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Abstract

Adaptive clustering of grouped data is often
done via the Hierarchical Dirichlet Process Mix-
ture Model (HDPMM). That approach, how-
ever, is limited in its flexibility and usually does
not scale well. As a remedy, we propose an-
other, but closely related, hierarchical Bayesian
nonparametric framework. Our main contribu-
tions are as follows. 1) a new model, called the
Versatile HDPMM (vHDPMM), with two pos-
sible settings: full and reduced. While the latter
is akin to the HDPMM’s setting, the former
supports not only global features (as HDPMM
does) but also local ones. 2) An effective mech-
anism for detecting global features. 3) A new
sampler that addresses the challenges posed
by the vHDPMM and, in the reduced setting,
scales better than HDPMM samplers. 4) An
efficient, distributed, and easily-modifiable im-
plementation that offers more flexibility (even
in the reduced setting) than publicly-available
HDPMM implementations. Finally, we show
the utility of the approach in applications such
as image cosegmentation, visual topic model-
ing, and clustering with missing data.

1 INTRODUCTION

The Hierarchical Dirichlet Process Mixture Model
(HDPMM) [39] clusters grouped data when the number of
clusters is unknown. In this paper we note, and then solve,
three problems associated with the HDPMM. First, while
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Figure 1: An image cosegmentation example. Top row:
The original images (2 out of 5 are shown). Middle:
HDPMM cosegmentation (based on global color features).
Bottom: vHDPMM cosegmentation (based on both global
color features and local spatial features). Compared with
the vHDPMM, the HDPMM fails in separating infrequent
colors (e.g., the whiteness of the duck’s diploma and shirt
is mistaken to be grey) and also yields too-grainy results.
The full images and results are in the Sup. Mat.

the HDPMM allows for group-specific mixture weights,
it cannot capture various types of other realistic inter-
group differences. Second, traditional HDPMM inference
methods scale poorly w.r.t. the number of data points per
group. Third, most available HDPMM implementations
are not distributed and/or limited to (a specific form of)
topic modeling. With these considerations in mind, this
paper proposes a new model along with a new sampler
whose distributed and flexible implementation we make
publicly available. Our model has two settings; while its



reduced setting is similar to that of the HDPMM, its full
setting is more general, as we now describe. There are J
data groups, where, for j ∈ (1, . . . , J), group j consists
of nj data points and is denoted by rj = (rji)

nj

i=1. The
goal is to cluster all the data (across all groups) into K
clusters (K being unknown), under the assumption that
each data point rji, also known as a feature vector, has
two parts, rji = (xji, yji), where xji consists of features
that are expected to help clustering when all the groups
together are treated as one big group, and yji consists of
features that are more useful when each rj is considered
separately. We refer to xji and yji as global and local
features, respectively. The reduced setting (i.e., that of
HDPMM), is obtained when there are no local features
(i.e., rji = xji for every j and every i). To fix ideas,
consider the following computer-vision cosegmentation
task (Fig. 1): given J images, partition each image into
segments consistently across the images; i.e., if the same
(possibly-disconnected) segment appears in more than
one image, the results should reflect this. One difficulty is
that the locations, as well as the number of the segments,
are unknown and vary with each image. Let the chosen
approach be a spatio-color clustering via a mixture model
(for related non-hierarchical spatio-color mixture models
in computer vision, see, e.g., [8, 19, 1, 9, 18, 42]). Here,
each image is a data group where each pixel is associated
with a 5D data point = (a 3D RGB value, a 2D location).
The color is the global part as the colors of an object are
often similar across different images, while the location is
the local part as an object’s location usually varies across
images. Thus, while it is sensible to model colors using
a global mixture model (i.e., across all images, perhaps
while allowing different mixture weights in each image),
a local model (i.e., image-specific) is more suitable to dif-
ferentiate between objects based on their locations. This
intuitive observation will be proven empirically in § 4.

Back to our general setting, there is usually a tying be-
tween the local and global parts (e.g., in the cosegmen-
tation example, the locations of parts of a certain object
in different images are tied to it, and thus are implicitly
also tied to its color(s)). Moreover, as the local parts may
differ in their nature from each other, as well as from the
global part, we seek a model rich enough to cover such a
variety of scenarios. In practice, this also necessitates an
easily-modifiable and scalable implementation. Last but
not least, as there also exist situations where we cannot
guess a-priori which parts of the data are global and which
are local, we need a reliable and practical mechanism for
automatically inferring that distinction.

Our key contributions are as follows. 1) To address the
general setting above, we propose the Versatile HDPMM
(vHDPMM), a novel Bayesian Nonparametric mixture
model which is more flexible than HDPMM. While

in HDPMM points are drawn solely from global (i.e.,
shared) components, in vHDPMM one part of each point
is drawn from a global component while its other part
is drawn from a local component tied (in a many-to-one
manner) to the global one. The model allows for
differences (between the global and local parts and
between local parts in different groups) in dimensions,
data types (e.g., continuous vs. discrete), and distributions.
2) Backed by a new theorem, we provide an effective
and scalable mechanism for identifying global parts. 3)
An appropriate new parallel sampling-based inference
algorithm. The proposed sampler draws inspiration from
an existing HDPMM parallel sampler [11] but differs
from it by not only the fact it addresses a more general
setting but also its superior scalability. Thus, even when
the vHDPMM setting is reduced to that of HDPMM (i.e.,
no local features), the proposed sampler scales better. 4)
An efficient distributed and easily-modifiable implemen-
tation that supports various types of distributions and,
in the reduced setting, is complementary to HDPMM
implementations that are specialized to (a specific
form of) topic modeling. Our Julia implementation
is available at www.github.com/BGU-CS-VIL/
VersatileHDPMixtureModels.jl, with an
optional python wrapper at www.github.com/
BGU-CS-VIL/VersatileHDPMixtureModels.

