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Abstract

Modal regression is aimed at estimating the
global mode (i.e., global maximum) of the
conditional density function of the output vari-
able given input variables, and has led to re-
gression methods robust against a wide-range
of noises. A typical approach for modal regres-
sion takes a two-step approach of firstly ap-
proximating the modal regression risk (MRR)
and of secondly maximizing the approximated
MRR with some gradient method. However,
this two-step approach can be suboptimal in
gradient-based maximization methods because
a good MRR approximator does not necessar-
ily give a good gradient approximator of MRR.
In this paper, we take a novel approach of
directly approximating the gradient of MRR
in modal regression. Based on the direct ap-
proach, we first propose a modal regression
method with reproducing kernels where a new
update rule to estimate the conditional mode is
derived based on a fixed-point method. Then,
the derived update rule is theoretically inves-
tigated. Furthermore, since our direct ap-
proach is compatible with recent sophisticated
stochastic gradient methods (e.g., Adam), an-
other modal regression method is also pro-
posed based on neural networks. Finally, the
superior performance of the proposed meth-
ods is demonstrated on various artificial and
benchmark datasets.

1 Introduction

The goal of modal regression is to estimate the global
mode (i.e., global maximum) of the conditional density
of the output variable given input variables [Sager and
Thisted, 1982, Collomb et al., 1986, Yao et al., 2012,
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Feng et al., 2017]. In stark contrast with the Gaussian
noise assumption in conventional regression methods,
modal regression has much weaker noise assumptions,
and has led to regression methods robust to a wide-range
of noises. Applications of modal regression includes pre-
diction of Alzheimer’s disease [Wang et al., 2017], face
recognition [Wang et al., 2019], etc. See also a recent
comprehensive review article by Chen [2018].

A number of approaches have been adopted so far to
propose regression methods against nonGaussian and/or
nonstationary noises. A well-known approach is to use
robust loss functions such as least absolute deviations
or Huber loss [Huber and Ronchetti, 2009]. However,
most of robust loss functions are intended for symmetric
noises, and thus can be vulnerable to highly skewed (i.e.,
asymmetric) noises. A sophisticated approach to handle
nonstationary noises is the heteroscedastic Gaussian pro-
cess regression (HGPR) [Kersting et al., 2007, Lázaro-
Gredilla and Titsias, 2011]. However, HGPR usually
assumes that the noise density is a zero-mean Gaussian
with a nonstationary variance, and therefore may not also
work well to skewed noises. In contrast, again, modal
regression makes weak assumptions, and heavy-tailed,
skewed and/or nonstationary noises are acceptable.

The mode of the conditional density has been often es-
timated through maximization of the empirical modal
regression risk (MRR), which is defined as the sam-
ple average of the conditional density (or the joint den-
sity) [Sager and Thisted, 1982, Yao et al., 2012, Feng
et al., 2017]. A naive approach to modal regression takes
a two-step approach of firstly approximating the empir-
ical MRR via conditional (or joint) density estimation
(e.g., by kernel density estimation (KDE)), and secondly
of maximizing the approximated risk by some gradient
method. However, the fundamental challenge in max-
imization is accurate approximation of the gradient of
MRR rather than MRR itself. Thus, this two-step ap-
proach might be suboptimal because a good MRR ap-
proximator does not necessarily mean a good gradient



approximator of MRR. Yao et al. [2012] apply an EM
algorithm, but the gradient of a risk function is still com-
puted through the naive two-step approach with KDE.

Another approach to modal regression employs a surro-
gate risk of MRR [Lee, 1989, Yao and Li, 2014, Feng
et al., 2017, Wang et al., 2017]. The advantage of this
approach is that high-dimensional density estimation can
be avoided. However, a drawback is that the surrogate
risk includes a manually tuning hyperparameter, and it
is not straightforward to select it since the surrogate risk
itself depends on the hyperparameter. Moreover, when
neural networks are used in large datasets, the hyperpa-
rameter selection can be computationally very expensive.

In this paper, we propose two methods for modal re-
gression based on kernels or neural networks. In con-
trast with existing methods, we do not go through the
approximation of MRR itself, but rather more directly
approximate the gradient of MRR. The key challenge in
our approach is direct estimation of the derivative of the
log-conditional or joint density. To this end, under the
Fisher divergence [Cox, 1985, Sasaki et al., 2014], we
develop methods which directly estimates the log-joint
density derivative without density estimation. The Fisher
divergence has been employed to detect multiple local
maxima of the conditional density [Sasaki et al., 2016],
but our target is the single global maximum, and thus the
proposed methods here are substantially different.

First, based on reproducing kernels, we develop an esti-
mator for the log-joint density derivative, and then pro-
pose a modal regression method. As shown later, thanks
to the analytic solution of our derivative estimator, a
computationally efficient model selection is possible for
leave-one-out cross validation. Furthermore, for modal
regression, this kernel-based derivative estimator enables
to derive a novel parameter update rule based on a fixed-
point method for conditional mode estimation. Then, the
derived update rule is theoretically investigated.

