latent pattern (k, k')
is non-negligible over the whole time period, and thus
our model allows the events widely separated in time
but with similar dynamics to be parameterized under
the same pattern, to avoid vanishing prior issue (Mavro-
forakis et al., 2017; Kapoor et al., 2018)).

4 RELATED WORK

The proposed model closely relates to the Hawkes
process-based interaction models and the Bayesian
nonparametric prior-based Hawkes process models.
Hawkes Processes-based Interaction Models. Blun-
dell et al| (2012) describes the Hawkes stochastic
block model (Hawkes-SBM), in which each node is al-
lowed to be affiliated with only one community (non-
overlapping), and the interaction dynamics between two
nodes are determined by their respective community-
specific intensities. The recent extensions (Junuthula
et al.,[2019; |Arastuie et al.,|2019)) can be seen as the vari-
ants of Hawkes-SBMs.

Tan et al.|(2018a) describes an Indian buffet Hawkes pro-
cess model, which assumes that each event can be si-
multaneously driven by multiple evolving factors shared
among events. In contrast, the Hawkes-EPM relies on
a clustering structure, where each interaction is catego-
rized as one subtype, while the multiple evolving sub-
types are shared among behind the events.

Miscouridou et al.| (2018) describes an unified frame-
work, which captures the overlapping community struc-
ture, graph sparsity and degree heterogeneity using com-
pound completely random measure model, and models
reciprocity between each pair of nodes via mutually ex-
citing Hawkes processes. However, Hawkes-CCRM can-
not capture the differences in temporal dynamics of indi-
viduals by using the same triggering kernel for all the
entities. Our proposed model not only models the inter-
pretable latent structure underlying observed interactions
as in (Miscouridou et al., 2018)), but also captures the la-
tent pattern behind each event using community-specific
triggering kernels.

Bayesian  Nonparametric Hawkes  Processes
(BNHPs). Recently, Bayesian nonparametric priors
(BNPs) (Ferguson, [1973)) are introduced to capture the



k,s;

Z log {Mswd +Zk k'/z]f €Ha, )

— Zz {.usi,diT + Zk,k’ZjitjEHdi,k’.k,

latent structure underlying the observed event sequence.
The Dirichlet-Hawkes process (DHP) (Du et al., [2015)
models the latent clustering structure underlying the
observed events using the Dirichlet process.

The Indian buffet Hawkes process (Tan et al.l 2018a)
and the nested Chinese restaurant process-Hawkes pro-
cess (NCRP-HP) (Tan et al., 2018b) have been developed
to capture the rich factor-structured and hierarchically-
structured temporal dynamics, respectively.

Mavroforakis et al.| (2017) points out that most previ-
ous BNHP models suffer from the vanishing prior prob-
lem as the instantiated patterns in these models are only
captured via the endogenous intensity. Hence, an already
used pattern will vanish if its intensity tend to be zero. As
a consequence, these BNHP methods unavoidably gener-
ate many redundant patterns for the events widely sepa-
rated in time but sharing similar dynamics.[Mavroforakis
et al.| (2017) resolved this issue using the hierarchical
Dirichlet process (Teh et al., 2006) framework, where the
top-layer Dirichlet process defines the distribution over
latent patterns, and the bottom-layer Hawkes processes
capture the temporal dynamics across multiple event se-
quences. Nevertheless, it is unclear how to generalize the
Hierarchical Dirichlet Hawkes Process (HDHP) to model
temporal interaction events. Our proposed model infers
the appropriate number of communities (patterns) using
the hierarchical gamma process prior (Zhou and Carin|
20135). In the Hawkes-EPM, each latent pattern is mod-
elled by a community-specific intensity function, which
is non-negligible over time, and thus effectively prevents
from the vanishing prior issue.

S INFERENCE

The proposed model admits efficient approximate in-
ference as the posteriors of all the model parame-
ters are available in closed-form using Pdlya-Gamma
data augmentation strategy. Let D denote the whole
events data, F the binary adjacency matrix aggre-
gated from D, ie., e,, =1 for v, € V if
there being at least one interaction observed in the
time interval [0,7], = the parameters of the HGaP-
EPM, and © the parameters of the Hawkes-EPM.
The model parameters of the Hawkes-EPM consist of

s (t0)

t;