2 RELATED WORK

The Hierarchical Dirichlet Process (HDP) and
HDPMM [39] extend the Dirichlet Process (DP) [13] and
the Dirichlet Process Mixture Model (DPMM) [2, 46],
respectively. Applications of HDP/HDPMM include,
but are not limited to: a prior over Hidden Markov
Models (HMMs) [15, 16], topic modeling and natural
language processing [40, 28], tracking [14], computer
vision [37], and music [25]. Since their inception, many
HDP/HDPMM variants were proposed. While we are
unaware of hierarchical models (nested or tree-like
included) that address our full setting, some of those
variants target problems close to ours. In [35] the
data consists of 2 global parts (i.e., no local), each is
modeled via an HDPMM, and the two HDPMMs are
coupled. In [34, 38], the prior is group-specific while
in [23, 30, 7, 21, 48] various types of hierarchical data
are modeled. The model in [38] addresses a global-local
structure but focuses on Gaussian processes and does not
tie local components to global ones.

Developing efficient HDPMM inference is an active re-
search field where the two main paradigms are variational
methods (e.g., [45, 41, 44, 4, 26]) and sampling. Our
proposed inference belongs to the latter. Recent sam-
plers include those relying on particles [3], splits and

www.github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl
www.github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl
www.github.com/BGU-CS-VIL/VersatileHDPMixtureModels
www.github.com/BGU-CS-VIL/VersatileHDPMixtureModels


Table 1: Comparison with key HDPMM Samplers

[43] [11] [31] [22] [5] Ours
Does not require Stirling #s. X × × × X X
Splits and merges X X X × × X
Parallel Sampling × X X X × X
Distributed Implementation × × X X × X
Publicly-available code X X × × X X
Code supports not only × × - - × Xcategorical components

merges [27, 43, 11] and/or parallel and/or distributed sam-
pling [15, 36, 22, 47, 31, 20, 11]. One thing that hinders
the scalability of several HDPMM samplers is their re-
liance on Stirling numbers of the first kind; our method
circumvents that. Practical publicly-available implemen-
tations of HDPMM samplers are restricted to a specific
form of topic modeling (i.e., they support only categor-
ical components); our implementation is more flexible
and supports components from any exponential family. A
comparison of several key HDPMM samplers with the
proposed vHDPMM sampler (when the latter is reduced
to the setting of HDPMM) is summarized in Table 1.

3 METHOD

3.1 THE PROPOSED MODEL

As in [39], in our Bayesian nonparametric hierarchical
mixture model each group j has its own mixture weights,
πj . While in [39] every mixture component, in its entirety,
is global (i.e., shared by all groups) our model is more flex-
ible: each mixture component has both a global part and a
local (i.e., group-specific) part which is an entire mixture
by itself. Below are the details, while Fig. 2 shows an as-
sociated graphical model. Let xj = (xji)

nj

i=1. We model
x =

⋃J
j=1 xj by a DPMM with a concentration parame-

ter γ and an either continuous or discrete base measure H
(note this is already slightly different from the HDPMM;
see Sup. Mat. for details). Let G0 ∼ DP(γ,H) de-
note a discrete random measure drawn from that DPMM,
and let β = (βk)∞k=1 denote its atoms. Let (Gj)

J
j=1

denote discrete random measures drawn from a DPMM
with a concentration parameter α and a base measure G0.
Let πj = (πjk)

∞
k=1 denote the weights associated with

Gj . Since a DPMM entertains the notion of a mixture of
infinitely-many components, denoted by θ = (θk)

∞
k=1 –

these are the atoms of Gj (hence also of G0) – we write

p(xj |θ,πj) =
∏nj

i=1

∑∞

k=1
πjkf(xji; θk),

πjk > 0 ∀k,
∑∞

k=1
πjk = 1 , (1)

where f is a group-independent probability distribution

∞

∞ ∞
J
nj

zlji H

yji

πkj

θkjw
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πjη

xji

α

θkLj

γβ

Figure 2: The vHDPMM as a graphical model.

function (pdf) or probability mass function (pmf) parame-
terized by θk and where (θk)

∞
k=1 and πj themselves are

drawn from their own prior distributions. The weights, πj ,
are drawn using a GEM stick-breaking process [33] with a
concentration parameter α > 0. The parameters, (θk)

∞
k=1,

are i.i.d. draws from their prior, H . We make no distinc-
tion between f(·; θk) and θk, referring to both as global
component k. Using hidden labels, zj = (zj1, . . . , zjnj )
with zji = k if and only if xji is drawn from global
component k, we rewrite Eq. (1) as

zji
i.i.d.∼ Cat(πj) i = 1, . . . , nj ,

p(xj |θ, zj) =
∏nj

i=1
f(xji; θzji) . (2)