Second, we employ neural networks both for the den-
sity derivative estimation and modal regression. Our ap-
proach of directly approximating the gradient of MRR is
clearly nonstandard, but turns out to be well-compatible
with sophisticated stochastic gradient methods such as
Adam [Kingma and Ba, 2015]: The learning rate is adap-
tively determined by the gradient of the empirical risk,
and thus only the gradient is required to update param-
eters. Combined with some stochastic gradient meth-
ods, we can develop a neural-network-based method for
modal regression without any efforts, and to the best
of our knowledge, this is the first attempt to make use
of neural networks for modal regression. Finally, we
demonstrate that our modal regression methods perform
well on various artificial and benchmark datasets.

2 Background

This section gives some background of modal regression
and states our approach.

Problem formulation: Suppose that we are given n
observations of pairs of input and output data samples
drawn from the joint density pyx(y,x) for y ∈ R and
x ∈ Rdx as D :=

{
(yi,x

>
i )
>}n

i=1
. Under the assump-

tion that the conditional mode uniquely exists, our goal is
to estimate the following modal regression function fM:

fM(x) := argmax
t∈R

log py|x(t|x), (1)

where py|x denotes the conditional density of y given x.

Review of modal regression: To make our approach
clearer, we adopt the terminologies in Feng et al. [2017].
Let us assume that the output variable y is generated from
the following model:

y = f∗(x) + ε(x), (2)

where ε(x) denotes an additive noise, and f∗ is an un-
known function called the conditional mode function.
The fundamental assumption in (2) is the zero condi-
tional mode assumption:

Mode(ε|x) := argmax
t∈R

log pε|x(t|x) = 0, (3)

where pε|x denotes the conditional density of the noise
ε given input variables x. This mode assumption is very
general and weak because pε|x can be skewed (i.e., asym-
metric), heavy-tailed, and/or dependent to x (i.e., nonsta-
tionary). As in heteroscedastic Gaussian process [Kerst-
ing et al., 2007], a zero-mean Gaussian noise even with
a nonstationary variance is a special case of (3). Mode
assumption (3) ensures that fM(x) = f∗(x) from (2).

To estimate fM by a model fθ with parameters θ, the
modal regression risk (MRR) is defined as

R(θ) :=
∫
px(x) log py|x(fθ(x)|x)dx, (4)

where px denotes the marginal density of x. An alter-
native risk has been also defined using the joint density
pyx(y,x) [Sager and Thisted, 1982, Yao et al., 2012].
Following Theorem 3 in Feng et al. [2017], it can be
proved that the (global) maximizer ofR(θ) equals to the
modal regression function fM when both fθ and fM be-
long to the same function set. In practice, the empirical
version ofR(θ) is used as

R̃(θ) := 1

n

n∑
i=1

log py|x(fθ(xi)|xi). (5)



Then, R̃(θ) can be maximized using the following gra-
dient with respect to parameters θ:

∂

∂θ
R̃(θ) = 1

n

n∑
i=1

∂

∂θ
fθ(xi)

∂

∂y
log py|x(y|xi)

∣∣∣
y=fθ(xi)

=
1

n

n∑
i=1

∂

∂θ
fθ(xi)

∂

∂y
log pyx(y,xi)

∣∣∣
y=fθ(xi)

,

(6)

where note that ∂
∂y log py|x(y|x) =

∂
∂y log pyx(y,x). To

approximate the gradient (6), the fundamental task is to
estimate ∂

∂y log py|x(y|x) or ∂
∂y log pyx(y,x). To this

end, a naive approach takes two steps of firstly estimat-
ing log py|x(y|x) or log pyx(y,x) and then of computing
the derivative with respect to y. However, such a naive
estimation procedure can be suboptimal because a good
density estimator does not necessarily mean a good log-
density derivative estimator. Thus, a better approach to
approximate the gradient (6) would be to directly esti-
mate ∂

∂y log py|x(y|x) or ∂
∂y log pyx(y,x) without going

through density estimation.

Another approach for modal regression employs the fol-
lowing empirical surrogate risk [Lee, 1989, Yao and
Li, 2014, Feng et al., 2017, Wang et al., 2017], which
has been used in the maximum correntropy criterion as
well [Gunduz and Principe, 2009]:

R̃σ(θ) := 1

nσ

n∑
i=1

ψ

(
yi − fθ(xi)

σ

)
, (7)

where σ is a positive width parameter, ψ is a nonnegative
function such that ψ(u) = ψ(−u), ψ(u) ≤ ψ(0) for
all u and

∫
ψ(u)du = 1. Feng et al. [2017] proved the

following relation:

R̃σ(θ) n→∞−−−−→ 1

σ

∫
ψ

(
y − fθ(x)

σ

)
pyx(y,x)dydx

σ→0−−−→
∫
py|x(fθ(x)|x)p(x)dx.