(1) KK exp [—(t: —t;)/4] }

w1 = exp =t~ 1)/3D |} + 1 Pr(©). (5

{Duker Qbeors P fo k05 Ve i s Bl jr s Ve by s Wa o k0 - WE
use the “Z” to denote the maximum a posterior (MAP)
estimate of x. A two-step inference procedure is de-
veloped to perform maximum-a-posteriori (MAP) esti-
mate: (i) Approximate Pr(Z | D, E) by Pr(E | E),
and obtain a MAP estimate =, and then (ii) Approximate
Pr(© | E,D) by Pr(© | Z, D). The full posterior is ap-
proximated by Pr(©,2) = Pr(Z | E)Pr(® | E,D).
The posterior inference for 2 is performed using the
Gibbs sampling procedure described in (Zhou, [2015).
Next we shall explain the Expectation-Maximization al-
gorithms to perform MAP estimation following (Lewis
et al., 2011 Zhou et al., [2013; Xu et al., [2016). We
also use index summation shorthands: - sum out that
index, e.g. x.; = »}, ;;. The log-posterior of the ob-
served temporal events D = {(t;,s;,d;)}Y ; is shown
in Eq. ( . More specifically, let ©() denote the current
model parameters, we construct a tight upper-bound of
log-posterior in (5) via the Jensen’s inequality as

o |eW) = (6)

_ Zi {F‘Si,diT + Zk,k’Zj:tJEHdiyk/‘k,Si(ti),yk’k/ (ti — tj)}
+ Z Zk k,pz ki log lusuk K d; ]

Di ke k'

< Yiw (ti — t5)
+ Zk k’Z] €M g, ) Pi ke’ lV.

ks (Bi) Di,k,k!
+ log Pr(©),

where we define D; 1, ;s and p; 1 as

Pibp = Psi .k di
i,k,k" = @) 0 B
Fs;.di + Zk7k’2jit_7‘€7'ld1;,k/,k,si (ti)’ykk/(ti - tj)
U]

~ Zj:tjeﬂd%k, ks (t )’Ykk/ (t — t_])

Dik ke = ' .
Wy (l) (l)

P T Zk’k/zjitj’gﬂdi,k’,k,si(ti)’ykk’(ti - tj)
(7

in which p; - can be interpreted as the probability
that ¢-th event is drawn from the base rate under the
latent pattern (k,k’). ;. x is the probability that i-th



event is triggered by the opposite interaction events un-
der the pattern (%', k). Accordingly, we update the suffi-
cient statistics as

Moy kk'v = Z

i:8;=u,d; =v

My k kv = 2

1:8; =u,d; =v

Dik k!

Di o k- (8)

Expectations of Pdélya-Gamma random variables are
available in closed-form (Scott et al., [2013), and given
by

E|wli.] - ©)

~(1 A~ l
Mi,)k,k’,v + Mo,k k" v wq(L,)k,k’,q)
0 tanh —
2¢u,k,k}’7v

Maximizing Q(©) with respect to each of the model pa-

rameters {fiy k k' v > {Qk k' }> {8k k' }» {WPk 1} fixing the
rest, leads to closed-form updates for each of these:

(+1) Bk o T Mok ko
- L
T + exp[—xI, B4 ]

(10)

Via the gamma conjugacy, we update oy as

(I+1)

Qp " =
€0 + 2oy o ke kv

fo+ Zizj:tjE’Hdi.si ()0 (1 TP [_%D -

Given the expectations of Pélya-Gamma random vari-
ables E [wy, k.x,0], We update ¢y, 1y and 3, s as

—1
D = [diag(E [wfj’)k,]) + TI] (12)
- (0
meg g — ./
x [’“2“ +r(X7B, + 10gm>1 ,

ALY = (XX + 77 A) X7 () — log(T))
13)

in which for clarity we define the following notations

@ O] ]

1,k,k7 107" 7UJU,k,k',V

= [w
ﬁlk,k' = [ml,k,k/,u cee 7ﬁlU,k,k’,V:|T;

A = diag[v ', ... v5t],

Yo

@ —r,O )
p’k,k’ = [ul,k,k’,l’ ce 7MU,k,k’,v]T7

X=Xy Xpv] -

The full procedure of our EM algorithm is summarized
in Algorithm |1l We also develop a simple-to-implement

Algorithm 1 Expectation-Maximization algorithm for
the Hawkes Edge Partition Model

Input: events data D = {(t;,s4,d;)}Y, {®, Q} in-
ferred by the HGaP-EPM, time scale §
Output: {/iy 10} {Chi}
1: repeat
2 for n=1:N do
3 Update (ﬁi,k,k’aﬁi,k,k’) (Eq
4 Update the intensity function A, 4, (t;) (Eq.
5:  end for
6.
7
8

Update mu,k,k’,v and ’r\flu’k‘yk/,v (Eq
Update the base intensities {fty k1 v} (Eq.
Update the parameters {Brr}, {wWu ki v}
{¢ri} (Egs.[13} [0} [12)

9:  Update the kernel parameters {a 1} (Eq.