We define global cluster k as

ck = (xji)zji=k,j∈(1,...,J), i∈(1,...,nj) . (3)

Let K, a latent random variable, be the number of global
clusters; note that K ≤ ∑J

j=1 nj . By possibly renam-
ing indices, we may assume without loss of generality
that

⋃J
j=1 zj = {1, 2, . . . ,K}. Within each group j, we

also have a local DPMM, DP(η, Lj) where η is its con-
centration parameter and the group-specific local base
measure Lj is either continuous or discrete. For each
j ∈ {1, . . . , J} and each k ∈ {1, . . . ,K}, let

skj = (yji)i:zji=k . (4)

To each skj we attach its own ∞-component mixture,
drawn from DP(η, Lj). We denote its atoms by θkj =

(θkjw)∞w=1 and its weights by πk
j = (πk

jw)∞w=1:

p(skj |θkj ,πk
j ) =

∏
i:zji=k

∑∞

w=1
πk
jwfj(yji; θ

k
jw),

πk
jw > 0 ∀w,

∑∞

w=1
πk
jw = 1 . (5)

Even within each group j, the local weights, πk
j , are not

shared across (skj )∞k=1. If Lj is not discrete, the same
holds for the local atoms, θkj . Likewise, (πk

j )∞k=1 are
not shared across the groups. This is also the case for
(θkj )∞k=1, unless (Lj)

J
j=1 are all discrete and share their



atoms. We now write, using hidden local labels,

zlji
i.i.d.∼ Cat(πk

j ) ∀i s.t. zji = k

p(skj |θkj , zlj) =
∏

i:zji=k
fj(yji; θ

k
zl
ji

) (6)

where fj is a local (i.e., group-specific) pdf or pmf
parameterized by θkjw, πk

j is drawn from a GEM [33]
stick-breaking process with a concentration parameter η,
(θkjw)

∞
w=1

are i.i.d. draws from their prior, Lj , zlji = w if
and only if yji is drawn from local component θkjw, and
zlj = (zlji)

nj

i=1. We define local cluster w, in group j and
tied (usually in a many-to-one manner) to ck, as

ckjw = (yji)i:(zji,zl
ji)=(k,w) . (7)

Let Kk
j denote the latent random number of local clusters

in group j tied to global cluster k. Thus, skj = (ckjw)
Kk

j

w=1.

Back to the cosegmentation example, let H be a Normal-
Inverse-Wishart (NIW) prior in 3D and let Lj be an NIW
prior in 2D. Let f be a 3D Gaussian pdf with a 3D mean
and a 3-by-3 covariance, θk = (µk,Σk), and let fj be
a 2D Gaussian pdf with a 2D mean and a 2-by-2 covari-
ance, θkjw = (µk

jw,Σ
k
jw). The color Gaussians are shared

across the images but the spatial ones are not.

More generally, the local parts may differ from each other
(and from the global part) in their distributions, types
(e.g., continuous vs. discrete), and dimensions (including
the case where some or all of the local dimensions are
zero; i.e., no local features). The setting of vHDPMM
generalizes that of HDPMM: the latter is a particular
case of the former when all the local dimensions are zero.
We now stretch the Chinese Restaurant Franchise (CRF)
metaphor [39], adapting it to vHDPMM. In our case,
a franchise has J restaurants of infinitely-many tables.
Customer i entering restaurant j sits at table tji. On each
table in restaurant j there is both a franchise-owned dish
(offered by all J restaurants) and a restaurant-specific
side dish, where, in that restaurant, the same dish may
appear on more than one table but only provided it is
accompanied by a different side dish at each time. In
other words, whenever different tables have the same pair
of dish and side dish, we unite (“collapse”) these tables to
a single one. As a particular case, in the reduced setting
when there are no side dishes, in each of our restaurants,
tables with the same dish are collapsed to a single table
(unlike in HDPMM where different tables at the same
restaurant may offer the same dish). The franchise dish
menu and each of the restaurant-specific side-dish menu
are of infinite lengths. Our CRF is more welcoming than
in [39] whose restaurants offer no side dishes. Also, even
in the reduced HDPMM setting (no side dishes), there
is a subtle difference from HDPMM. In vHDPMM, if
a customer entering a restaurant decides to open a new

Algorithm 1: A single iteration of the proposed par-
allel vHDPMM Sampler

1 Draw parameters and weights θ, β, θ̄, β̄ by Eqs. (8)
and (9)

2 for j ∈ (1, . . . , J) do in parallel
3 Draw parameters and weights

πj , θ
k
jw, π

k
j , θ̄

k
jw, π̄

k
j by Eqs. (10)-(12)

4 for i ∈ (1, . . . , nj) do in parallel
5 Draw assignments zji, z̄ji, zlji, z̄

l
ji by

Eqs. (13)
6 Calculate sufficient statistics
7 for k ∈ (1, . . . ,K) do in parallel
8 for for each local cluster ckjw do in parallel
9 Propose and accept/reject a local split

10 for for each pair of local clusters ckjw and
ckjw′ do in parallel

11 Propose and accept/reject a local merge
(avoid clashes as in [10])

12 Propose and accept/reject global splits/merges

table, the dish on that table is drawn according to how
many customers (in the franchise) sit next to a table with
that dish; this is unlike in [39], where the dish is drawn
according to how many tables (in the franchise) have it.
We will return to this key point later.