Thus, R̃σ(θ) can be regarded as a surrogate of R̃(θ)
in (5) without the logarithm. This approach seems ap-
pealing because we can avoid high-dimensional density
estimation. On the other hand, a significant drawback
is that the performance strongly depends on the choice
of the hyperparameter σ, and it is not straightforward to
choose a right value. We may use cross validation (CV)
in practice, but this approach can be problematic because
of the following two reasons: First, it seems unclear what
criterion in CV should be used to select σ because R̃σ it-
self depends on σ1; Second, even if there was a valid

1The squared-loss may be used in CV. However, the
squared-loss implicitly assumes the Gaussian noise, and thus
may prohibit us to make full use of the advantages of modal
regression.

criterion for CV, then we have to perform a nested CV
to choose both σ and hyperparameters in fθ (e.g., the
width parameter in a kernel function), which is computa-
tionally very expensive. Furthermore, if neural networks
are employed, a grid-search for selection of σ in large
datasets could be computationally costly.

Here, our approach is to directly approximate the gradi-
ent ∂

∂θ R̃(θ) without going through any approximation
of R̃(θ) itself. To this end, the key idea is to directly es-
timate the log-density derivative ∂

∂y log pyx(y,x) in (6).
With the direct approximation, we propose two methods
for modal regression based on reproducing kernels and
neural networks.

3 Direct log-density derivative estimation

This section develops a method which directly estimates
the derivative of the logarithmic joint density based
on reproducing kernels. Here, our contributions are
twofold: Theorem 1 and an analytic form of the leave-
one-out cross-validation score for model selection. An-
other derivative estimator based on neural networks is
proposed in Section 4.2 under the same divergence.

Kernelized estimator: To estimate the log-joint den-
sity derivative, we directly fit a model r(y,x) under the
Fisher divergence [Cox, 1985, Sasaki et al., 2014]:

J(r) :=
1

2

∫
{r(y,x)− ∂

∂y
log pyx(y,x)}2pyx(y,x)dydx

=
1

2

∫
{r(y,x)}2pyx(y,x)dydx

−
∫
r(y,x)

{
∂

∂y
pyx(y,x)

}
dydx+ C, (8)

where C := 1
2

∫ {
∂
∂y log pyx(y,x)

}2

pyx(y,x)dydx.
The second term in (8) seems difficult to estimate, but the
well-known integration by parts technique transforms it
as follows:∫

r(y,x)

{
∂

∂y
pyx(y,x)

}
dydx

= −
∫ {

∂

∂y
r(y,x)

}
pyx(y,x)dydx, (9)

where we assumed that for all x,

lim
|y|→∞

r(y,x)pyx(y,x) = 0. (10)

The right-hand side on (9) is the expectation of the
derivative of the model, which can be easily estimated
from samples. Finally, the empirical Fisher divergence



up to the ignorable constant is obtained as

Ĵ(r) =
1

n

n∑
i=1

[
1

2
r(yi,xi)

2 +
∂

∂y
r(yi,xi)

]
. (11)

Next, we define our estimator based on a reproducing
kernel Hilbert spaceH (RKHS) as

r̂ = argmin
r∈H

[
Ĵ(r) +

λ

2
‖r‖2H

]
, (12)

where ‖ · ‖H and λ(> 0) denote the RKHS norm and
regularization parameter, respectively. Then, the follow-
ing theorem shows that r̂ can be efficiently obtained by
solving systems of linear equations:

Theorem 1. Let us express (y,x>)> by z. r̂ is given by

r̂(z) =

n∑
i=1

[
α̂ik(z, zi)−

1

nλ

∂

∂y′
k(z, z′)

∣∣∣
z′=zi

]
,

(13)

where k(z, z′) denotes the kernel function in H, zi :=
(yi,x

>
i )
> and z′ := (y′,x

′>)>. The coefficients α̂ =
(α̂1, α̂2, . . . , α̂n)

> are the solution of the following sys-
tem of linear equations:

(K + nλIn)α̂ =
1

nλ
G1n, (14)

where 1n = (1, 1, . . . , 1)> is an n-dimensional vector,
In denotes the n by n identity matrix, [K]ij = k(zi, zj)
and [G]ij =

∂
∂y′ k(zi, z

′)|z′=zj .

The proof is deferred to Section A in the supplemen-
tary material. This paper calls this method the ker-
nelized least-squares log-density derivatives (K-LSLD).
Section 4 develops a modal regression method based
on K-LSLD. Previously, based on the same diver-
gence (11), Cox [1985] proposed a practical estima-
tor with a one-dimensional piecewise polynomial ker-
nel [Wahba, 1990], while Sasaki et al. [2014, 2016] ap-
plied the `2 regularizer for model parameters. In contrast,
we employed the general kernel function and regularizer
of the RKHS norm.

Leave-one-out cross-validation: The performance of
K-LSLD depends on model selection (parameters in the
kernel function and regularization parameter). Here, we
perform the leave-one-out cross-validation (LOOCV) for
model selection whose score is given by

LOOCV =
1

n

n∑
l=1

[
1

2
{r̂(l)(yl,xl)}2 +

∂

∂y
r̂(l)(yl,xl)

]
,

where r̂(l) denotes the estimator obtained from the col-
lection of data samples except for the l-th data sample

(i.e. D\(yl,x>l )>). LOOCV is usually time-consuming.
However, thanks to the analytic solution in Theorem 1,
the LOOCV score can be efficiently computed. The con-
crete form of the LOOCV score is not expressed here
because it is rather complicated. Details are presented in
Section B of the supplementary material.