10: until convergence

Gibbs sampling algorithm, and present its full procedure
in the supplement.

Computational Cost. For the second inference step,
d

computing the latent variables {z{,z¢} and updating
the intensities for all the given events takes O(NK?)
time, where K is the estimated number of communi-
ties by HGaP-EPM. Estimating {c 1} and {1y k.10 }
requires O(K?) and O(K?V?) time, respectively. Esti-
mating {8k k' } and {1y, ko } requires solving a linear
system, and takes O(K2D?) and O(K?2N) time, where
N denotes the number of node pairs with at least one
interaction in [0, T"]. To sample the Pélya-Gamma vari-
ables {wy k.k.v}, We employed a fast and accurate ap-
proximate sampler of Zhou| (2016), which matches the
first two moments of the original distribution. Using the
EM algorithm, the Pélya-Gamma variables are updated
in closed-form (as a hyperbolic function) (Scott et al.|

2013).

6 EXPERIMENTS

We evaluate the proposed Hawkes-EPM model on three
benchmark datasets: (1) Bosnia. This datase consists
of interaction events among 159 nations over 1,819
days (17/01/1991-31/12/1995). There are 1,918 edges,
and 34,014 interactions. (2) Gulf. This dataseﬂ contains
304,401 interaction events among 202 nations over 7,291
days (15/04/1979-31/03/1999). There are 7,184 edges.
(3) EU-email. This dataseﬂ consists of 332,334 email
communications among 1,005 individuals over 526 days.
There are 24,929 edges. We generated the covariate data
between each pair of nodes using their common at-

1
http://eventdata.parusanalytics.com/data.dir/pevehouse.
html
2
http://eventdata.parusanalytics.com/data.dir/gulf.html

3
http://snap.stanford.edu/data/email-EuAll.html
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Figure 3: AUC-ROC and PR scores for the temporal link prediction.

tributes.

We compared our model to two basic models: (1) a Pois-
son process (PPs) model, which independently models
the interaction dynamics between each pair of nodes by
a constant event rate, (2) a mutually exciting Hawkes
process (MHPs) model, in which we assume the same
base rate and kernel parameters for each pair of nodes.
Following (Yang et al., 2017), we utilized four basis
kernels—three exponential kernels with time decaying
scale: one hour, one day, one week respectively: v (t)
exp(—24t),72%(t) = exp(—t),73(t) = exp(—t/7), and
a periodic kernel ~v*(t) exp(—t/7) sin®(rt/7), and
also to three state-of-the-art Hawkes interaction models:
(3) the Hawkes Dual Latent Space (DLS) model (Yang
et al.l |2017), which explicitly captures the commu-
nity structure via the base rate with the Latent space
model (Hoff et al.l 2001), and models the reciprocat-
ing dynamics between each pair of nodes via recipro-
cal latent space model, (4) the Hawkes stochastic block
model (Hawkes-SBM), which captures the interaction
dynamics using Hawkes process for each community
independently, (5) the community Hawkes independent
pairs model (CHIP), which models each node pair with
a Hawkes process. For DLS, we set the latent dimen-
sions d = 500 according to the default setting of |Yang
et al.| (2017) in our experiments. We demonstrate that
the Hawkes-EPM achieves competitive performance but
utilizes much fewer latent dimensions (K., = 100)
compared to DLS. All the baseline models are detailed
in the supplementary material. Due to lack of available
code, we are not able to compare (Tan et al., [2018alb).
Given the aggregated graph, we estimated the param-
eters {®,Q} of the HGaP-EPM with the truncation
level Kiax = 100. We ran the Gibbs sampler detailed

in (Zhoul, 2015) for 10,000 MCMC iterations, and used
the maximum a posterior estimate {‘i', Q} in the second
step. For the Hawkes-EPM, we choose a kernel decay of
0 = 1/10 for the time scale of 10 days.