3.2 THE PROPOSED SAMPLER

The HDPMM CRF-based sampler [39] scales poorly due
to its serial nature; moreover, making only small moves,
it is highly susceptible to poor local maxima. As an anal-
ogous vHDPMM CRF-based sampler (included in our
Sup. Mat.) has similar drawbacks, a better vHDPMM
sampler is needed. One HDPMM sampler superior to
the CRF-based sampler was proposed by Chang and
Fisher [11]; it extends their DPMM sampler [10]. Both
their samplers use parallel sampling, model augmenta-
tion via sub-clusters, and splits/merges. Our proposed
parallel vHDPMM sampler, summarized in Algorithm 1,
is inspired by [10, 11] but differs from both in 3 key as-
pects: 1) It addresses challenges posed by the new model;
i.e., it accommodates both global and local features and
performs splits/merges for both local and global compo-
nents. 2) While its local splits/merges are similar to those
in [10], its global splits/merges are accepted or rejected
differently from those in [11]. 3) It scales better, w.r.t. the
number of points per group, than the one from [11].

Augmenting the vHDPMM. The augmentation, visual-
ized in the Sup. Mat., is as follows. To each component,
local or global, we attach an auxiliary 2-component mix-
ture. Global cluster ck is already associated with a global



component, θk, and a global weight, βk. In addition, we
now also associate ck with 2 global sub-components, θ̄k =
(θ̄1k, θ̄

2
k), with corresponding weights, β̄k = (β̄1

k, β̄
2
k). To-

gether, θ̄k and β̄k are used to partition ck into 2 global sub-
clusters, (c̄1k, c̄

2
k). Similarly, for each w ∈ (1, . . . ,Kk

j ),
we define 2 local sub-components, θ̄kjw = (θ̄k,1jw , θ̄

k,2
jw ),

with corresponding weights, π̄k
jw = (π̄k,1

jw , π̄
k,2
jw ), to be

used for partitioning local cluster ckjw into 2 local sub-
clusters, (c̄k,1jw , c̄

k,2
jw ). For each global label zji and local

label zlji we define z̄ji ∈ {1, 2} and z̄lji ∈ {1, 2}; these
are the global and local sub-cluster labels of point ji.

Similarly to [10, 11], we alternate between two steps: a
restricted parallel Gibbs sampler (with fixed numbers of
clusters) and splits/merges (for changing these numbers
by utilizing the auxiliary variables). Both steps require
specialization to vHDPMM as detailed below.

Restricted Parallel Gibbs Sampler. Our restricted sam-
pler, adapted from [11], changes neither K nor any of
the Kk

j values; rather, it can only modify the labels and
existing components and weights. The restricted sampler
(lines 1–6 in Algorithm 1), uses the following conditional
distributions (whose detailed functional forms appear in
the Sup. Mat. due to space limits):

p(θk|ck;H) and p(θ̄ak |c̄ak;H) (a ∈ (1, 2)) (8)

(for the global components and their sub-components);

p((βk)K+1
k=1 |(ck)Kk=1; γ) and p(β̄k|c̄1k, c̄2k; γ) (9)

(for the corresponding weights);

p(πj |β, (skj )Kk=1;α) (10)

(for the group-specific weights of the global components);

p(θkjw|ckjw;Lj) ; p(θ̄k,bjw |c̄k,bjw ;Lj) (b ∈ (1, 2)) (11)

(for the local components and their sub-components);

p(πk
j |(ckjw)

Kk
j

w=1; η) and p(π̄k
jw|c̄k,1jw , c̄

k,2
jw ; η) (12)

(for the corresponding weights);

p(zji, z
l
ji|xji, yji,πj , (π

k
j , θk, (θ

k
jw)

Kk
j

w=1)Kk=1) and

p(z̄ji, z̄
l
ji|xji, zji = k, zlji = w, β̄k, π̄

k
jw, θ̄k, θ̄

k
jw) (13)

(for global and local labels).

An obvious difference between our restricted sampler
and the one in [11] is that ours handles a more general
setting (i.e., the addition of local features). There is,
however, another subtle difference: In Eq. (9), global
weights are sampled not according to the counts of “tables”
assigned to each component (“dish”) as is done in [11];
rather, the counts stand for the number of observations
(“customers”) associated with the component; While this
detail might seem small, it has a drastic positive effect

on the scalability. For example, in the reduced setting
of the vHDPMM, this detail lets our sampler scale better
than that traditional HDPMM samplers ([11] included).
We will return to this point and clarify it in § 3.3.

Splits and Merges. We use a Metropolis-Hastings frame-
work [24] to propose two types of split/merges: global
and local (not to be confused with the operations called
global/local splits in [11] as those refer to something else).
The Hastings ratios below assume conjugate priors.