4 Modal regression with direct gradient
approximation

This section first develops a kernel-based method for
modal regression where reproducing kernels are used
twice in log-density derivative and mode estimation.
Based on K-LSLD, we derive a parameter update rule us-
ing a fixed-point method. Then, the derived update rule is
theoretically investigated. Finally, another modal regres-
sion method is also proposed based on neural networks.

4.1 Direct modal regression with kernels

Fixed-point-based parameter update rule: Here, we
assume that a model fθ to estimate the conditional mode
belongs to an RKHS. Then, under the empirical modal
regression risk (5), the representer theorem [Kimeldorf
and Wahba, 1971] suggests the optimal form of fθ as

fθ(x) =

n∑
k=1

θkkm(x,xk) = θ
>km(x), (15)

where km(x,xi) denotes a kernel function, km(x) =
(km(x,x1), km(x,x2), . . . , km(x,xn))

>, and θ =
(θ1, θ2, . . . , θn)

>. With this kernel model fθ, we obtain
the gradient of the empirical MRR from (6) as

∂

∂θ
R̃(θ) = 1

n

n∑
i=1

km(xi)
∂

∂y
log pyx(y,xi)

∣∣∣
y=θ>km(xi)

.

(16)

Next we substitute K-LSLD into ∂
∂y log pyx(y,x), and

derive a update rule for θ using a fixed-point method. To
this end, we first express K-LSLD in (13) as

r̂(y,x)

:=

n∑
l=1

{
α̂lky(y, yl)−

1

nλ

∂

∂y′
ky(y, y

′)
∣∣∣
y′=yl

}
kx(x,xl),

(17)

where we used the kernel function in K-LSLD (not in
fθ) as k(z, z′) = ky(y, y

′) × kx(x,x′) with two kernel
functions, ky and kx. Then, we further restrict the form
of ky as

ky(y, y
′) = φ

{
(y − y′)2

2σ2
y

}
,



where σy(> 0) denotes the width parameter, φ is a con-
vex, and monotonically non-increasing function. For in-
stance, φ(t) = exp(−t), ky(y, y′) is the Gaussian kernel.

Substituting r̂(y,x) into ∂
∂y log pyx(y,x) in (16) enables

us to approximate the gradient ∂
∂θ R̃(θ) as

∂

∂θ
R̃(θ) ≈ 1

n

n∑
i=1

r̂(θ>km(xi),xi)km(xi)

= h(θ)−H(θ)θ, (18)

where with ϕ(t) := − d
dtφ(t),

H(θ) :=
1

n2λσ2
y

n∑
i=1

n∑
l=1

ϕ

{
(θ>km(xi)− yl)2

2σ2
y

}
× kx(xi,xl)km(xi)km(xi)>, (19)

h(θ) :=
1

n

n∑
i=1

n∑
l=1

[
α̂lφ

{
(θ>km(xi)− yl)2

2σ2
y

}
+

yl
nλσ2

y

ϕ

{
(θ>km(xi)− yl)2

2σ2
y

}]
kx(xi,xl)km(xi).

Then, under the assumption that H(θ) is invertible, set-
ting the right-hand side in (18) to zero gives the following
iterative update rule based on a fixed-point method:

θτ+1 =H−1(θτ )h(θτ ), (20)

where θτ denotes the τ -th update of θ. The following re-
lation would be helpful to intuitively understand how the
update rule (20) works, which is derived by multiplying
H−1(θτ ) to both sides of (18) and applying (20):

θτ+1 ≈ θτ +H−1(θτ ) ∂
∂θ
R̃(θ)

∣∣∣
θ=θτ

. (21)

Eq.(21) implies that the update rule (20) performs gra-
dient ascent when H(θ) is positive definite. Compared
with a standard gradient method, the update rule (20) is
advantageous because there are no additional tuning pa-
rameter such as a step size parameter, which is reminis-
cent of the Newton method. Below, we more rigorously
investigate a property of the update rule (20).

An outline of our kernel-based algorithm called the di-
rect modal regression with kernels (DMR-K) is given in
Algorithm 1. The important problem is how to deter-
mine the initial parameters θ0 because the maximization
of the modal regression risk may require to solve a non-
convex optimization problem. As a remedy, we first per-
form some regression method based on the squared loss
or absolute deviations, and use the estimated coefficient
vector as θ0. In addition, to ensure that H(θ) is invert-
ible, we may add a small constant to the diagonals of
H(θ) in practice.

Algorithm 1: Direct modal regression with kernels
(DMR-K)
Input: Data {(yi,xi)}ni=1, initial parameters θ0.

1. Estimate ∂
∂y log pyx(y,x) as in Theorem 1.

2. After initializing θ by θ0, repeat to update θ
by (20) until some criterion is satisfied.

Output: f̂θ̂(x) := θ̂
>km(x) with the optimized θ̂.

Monotonic ascending property of DMR-K: Here, we
theoretically investigate DMR-K. In particular, we focus
on the monotonic ascending property where the follow-
ing inequality holds at every parameter update τ :

R̃(θτ+1)− R̃(θτ ) ≥ 0. (22)

This inequality indicates that θ is updated such that R̃ is
monotonically increased at every update. However, it is
not straightforward to investigate this monotonic ascend-
ing property in our method because there is no approxi-
mation of the empirical risk R̃(θ).