Temporal link prediction. To evaluate the predictive
performance of all the methods, we sorted the interac-
tion events according to the corresponding timestamps,
and made a train-test split so that the training dataset
consists of p-percent of the whole events with p vary-
ing between 50% and 90%. We trained all the methods
using the training datasets. In this task, we let all the
models to predict the probability that an edge appears
(at least one interaction occurrs) between each pair of
nodes in the time interval [¢,¢ + 7#) with ¢ being the
end time of the training events. We empirically set 7
to be 50 days for all the datasets because it took one
or two months for a nation to respond to actions from
the other nations on average. We calculate the probabil-
ity of there being at least one interaction in [t,t + 7)
as 1 — exp{— §,"" Auo(s)dN, ()} Finally, we com-
pute the average area under the curve (AUC) of both the
receiver operating characteristic (ROC) and precision-
recall (PR) to evaluate the predictive performance. Al-
though AUC-ROC score is widely used in evaluating
link prediction performance, we found that the interac-
tions of the temporal events are quite sparse. Hence,
one method can obtain high AUC-ROC score even if
it accurately predicts zero-links but shows poor perfor-
mance in predicting non-zero links. In contrast, AUC-
PR score mainly reflects the method’s ability to predict
non-zero links. As shown in Figure [3| the Hawkes pro-
cess based models (MHPs, DLS, Hawkes-SBM, CHIP,
Hawkes-EPM) capture the reciprocating dynamics of the
interactions among nodes, and thus significantly outper-
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Figure 4: The top and bottom plot show the intensity of interaction events between USA-Iraq (IRQ), and Iran (IRN)-
Iraq (IRQ) inferred by the Hawkes-EPM in the Gulf dataset, respectively.

form the Poisson process model. We noticed that most
node pairs exhibit no edges in the time interval [¢,¢ + 7)
(All the methods accurately predict zero-links and thus
achieve high AUC-ROC scores). The Hawkes-SBM cap-
tures the interaction dynamics of each node pair within
the same community only using a single point process,
and thus achieves lower predictive scores. It is not sur-
prising that mutually exciting Hawkes processes (MHPs)
achieve higher scores as MHPs model each node pair
with three periodic kernels, that sufficiently capture the
interaction dynamics between each node pairs. A closer
looking into the AUC-PR scores, shows that the Hawkes-
EPM performs better than HPs, CHIP and DLS when the
training ratio is low. This is because the Hawkes-EPM
shares the kernel parameters among node pairs, and thus
performs well even if most node pairs exhibit few inter-
actions. Although both the Hawkes-EPM and DLS can
capture the heterogeneity in base and reciprocal rate, the
Hawkes-EPM effectively exploits the latent structure be-
hind events and thus consistently outperforms DLS.

Exploratory analysis. We also used the Gulf dataset to
explore the latent structure estimated by the Hawkes-
EPM. We found that KX = 12 latent communities, and
most of those communities correspond to international
military conflicts among nations. Figure [] shows the
inferred intensities of the interaction between USA-
Iraq (IRQ), and Irag (IRQ)-Iran (IRN), respectively. We
found that the peaks of the intensities correspond to
events surrounding the Gulf War (1990-1991), the Cruise
missile attack on Iraq on 1993 and 1996, the Bombing
of Iraq in 1998. In addition, we also plot the intensities
of interaction events between Iran (IRN)-Iraq(IRQ). The
intensities of the interaction events between these two
nodes are gradually increasing from 1980, and reach the
peak at 1988. To interpret the inferred interaction dynam-

ics between these two nodes, we performed a web search,
and found that the Iran-Iraq War started on September,
1980 and ended on August, 1988. Most of the inferred in-
tensities between each pair of nations in the Gulf dataset
confirm our knowledge of international affairs. We also
provide the additional plots of the intensities between the
other nations in the supplementary material.

7 CONCLUSIONS

We have presented a probabilistic framework, the
Hawkes edge partition model (Hawkes-EPM) for infer-
ring the implicit community structure and reciprocat-
ing dynamics among entities from their temporal inter-
actions. The Hawkes-EPM not only models the inher-
ent overlapping communities, sparsity and degree het-
erogeneity behind interactions, but also captures how
the latent communities influence the interaction dynam-
ics among their involved entities. Experimental results
demonstrate the interpretability and competitive predic-
tive performance of our model in temporal link pre-
diction for several real-world datasets. Our strategy to
cluster events into a set of latent patterns using the
gamma process prior (Zhou and Carinl [2015) combined
with Hawkes processes, can be readily generalized to all
the closely-related applications, such as continuous-time
topic models (Mavroforakis et al., 2017 and event-based
tensor decomposition (Zhe et al.| 2018)).
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