Local Splits and Merges. A local split splits a local
component into its two sub-components. A local merge
merges two local components (and then the two become
the sub-components of the new one). When we propose
a split or a merge, we propose new values, denoted by ˆ
instead of the current values. The proposal distributions,
denoted by q, are as in [10] so we skip their details. For
splits, we denote the current component by c, and the two
sub-components of c by m and n. For merges, we denote
the two proposed-to-be-merged components by m and n,
and the resulting component by c. That is:

(ĉkjm, ĉ
k
jn) = split(ckjc, c̄

k,1
jc , c̄

k,2
jc ) (14)

ĉkjc = merge(ckjm, c
k
jn) (15)

(π̂k
jm, π̂

k
jn) = πk

jc × π̄k
jc π̂k

jc = πk
jm + πk

jn (16)

(θ̂kjm, θ̂
k
jn) ∼ q(θ̂kjm, θ̂kjn|ĉkjm, ĉkjn) (17)

θ̂kjc ∼ q(θ̂kjc|ĉkjc) . (18)

The split function (Eq. (14)), splits ckjc into clusters
ĉkjm, ĉ

k
jn. To that aim it looks at the respective auxil-

iary labels and assigns xji to ĉkjm if xji ∈ c̄k,1jc , and to
ĉkjn otherwise. The merge function (Eq. (15)) merges
clusters ckjm, c

k
jn into cluster ĉkjc. Local merges are al-

lowed only for local clusters of the same global cluster k.
The resulting Hastings ratios (which, being related to a
non-hierarchical DPMM, are based on those in [10]) are

HM
l =

Γ(|ĉkjc|)fj(ĉkjc;Lj)

η
∏

a∈{m,n} Γ(|ckja|)fj(ckja;Lj)
(19)

and HS
l = 1/HM

l where the M and S stand for a merge
and a split, respectively, and γ(·) is the gamma function.

Global Splits/Merges. The mechanism for proposing
global splits/merges is similar to the one in [11], with
modifications to accommodate the new model. In contrast
to [11], when a global split is performed in our model it
affects multiple instances of that component in each group,
not just a single one. Moreover, the counts used are not
of “tables” with the same “dish” (as is done in [11]) but
of customers having the same dish (see also § 3.3). This
implies a new Hastings ratio for global splits:



HS
g =

γ
∏

a∈{m,n} Γ(|ĉa|)f(ĉa;H)

Γ(|cc|)f(cc;H)

πc
|ĉm|+|ĉn|

π̂m
|ĉm|π̂n

|ĉn|
×

J∏
j=1

Kc
j∏

w=1

Γ(απc)

Γ(απc + |ccjw|)
∏

a=m,n

Γ(απ̂a + |ĉajw|)
Γ(απ̂a)

. (20)

A split of global cluster also splits all its local clusters
in all the groups, often drastically increasing the overall
number of local clusters. Merging global clusters m,n ∈
{1, . . . ,K} changes, across all groups, the tying of all the
local clusters (cmjw, c

n
jw) from either m or n to c. Unlike

in the local-move case, and unlike in [11], our global
splits and merges are not the inverse of each other, due
to the local-cluster count remaining constant in a global
merge; likewise, their Hastings ratios are not reciprocal.
This yields a new Hastings ratio for a global merge:

HM
g =

Γ(|ĉc|)f(ĉc;H)

γ
∏

a∈{m,n}
Γ(|ca|)f(ca;H)

π̂c
|cm|+|cn|

πm|cm|πn|cn|
. (21)

3.3 SCALABILITY

In § 3.4 we discuss our distributed implementation that
can use multiple multicore machines. However, even on a
single machine and even in the reduced setting, our sam-
pler scales better than [11] and other HDPMM samplers
when the nj increases. This is partly due to the following.
Recent samplers [11, 31, 22] use the Direct Assignment
(DA) construction [40] which relies on pre-computing
Stirling numbers of the 1st kind (not to be confused with
the Generalized Stirling numbers used in [5]) for estimat-
ing the number of tables in each restaurant. Such Stirling
numbers are computed recursively and cost in both run-
time and memory. While applicable for the common
domain of topic modeling, where the nj’s are relatively
small (short documents), this is impractical for larger
groups (e.g., on our machine, for nj = 106 these take
24hr to compute or a 4TB lookup table). In contrast, since
our model gives rise to a sampler that never needs to esti-
mate the table counts, our sampler easily handles domains
such as image cosegmentation, where each image is over
106 pixels (so DA-based samplers are inapplicable).

3.4 IMPLEMENTATION

Unlike the implementations from [10, 11] and more
like the one from [12] (a reimplementation of the non-
hierarchical sampler from [10]), our proposed implemen-
tation is not only parallel but also distributed, and can
thus utilize multiple machines. In this section, the term
“process” refers to a computer process, not a stochastic
process. Algorithm 1 describes a single iteration of the

parallel sampler. Due to inter-group conditional indepen-
dence, group-specific computations can be parallelized
using different processes, including processes on different
machines. For each group j, an intra-group parallelism
can be be exploited. We thus implemented, in Julia, a
distributed parallel sampler which exploits these facts. Its
details, together with a runtime analysis, appear in the
Sup. Mat. We chose Julia since it offers a good combi-
nation of abstraction, high performance, a fairly-painless
way to distribute computations, and ease of code modi-
fications. A key feature of our implementation is that it
supports any exponential family of distributions for either
the global or local parts. Unlike most HDPMM implemen-
tations (e.g., see Table 1) it is not limited to categorical
components (which are often used in topic modeling) and
thus, e.g., also supports Gaussians, mulitinomials, etc.