To cope with this problem, we employ the well-known
formula of path integral [Strang, 1991]: Regarding the
vector field ∂

∂θ R̃(θ) and a differentiable curve θ(t) from
θ(0) = θ1 to θ(1) = θ2, the path integral is given by

D[θ2|θ1] :=
∫ 1

0

〈 ∂
∂θ
R̃(θ(t)), θ̇(t)〉dt = R̃(θ2)− R̃(θ1),

(23)

where θ̇(t) := d
dtθ(t) and 〈·, ·〉 denotes the inner prod-

uct. The key point is that the right-hand side is indepen-
dent to any choice of paths and computed only using θ1
and θ2. Our analysis uses the following simple path:

θ(t) = θ1 + t(θ2 − θ1), (24)

where 0 ≤ t ≤ 1.

To investigate the monotonic ascending property (22),
we approximate the difference of the empirical risk func-
tion, R̃(θ2) − R̃(θ1), by substituting our gradient ap-
proximator (18) into ∂

∂θ R̃(θ) in (23) under the path (24)
as follows:

D̂r̂[θ2|θ1]

:=
1

n

n∑
i=1

∫ 1

0

r̂(θ(t)>k(xi),xi)k(xi)
>(θ2 − θ1)dt.

(25)



The path integral formula (23) clearly indicates that (25)
is an approximator of R̃(θ2)− R̃(θ1). Thus, our update
rule (20) can be interpreted as having the monotonic as-
cending property when D̂r̂[θ

τ+1|θτ ] ≥ 0 for every τ .
The following theorem establishes sufficient conditions:

Theorem 2. Assume that kx is non-negative, and φ
is a convex and monotonically non-increasing function.
Then, if H(θ) is positive definite and α̂l = 0 for all
l = 1, . . . , n, the following inequality holds under the
update rule (20):

D̂r̂[θ
τ+1|θτ ] ≥ 0.

The proof is deferred to Section C in the supplementary
material. Conditions for kx and φ can be easily satis-
fied by using the Gaussian kernel, which also ensures
that H(θ) is positive definite by definition (19). On the
other hand, the condition for α̂l is not fulfilled in general.
However, we experimentally observed that the update
rule (20) gives good results without satisfying the con-
dition to α̂l. This would be because the update rule (20)
possibly performs gradient ascent as implied by (21), and
we also conjecture that there exists milder conditions to
improve Theorem 2.

A similar analysis using path integral has been done in
mode-seeking clustering [Sasaki et al., 2018]. How-
ever, Sasaki et al. [2018] proved a monotonic ascending
property with respect to the probability density function,
while our analysis here is for the empirical modal regres-
sion risk. Thus, the proof is substantially different.

4.2 Direct modal regression with neural networks

Here, we propose another modal regression method
based on neural networks. With a neural network
fNN(x;θ) parametrized by θ, we compute the gradient
of the empirical modal regression risk as follows:

∂

∂θ
R̃(θ) = 1

n

n∑
i=1

{
∂

∂θ
fNN(xi;θ)

}
r∗NN(xi;θ), (26)

where r∗NN(x;θ) := ∂
∂y log pyx(y,x)

∣∣∣
y=fNN(x;θ)

. Our

approach of directly approximating the gradient of an
empirical modal regression risk (26) is clearly non-
standard because there is no empirical risk function.
However, interestingly, our direct approach is rather
well-compatible with recent sophisticated stochastic gra-
dient methods such as Adagrad [Duchi et al., 2011] and
Adam [Kingma and Ba, 2015]: The learning rate is adap-
tively determined based on the gradient of the (mini-
batch) empirical risk. Thus, approximating only the gra-
dient is sufficient to use these stochastic optimization
methods.

In addition to fNN(x;θ), we estimate ∂
∂y log pyx(y,x)

based on another neural network model rNN(y,x;γ)
with parameters γ based on the Fisher divergence (8).
However, when feedforward neural networks were em-
ployed for rNN(y,x;γ), we preliminarily observed that
the second term in the empirical Fisher divergence (11)
often diverged. This is presumably because Assump-
tion (10) might not be fulfilled because neural networks
can be sharply unbounded. To cope with this problem,
we use the following form for rNN(y,x;γ):

rNN(y,x;γ) =

K∑
k=1

wk exp

[
−{y − µ

NN
k (x;γ′)}2

2σ2
k

]
,

where wk are parameters to be estimated, σk denote
(fixed) width parameters, and µNN

k are modelled by neu-
ral networks with parameters γ′. This model would sat-
isfy Assumption (10) because rNN approaches to zero
as |y| → ∞. By substituting rNN(y,x;γ) into r(y,x)
in the empirical Fisher divergence (11), we estimate all
parameters γ (i.e., {wk}Kk=1 and γ′) with a minibatch
stochastic gradient method.

An outline of our algorithm called the direct modal re-
gression with neural networks (DMR-NN) can be seen
in Algorithm 2. As in DMR-K, it is an important prob-
lem to choose good initial parameters θ0. Here, we per-
form pretraining where fNN(x;θ) is trained based on the
squared loss or absolute deviations in advance.