3.5 DETECTING GLOBAL FEATURES

Unlike in the cosegmentation example, it is not always
clear which features are global and which are not. We now
show how to automate that decision. Suppose that there
indeed exists a latent distinction between global and local
parts. If some features exist in only a subset of the groups,
they must be local. Thus, without loss of generality, as-
sume that all the features appear in all groups, implying
all points have a shared dimension, denoted by D. Let
Dg and Dl be the dimensions of the global and local fea-
tures, respectively; i.e., Dg +Dl = D. Assume first that
Dg and Dl are known, an assumption we will relax later.
Let L = (L1, . . . , LJ) be the local base measures, let
R = (R1, . . .RJ) denote the data where each Rj is a
D-by-nj matrix with columns (rji)

nj

i=1, and let Π be a
D-by-D permutation matrix. Define an optimal feature
partitioning by maximizing the (marginal) likelihood:

arg max
Π

p(ΠR|vHDPMM(H, γ, α, L, η)) (22)

where the first Dg rows of ΠR are regarded as the global
features (note that it is implicitly understood thatH and L
depend on which features are defined, by Π, as global or
local). Since the proposed implementation is very fast, we
can find Π via an exhaustive search as long as D is not
too high (e.g., 1000-dimensional Gaussian components
are still acceptable even on a single 4-core machine; see
§ 4). This is especially true since we can opt to run the
search on only a random subset of the data and since it
takes only few iterations to asses a nominal Π (there is
no need to wait for convergence). The theorem below
addresses the more interesting case where Dg and Dl are
unknown; for a proof, see our Sup. Mat.
Theorem 1 (Suboptimal Feature Partitioning) Let
D′g > 0 and D′l > 0 be integers summing to D, with
D′g ≤ Dg. Suppose that we know that certain D′g
features are global. Let R′ be obtained by some



Figure 3: A typical convergence of the sampler. Data: 10
groups; 20K per group; 50 global 5-dimensional Gaus-
sians; 200 local 5-dimensional Gaussians in each group.
The log-likelihood results shown are the mean (line) and
std. dev. (shaded area) over 10 runs of the sampler.

permutation of the rows of R such that the first D′g
rows of R are these D′g global features. Let R′′ denote
the matrix obtained by copying the first D′g rows of
R′, and permuting its remaining rows such that in row
(D′g + 1) ofR′′ we have one of the Dl local features. Let
vHDPMM(H ′, γ, α, L′, η) denote the vHDPMM model
that treats the first D′g rows ofR′ as global features and
let vHDPMM(H ′′, γ, α, L′′, η) denote the vHDPMM
model that treats the first D′g + 1 rows of R′′ as global
features where H ′, H ′′, L′, and L′′ are base measures
(of the proper dimensions) analogous to H and L. Then,

p(R′| vHDPMM(H ′, γ, α, L′, η)) >

p(R′′| vHDPMM(H ′′, γ, α, L′′, η)) . (23)

That is, if we already correctly found that one or more
features are global, then when mistakenly adding a local
feature as another global feature, the likelihood will drop.

For some intuition, see Fig. 3 and Fig. 4 in the Sup. Mat.
As those figures show, mistaking a local feature to be
global yields a noticeably-poor clustering. More gener-
ally, the likelihood will in fact usually increase (and will
never decrease) as we correctly identify more and more
global features as such, as long as we do not mistakenly
declare local features as global – but, by the theorem,
such a mistake is detected via a likelihood drop. As the
theorem does not apply to D′g = 0, the first global feature
is the most challenging to find. However, that too can
be done using an exhaustive search where again we can
use a random subset of the data (e.g., 10%) and a small
number of iterations (e.g., 20). Once the first global fea-
ture is found this way, Theorem 1 provides a justification
to a simple fully-automated mechanism that lets us de-

tect additional global features in reasonable times even in
fairly-high dimensions. That is, we gradually try increas-
ing the set of features that are declared as global. If the
likelihood drops, we declare the feature in question as lo-
cal; otherwise, it is global. When running the mechanism
we can use a subset of the data (Theorem 1 holds for not
only the entire data but also any of its subset), and a very
small number (e.g., 20) of iterations to detect a possible
likelihood drop. Also useful is the fact that once enough
global features are detected, identifying the rest is easier;
i.e., the likelihood drop when adding a local feature as
global is noticeable within a smaller number of iterations
(e.g., 10). Moreover, Theorem 1 holds for any D∗ < D.
Thus, if we have, say, D = 1010, after finding the first
10 global features, we partition the remaining features to
data chunks of 100 dimensions each. To each chunk, we
append the already-found 10 global features, making the
data in it of dimension D∗ = 110 < D = 1010. We then
run the mechanism on each chunk. Finally, it is fine to
miss some global features: as long as we correctly find
enough of them, the clustering will usually succeed; it is
only important to not misclassify local features as global,
but such mistakes are easily detected (by Theorem 1) and
thus avoided. To summarize, the mechanism scales well
and is practical even in fairly-high dimensions; see § 4.

4 RESULTS

We tested the proposed method on synthetic data as well
as on real-data applications such as image cosegmenta-
tion, visual topic modeling, and clustering with missing
data. Details omitted here (due to page limit) about ma-
chine specs, measured running times, and hyperparameter
values, can be found in the Sup. Mat.