Algorithm 2: Direct modal regression with neural
networks (DMR-NN)
Input: Data {(yi,xi)}ni=1, initial parameters θ0

1. Estimate ∂
∂y log pyx(y,x) by using rNN(y,x;γ)

under the empirical Fisher divergence (11).

2. Repeat the following with a neural network
fNN(x;θ) initialized by θ = θ0:

(A) With a random minibatch {x(B)
b }Bb=1,

approximate the gradient (26) by

g(B) =
1

B

B∑
b=1

{
∂

∂θ
fNN(x

(B)
b ;θ)

}
r̂NN(x

(B)
b ;θ),

where r̂NN(x
(B)
b ;θ) := rNN(y,x; γ̂) of the

optimized γ̂ above.

(B) Update θ by applying a stochastic gradient
method (e.g., Adam) using g(B).

Output: f̂NN(x) := fNN(x; θ̂) with the optimized θ̂



4.3 Discussion between DMR-K and DMR-NN

We briefly discuss pros and cons of DMR-K and DMR-
NN. When n is not so large, DMR-K would be compu-
tationally efficient, and a good initialization procedure
is available because least-squares (LS) or least-absolute
deviations (LAD) with kernels solves a convex optimiza-
tion problem and gives good initial parameters for DMR-
K in practice. On the other hand, stochastic gradient
methods in DMR-NN often require a huge number of
iterations to update parameters. Furthermore, it could
be more difficult to obtain good initial parameters than
DMR-K because optimization problems with neural net-
works are non-convex in general even for LS and LAD.

When n is very large, it is not straightforward to use
DMR-K because the inverse of the n by n matrix in (20)
has to be computed. This is a general problem in most of
kernel-based methods: n by nmatrices (e.g., gram matri-
ces) make kernel methods difficult or almost impossible
to be applied to very large n datasets in terms of com-
putational costs and memories. As a remedy, there ex-
ist approximation methods such as the Nyström approxi-
mation [Williams and Seeger, 2001] and random Fourier
features [Rahimi and Recht, 2008]. However, the reduc-
tion of computational costs and memories by these meth-
ods may come at a cost of limiting the function approx-
imation ability of kernel models. Regarding DMR-NN,
minibatch stochastic gradient methods are applicable to
very large datasets, and neural networks have been em-
pirically shown to work well even to high-dimensional
data. DMR-NN would be more advantageous to possi-
bly high-dimensional and large datasets.

5 Numerical illustration

This section numerically illustrates the performance of
DMR-K and DMR-NN.

5.1 Illustration of DMR-K on artificial datasets

Here, we investigate how DMR-K works on artificial
data, and comparison is made against existing regression
methods based on kernels. To estimate the conditional
mode, in all methods, we used the same kernel model
fθ(x) = θ>km(x) in (15) and employed the Gaussian
kernel where the width parameter was fixed at the me-
dian of the pairwise distance ‖xi −xj‖ (i.e., the median
trick) as done in Gretton et al. [2012]. The following
regression methods were applied to the same datasets:

• Kernel ridge regression (KRR): The kernel model
fθ(x) was estimated under the squared-loss with
the RKHS norm regularization.

• Least absolute deviations (LAD): The absolute devi-

ation (i.e., |yi − fθ(xi)|) was used as the loss func-
tion with same regularization as KRR.

• Huber loss (Huber): Huber loss was employed to
estimate the kernel model fθ(x).

• Variational heteroscedastic Gaussian process re-
gression (VHGPR) [Lázaro-Gredilla and Titsias,
2011].

• Modal regression with kernel density estimation
(MRKDE): A variant of DMR-K with kernel density
estimation following the naive two-step approach.

• Direct modal regression with kernels (DMR-K): A
proposed method based on reproducing kernels.

Details of the regression methods such as model selec-
tion and optimization methods are described in Section D
of the supplementary material.

We sampled input data xi from the uniform density on
[−1, 1]dx , and generated the output data yi according to
the generative model (2) where the following two func-
tions were used for the conditional mode function f∗:

(M1) f∗(x) = sin
(
π
dx

∑dx
j=1 |x(j)|

)
where x(j) de-

notes the j-th element in x.

(M2) f∗(x) = 1
dx

∑dx
j=1(x

(j))2.

The generated noise ε was as follows:

• Gaussian noise: ε was sampled from the Gaussian
density with mean 0 and variance 0.5.

• Outlier noise: 90% of noises were sampled from
the Gaussian density with mean 0 and variance 0.5,
while the remainings were drawn from the uniform
density on [1, 5]

• Skewed noise: ε was sampled from the exponential
density with mean 0.5.

• Nonstationary noise: ε(x) = | cos(πx(1))| × ζ
where ζ was drawn from the exponential density
with mean 0.5. Note that this noise is also skewed.

The total number of samples was n = 500. The esti-
mation error was measured by 1

nte

∑nte

i=1 |ŷtei −f∗(xte
i )|,

where nte denotes the number of test samples, xte
i is a

test sample generated in the same way as the training
samples, and ŷtei is the predicted output by each method
from xte

i . We set nte = 100, 000 in this illustration.