Empirical convergence. The theoretical guarantees for
the convergence of the sampler are similar to the samplers
in [10, 11]. Empirically, the sampler indeed consistently
converges as is demonstrated in Fig. 3.

Inference when the “the model is right”. We gener-
ated 6 synthetic datasets (whose names are explained
below): G3/2/5/1; G5/2/10/1; G3/5/5/5; G5/5/10/5;
M10/5/20/5;M10/200/20/200. Each one contained
10 groups with 20K points per group. In the first 4
datasets, we used Gaussian components at both the global
and local levels, drawn from NIW priors. In the last
2, we used Multinomials, again at both levels, drawn
from Dirichlet-distribution priors. Particularly, in each
dataset we drew Dg-dimensional features from a global
K-component mixture and then, in each group j and each
global component k, we drew Dl-dimensional local fea-
tures from a K ′-component local mixture. The naming
convention is K/Dg/K

′/Dl; e.g., in G3/2/5/1 we used
a 3-component Gaussian Mixture Model (GMM) over



Table 2: NMI Scores on synthetic data (10 groups, 20K
points per group, 10 runs per model)

G5/2/10/1 G5/5/10/5
Method G L G L
HDPMM-all 0.705 - 0.632 -
HDPMM-global-only 0.769 - 0.888 -
DPMM-merged - 0.076 - 0.193
DPMM-separated - 0.667 - 0.903
vHDPMM (ours) 0.862 0.746 0.959 0.872
vHDPMM-seperated (ours) - 0.751 - 0.972

2D global features and a 5-component GMM over 1D
local features. As a performance index, we computed
the mean Normalized Mutual Information (NMI) for 6
models: HDPMM-all (an HDPMM when using all the
features); HDPMM-global-only (an HDPMM when us-
ing only the global features); DPMM-merged (a single
DPMM when the known partition to groups is discarded);
DPMM-separated (J independent DPMMs, one in each
group); the proposed vHDPMM; vHDPMM-separated
(J independent vHDPMMs, one in each group). These
mean NMIs were computed over 10 runs (the standard
deviations were all < 0.01). For each dataset there are
two columns in Table 2, denoted by G (global clusters)
or L (local). In each run, DPMM-separated’s NMI score
was obtained by averaging scores of the per-group DP-
MMs. The vHDPMM-separated’s score was similarly
calculated. The results on G5/2/10/1 and G5/5/10/5
appear at Table 2 while the results on the other 4 datasets
are in the Sup. Mat. The results are unsurprising. Locally,
the vHDPMM-separated wins and the DPMM-separated
is the runner up (vHDPMM being usually the third); the
vDPMM-separated and vHDPMM-separated, however,
cannot make global inference (e.g., persistence across
groups). Globally, vHDPMM is the best. This is because
rather than discarding the local features (as the HDPMM-
global-only does), or getting confounded by them (as
happens to the HDPMM-all), the vHDPMM leverages
local information to improve global clustering. The main
reason we used NMI, a popular clustering measure, is that
it is model independent. Measures such as the posterior
or likelihood are model dependent so comparing them
across different models is uninformative.

Image cosegmentation: vHDPMM in its full setting
(real data). In the first cosegmentation experiment, our
5D feature vector in each pixel consisted of the 3D color
and 2D location. We used Gaussian components and NIW
base measures. The first dataset consistent of 5 images
with ∼ 1.6 · 106 pixels each. First, we ran our mech-
anism for global-feature detection. It deemed, within
seconds, that only the colors are global. Thus, we ran our
vHDPMM sampler with color and location as global and
local features, respectively. Example results are shown in

Table 3: NMI Scores for Clustering With Missing Data

Method NMI (Averages of 50 Runs)
GMM (saw all data) 0.72±0.014
DPGMM (saw all data) 0.743±0.052
vHDPMM (all data) 0.821±0.043
vHDPMM (missing data) 0.804±0.05

Fig. 1 while the full results are in the Sup. Mat. The sec-
ond dataset consisted of 50 frames from [6]. Here, rather
than working on pixels, we first computed superpixels
(using [42]), primarily since they yielded more visually-
pleasing results. From each superpixel we extracted its
mean location-color value, and ran the vHDPMM sampler
on those values. See Sup. Mat. for results.

Clustering with missing data (real data). In this exper-
iment we used a 9-class Tetragonula Bees classification
data [17] of 236 13D samples. We fitted a 9-component
GMM [32] and a DPGMM [12] to the data. Next, we
divided at random the data into 4 equal-size groups. In
each group we kept the first 6 features, declared them as
global, and, to simulate missing data, removed a group-
specific random number of the other 7 features, declaring
the remaining ones as local. We ran vHDPMM on this
new dataset. Thus, the vHDPMM did not see all the fea-
tures, and its local parts varied in dimensions (between
groups, and between different runs). In addition, we also
ran vHDPMM when all 7 local features were present
in all groups. Table 3 shows that vHDPMM beats the
DPGMM and GMM regardless if it saw all the data (like
them) or not. These surprising results (which the reader
is welcome to reproduce by running our code) can be
possibly explained by the fact that if a feature is “bad” for
clustering, there is an advantage to treating it as local.