Table 1 shows the averages of estimation errors in dx =
1, 5, 10. KRR or VHGPR achieves the best performance
for the Gaussian noise because these methods make use



Table 1: Averages of estimation errors over 30 runs. The top and bottom panels correspond to when f∗(x) is (M1)
and (M2), respectively. The numbers in parentheses indicate standard deviations. The best and comparable methods
judged by the t-test at the significance level 1% are described in boldface.

(M1) KRR LAD VHGPR Huber MRKDE DMR-K
Gauss noise
dx = 1 0.07(0.01) 0.08(0.01) 0.06(0.01) 0.07(0.01) 0.12(0.02) 0.08(0.03)
dx = 5 0.10(0.01) 0.12(0.01) 0.08(0.01) 0.10(0.01) 0.19(0.01) 0.09(0.03)
dx = 10 0.10(0.01) 0.13(0.02) 0.08(0.03) 0.10(0.01) 0.29(0.07) 0.09(0.05)
Outlier noise
dx = 1 0.31(0.03) 0.10(0.02) 0.18(0.11) 0.10(0.02) 0.11(0.03) 0.09(0.03)
dx = 5 0.29(0.02) 0.13(0.02) 0.19(0.10) 0.13(0.02) 0.20(0.02) 0.10(0.02)
dx = 10 0.30(0.03) 0.14(0.02) 0.17(0.14) 0.14(0.02) 0.29(0.05) 0.08(0.03)
Skewed noise
dx = 1 0.49(0.02) 0.35(0.02) 0.49(0.03) 0.36(0.02) 0.21(0.04) 0.27(0.02)
dx = 5 0.49(0.03) 0.37(0.03) 0.46(0.05) 0.39(0.02) 0.27(0.03) 0.18(0.03)
dx = 10 0.49(0.02) 0.36(0.03) 0.42(0.07) 0.39(0.04) 0.33(0.04) 0.16(0.04)
Nonstationary noise
dx = 1 0.31(0.02) 0.22(0.02) 0.31(0.02) 0.22(0.02) 0.20(0.02) 0.23(0.02)
dx = 5 0.31(0.02) 0.21(0.02) 0.28(0.03) 0.21(0.02) 0.15(0.01) 0.11(0.01)
dx = 10 0.31(0.02) 0.20(0.02) 0.26(0.06) 0.21(0.02) 0.19(0.02) 0.09(0.02)

(M2) KRR LAD VHGPR Huber MRKDE DMR-K
Gauss noise
dx = 1 0.05(0.01) 0.06(0.02) 0.04(0.01) 0.05(0.02) 0.10(0.02) 0.06(0.03)
dx = 5 0.09(0.01) 0.10(0.02) 0.09(0.01) 0.09(0.01) 0.19(0.01) 0.10(0.02)
dx = 10 0.11(0.01) 0.13(0.01) 0.10(0.02) 0.11(0.01) 0.29(0.07) 0.10(0.03)
Outlier noise
dx = 1 0.31(0.03) 0.09(0.02) 0.26(0.07) 0.08(0.02) 0.10(0.02) 0.07(0.03)
dx = 5 0.30(0.02) 0.12(0.02) 0.19(0.07) 0.12(0.02) 0.20(0.02) 0.11(0.02)
dx = 10 0.31(0.03) 0.15(0.02) 0.15(0.11) 0.15(0.02) 0.29(0.04) 0.11(0.03)
Skewed noise
dx = 1 0.49(0.02) 0.35(0.02) 0.49(0.02) 0.36(0.03) 0.21(0.05) 0.20(0.02)
dx = 5 0.50(0.02) 0.37(0.03) 0.48(0.04) 0.38(0.03) 0.27(0.03) 0.21(0.02)
dx = 10 0.49(0.02) 0.36(0.03) 0.43(0.06) 0.38(0.04) 0.33(0.04) 0.17(0.03)
Nonstationary noise
dx = 1 0.31(0.02) 0.22(0.02) 0.31(0.02) 0.22(0.02) 0.17(0.04) 0.13(0.01)
dx = 5 0.32(0.02) 0.20(0.02) 0.30(0.03) 0.20(0.01) 0.15(0.01) 0.12(0.01)
dx = 10 0.31(0.02) 0.21(0.02) 0.28(0.04) 0.22(0.02) 0.19(0.02) 0.11(0.01)

of the Gaussian assumption, while KRR performs poorly
to the other noises. LAD and Huber do not work to the
skewed noise because LAD and Huber implicitly assume
symmetric noises. The performance of MRKDE is good
to the skewed noise in dx = 1, but the performance is
worsened as the data dimension dx is increased. Regard-
ing the nonstationary noise, VHGPR shows rather worse
performance than other methods. This would be because
the noise is nonstationary but skewed, and VHGPR as-
sumes a nonstationary Gaussian noise. Overall, DMR-K
works best or is comparable to the best on a wide-range
of data dimensions and noises. These results substantiate
that our direct approach is suitable. More results can be

seen in Section F of the supplementary material.