We now shift the discussion to experiments where the set-
ting of vHDPMM is reduced to that of HDPMM. Beyond
the specific case of topic modeling with categorical com-
ponents (as opposed to topic modeling via multinomial
components, or cases outside topic modeling), available
implementations of HDPMM inference are hard to find
(we also note that many DPMM papers mention they
tested extensions to HDPMM, but usually do no release
code for that). Moreover, many HDPMM methods, [11]
included, scale poorly with the groups’ sizes (see § 3.3),
making then inapplicable in various cases where using
HDPMM would be otherwise natural.

Gaussian Components. In this experiment we tested
our sampler on data generated from a CRF prior over
an infinite mixture of Gaussian components in varying
dimensions and sample counts. We compared with a base-
line of a CRF-based HDPMM sampler. Table 4 shows
that our sampler yields better results and is orders of mag-
nitude faster. The last configuration, with nj = 50K, is
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Figure 4: Visual Topic Modeling. The sampler inferred
11 shared visual topics from 100 landscape images. Five
example images are shown, each with its inferred topic
mixture, where only the top topics in each topic are dis-
played (cumsum ≥ 0.95). Each topic is a color histogram,
visualized here as a color stripe (segment’s length = bin’s
height).

Table 4: Inference in data sampled from an HDPMM-CRF
prior over an infinite mixture of D-dimensional Gaussian
components, 4 groups, N points per group, 3 runs. We
ran our sampler (in the reduced HDPMM setting) and a
CRF-based HDPMM sampler until convergence.

HDPMM-CRF Proposed Sampler
Data NMI Time [sec] NMI Time [sec]
D:3, N:100 0.79±0.03 80±0.9 0.81±0.01 1.56 ±0.2
D:8, N:5K 0.86±0.02 6760±93 0.86±0.01 18.6 ±1.3
D:15, N:50K 0.91±0.02 68K±2K 0.96±0.006 179 ±13

beyond the scope of methods using those Stirling numbers
(not to mention their lack of support for Gaussians).

Visual topic modeling of 100 landscape images using
multinomial components (real data). This experiment
is beyond the scope of existing available HDPMM im-
plementations as it involves: 1) multinomials; 2) large
groups. Concretely, each image (of varying sizes) was
considered a group and was partitioned into 2×2 patches.
From each patch we extracted an HSV 256-bin sparse
histogram. Thus our data was 100 groups (images) with
10K − 15K samples in each group, and each sample was
a 256-bin histogram. Each learned visual topic is repre-
sented by its 8 most probable colors, and each image has
its own mixture of such shared visual topics. See Fig. 4.

Image cosegmentation: vHDPMM in its reduced set-
ting (real data). Here we repeated the cosegmentation
experiments described above (again using pixels for the
first dataset and superpixels for the second) but this time
we used only RGB values, to obtain the reduced setting

Table 5: Running time versus the number of machines
(each with 12 processes) on 50 million 5D data points
(divided into 200 groups). See text for more details.

Number of Machines 1 2 3 4
Time [sec] 3299 2552 2107 1862

Table 6: Detecting global features via an exhaustive
search in the case of high-dimensional Gaussians. Data:
4 groups, 105 samples per group, sampled from 10 global
clusters and 20 local clusters (in each group), Gdim =
Ldim = D/2. TP=True Positives; FP=False Positives;
TN=True Negatives; FN=False Negatives. We used a
single 4-core machine (Intel i5-6600 CPU @ 3.30GHz).

D TP FP TN FN Time [sec]
100 43 0 50 7 92
500 232 0 250 18 446
1000 474 0 500 26 889

of the HDPMM. To emphasize scalability of our sam-
pler, note that even though in the first dataset the number
of pixels in each image was nj = 1606124 (beyond the
scope of other HDPMM methods), our sampler converged
successfully within 210 [sec]. The results appear in the
Sup. Mat. On both these datasets, a comparison between
the full and reduced setting show that the local informa-
tion, unusable by HDPMM, improves the results; e.g.,
in the HDPMM setting, small components are often not
captured and similar colors are poorly separated.

Running Time. To test the effect the number of machines
has on the running time, we took 200 consecutive video
frames (from [29]), each with 250K pixels, and ran on ei-
ther 1,2,3 or 4 multicore machines our vHDPMM sampler
(with color as global features and location as local) till
convergence. In each of the runs the sampler inferred 11
global clusters, and about 5000 local clusters. The timing
results in Table 5 show the scalability of our method.

Scalability of the mechanism for detecting global fea-
tures. Table 6 shows that the mechanism scales gracefully
with the dimension.

5 CONCLUSION

We proposed a novel framework for clustering grouped
data in settings more general than those of HDPMM. The
approach is scalable and flexible, and its effectiveness
was shown on synthetic and real datasets. In the reduced
HDPMM setting, it scales better than HDPMM methods
w.r.t. the number of points per group. Our work thus
facilitates the usage of HDPMM-related ideas in new do-
mains where it used to be infeasible. We also provided a
new theoretical result that helps discover global features.
While this paper was driven by clustering and applica-
tions and thus focused on efficient parallel sampling and
its distributed implementation, future work may explore
theoretical characterizations of the new model such as
the expected number of global and local clusters, and
estimating convergence rates.
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