5.2 Illustration on benchmark datasets

Finally, we investigate the practical performance of
DMR-NN and DMR-K on benchmark datasets down-
loaded from the web [Bache and Lichman, 2013, Chang
and Lin, 2011]. Each dataset was randomly divided into
training (80%) and test (20%) data samples. Each data
sample was standardized by the empirical means and
standard deviations of the training samples.

We trained a neural network fNN(x;θ) to predict the
output variable by least squares (LS), least absolute de-



Table 2: Averages of the performance score (27) over 20
runs. The numbers in parentheses indicate standard de-
viations. The best and comparable methods judged by
the t-test at the significance level 5% are described in
boldface. Note that larger numbers indicate better re-
sults. The symbol “-” means that we could not perform
DMR-K even with an approximative method because of
limited computer memories.

LS LAD DMR-NN DMR-K
space-ga (dx = 6, n = 3107)
0.81(0.20) 0.95(0.17) 0.97(0.21) 0.61(0.19)
abalone (dx = 8, n = 4177)
0.87(0.16) 0.91(0.25) 0.95(0.19) 0.69(0.19)
cpusmall (dx = 12, n = 8192)
3.48(0.28) 3.90(0.33) 3.51(0.36) 2.80(0.28)
cadata (dx = 8, n = 20640)
1.31(0.08) 1.56(0.09) 1.62(0.12) 0.78(0.08)
energy (dx = 24, n = 19735)
1.20(0.11) 2.64(0.19) 2.81(0.13) 2.30(0.20)
superconductivty (dx = 81, n = 21263)
3.35(0.25) 5.01(0.31) 5.28(0.48) 1.35(0.32)
slice loc. (dx = 384, n = 53500)
14.56(1.07) 20.70(0.60) 24.55(1.29) -
sgemm (dx = 14, n = 241600)
10.82(0.74) 14.01(0.99) 12.75(0.80) 1.93(0.10)
yearpred. (dx = 90, n = 515345)
0.76(0.02) 0.93(0.02) 0.93(0.09) 0.36(0.31)

viation (LAD), and DMR-NN. fNN(x;θ) in all meth-
ods was modelled by a three-layer feedforward neural
network where the numbers of hidden units were 2dx
and dx, and the activation functions were all ReLU. Re-
garding the log-density derivative estimator in DMR-
NN, µNN

k (x;γ′) in rNN(y,x;γ) were also modelled by
a three layer neural network: The numbers of two hid-
den units were 2K and K, and the activation function
was the sigmoid function. σk in rNN(y,x;γ) were se-
lected from 1 to 10 at the regular interval in logarith-
mic scale, and we set K = 50 in dx < 30 other-
wise K = 100. All parameters were optimized by
Adam [Kingma and Ba, 2015] for 500 epochs and reg-
ularized with weight decay where the regularization pa-
rameter was 10−4. For DMR-NN, we performed pre-
training for fNN(x) by LAD. As a kernel-based method,
we only applied DMR-K to the same benchmark datasets
because it mostly performed best or comparable to the
best method in Section 5.1. Unlike the previous exper-
iments on artificial data, we implemented DMR-K with
the Nyström approximation [Williams and Seeger, 2001]
to reduce the computational costs and memories where
only 500 randomly chosen data samples were used as the

center points in the kernel functions.

For this illustration, the performance score is important.
Here, we used the following score:

1

nte

nte∑
i=1

1√
2πσ2

exp

(
− (ytei − f̂NN(x

te
i ))

2

2σ2

)
, (27)

where σ is the width parameter, nte denotes the number
of test samples, ytei and xte

i are test samples for input and
output data respectively, and f̂NN is an estimated neu-
ral network by each method. As reviewed in Section 2,
(27) is a special case of the surrogate empirical risk R̃σ
(i.e., ψ(t) = exp(−t2/2)/

√
2π in (7)), and approaches

to the (non-log) modal regression risk as nte → ∞ and
σ → 0 [Feng et al., 2017]. Here, we set σ = n

−1/5
te ,

which is proved to minimize an upper bound of the ex-
cess risk in modal regression [Feng et al., 2017, Proof
of Theorem 17]. To support that this choice of σ is fairly
good, other results with smaller and larger values of σ are
presented in Section G of the supplementary material.

Table 2 shows that DMR-NN works often better than
or comparable to LAD, while LS and DMR-K perform
poorly. A possible reason of the poor performance
of DMR-K is that the Nyström approximation might
reduce the function approximation ability. Thus, our
method based on neural networks is promising for high-
dimensional and large datasets.

6 Conclusion
In this paper, we proposed two modal regression meth-
ods based on kernels and neural networks. The key idea
is to directly approximate the gradient of the empirical
modal regression risk. To this end, we developed di-
rect estimators for the logarithmic derivative of the joint
density. For the kernel-based modal regression method,
the novel parameter update rule was derived based on a
fixed-point method, and some sufficient conditions were
given for the monotonic ascending property. Since our
direct approach is well-compatible with recent sophis-
ticated stochastic gradient methods, a modal regression
method based on neural networks was also developed,
and to the best of our knowledge, this work is the first
attempt to apply neural networks for modal regression.
The superior performance of the proposed methods was
empirically demonstrated on various artificial and bench-
mark datasets.
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