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CAUSAL CHAIN GRAPHS AND THEIR
INTERPRETATION

Causal models associated with DAGs may be general-
ized to causal models associated with CGs. CGs may
include directed edges, representing direct causation,
and undirected edges, representing symmetric relation-
ships between units in a network. A causal interpreta-
tion of CGs, understood as equilibria of dynamic mod-
els with feedback, was given in [5]. Under this inter-
pretation, the distribution p(B | paG(B)) for each block
B ∈ B(G) can be determined by a Gibbs sampler on
the variables B ∈ B. Here, each conditional distribution
p(B | B\B, paG(B)) is produced by structural equations
of the form fB(B \B, paG(B), εB). Interventions on el-
ements of B are defined by replacing the appropriate line
in the Gibbs sampler program. For all disjoint sets Y and
A, [5] showed that p(Y | do(a)) is identified by a CG
version of the g-formula (2).

If only interventions on entire blocks are of interest, i.e.,
we consider only treatment assignments A such that if
B ∩ A 6= ∅ then B ⊆ A, then an alternative causal in-
terpretation of a CG G that does not rely on the Gibbs
sampler machinery of [5] exists. Specifically, in such a
case we consider a causal DAG model where each block
B corresponds to a supervariable VB defined as a Carte-
sian product of variables in B, and a DAG causal model
is defined on VB(A), where A are values assigned to par-
ents of VB.

If, for each block B in a CG G, the graph (GbdG(B))
a has

a single clique, then this yields a classical causal model
of a DAG, defined on {VB|B ∈ B(G)}. If not, we can still
view the model as a classical causal model of a DAG, but
with an extra restriction that the observed data distribu-
tion factorizes as (1). See also [7] for a perspective on
interpreting chain graphs in an interference setting.

The model selection methodology introduced here does
not depend on which causal interpretation for chain

graphs one may choose, and all causal models described
above lead to interventional distributions being identified
by (2).

CONDITIONAL MRFs

A CG model can be viewed as a set of conditional MRFs.
A conditional MRF corresponds to a graph whose ver-
tices can be partitioned into two disjoint sets: W, cor-
responding to non-random variables whose values are
fixed; and V, corresponding to random variables. The
only edges allowed in a conditional MRF are directed
edges W → V and undirected edges V − V ′
for W ∈ W and V, V ′ ∈ V. A statistical model associ-
ated with a conditional MRF G is a set of densities that
factorize as:

p(V |W) =

∏
{C∈C((GbdG(V))a):C6⊆W} φC(C)

Z(W)

It is easy to see that the above factorization is analogous
to the second level of CG factorization found in (1) where
V is a block, and W are its parents.

THE AUTO-G-COMPUTATION
ALGORITHM

The auto-g-computation algorithm, introduced in [8],
may be viewed as a generalization of the Monte Carlo
sampling version of the g-computation algorithm for
classical causal models (represented by DAGs) [9] to
causal models of the sort we consider here, represented
by CGs. We describe a version of this algorithm based
on the pseudolikelihood estimator. An alternative based
on the coding estimator [1] is less efficient, but leads to
asymptotically normal estimators of the population aver-
age overall effect (PAOE).

Auto-g-computation generates samples from either the
observed data distribution that factorizes as (1) according



to a CG, or of functions of these distributions, such as
counterfactual expectations identified using (4).

This is done by imposing a topological ordering on
blocks in a CG, and generating samples for each block
sequentially using Gibbs sampling. The parameters
for Gibbs factors used in the sampler (which by the
global Markov property for CGs take the form of
p(Xi|XbdG(Xi))) are learned via maximizing the pseu-
dolikelihood function. For any block X, the Gibbs sam-
pler draws samples from p(X | bdG(X)), given a fixed
set of samples drawn from all blocks with elements in
paG(X) as follows:

Gibbs Sampler for X:

for t = 0, let x(0) denote initial values ;
for t = 1, ..., T

draw value of X(t)
1 from p(X1|x(t−1)

bdG(X1)));

draw value of X(t)
2 from p(X2|x(t−1)

bdG(X2)));

...

draw value of X(t)
m from p(Xm|x(t−1)

bdG(Xm)));

This method may be used to estimate the counterfac-
tual expectation in (4) as follows. We first generate a
set of samples L(t), t = 1, . . . , T . Then we generate
a sample A directly using some πi(A), i = 1, 2. Fi-
nally, we use the above samples to generate a set of
samples Y(t), t = 1, . . . , T using Gibbs factors p(Yi |
AA∩bdG(Yi),bdG(Yi) \ A). Finally, we estimate

1

m

m∑
i=1

E[Yi(A)] =
1

m · T

m∑
i=1

T∑
t=1

Y
(t)
i .

It is not difficult to show, (see [8] for details), that rerun-
ning this procedure with different draws A from either
π1(A) or π2(A), and taking the difference of the result-
ing averages yields a valid estimate of the PAOE.

Fitting parameters of Gibbs factors using the pseudo-
likelihood function avoids the usual difficulties CGs in-
herit from Markov random fields, specifically, the in-
tractability of the likelihood function due to the pres-
ence of normalizing functions. In addition, if the learned
block structure is sparse, while the number of indepen-
dent samples considered is small, this approach allows
one to impose parameter sharing among Gibbs factors,
which leads to reasonable estimates even in small sam-
ples. Taken to the extreme, this approach allows infer-
ences to be made even from a single sample of a network,
as discussed in detail in [8]. In this manuscript we only
consider the setting where multiple independent samples
from blocks are available.

COMPUTATIONAL COMPLEXITY OF
COMPUTING SCORES OF A CHAIN
GRAPH MODEL

In blocks of a CG, the number of local terms that need
to be computed corresponds to the number of vertices
present in cliques containing the edge of interest in the
augmented subgraph of the block and its parents. A term
for Vj requires an O(|bdG(Vj)|) computation to update,
which in the worst case may be exponential in the num-
ber of vertices if the graph is not sparse. In search prob-
lems, restrictions can be made on the maximum size of
the boundary set, sacrificing accuracy for tractability. For
a block in a CG corresponding to a conditional MRF in
the exponential family, and an edge that is present in a
set of cliques spanning all vertices, we will have a local
set of size O(d) in the worst case, with each local term
requiring an O(clique size) computation. Thus, limiting
the maximum clique size may speed up the computation
of each local term, but in many cases we may be unable
to avoid an O(d) number of such terms. In other words,
our scoring method for CG models where blocks cor-
respond to conditional MRFs in the exponential family
may not scale to very large graphs, even if such graphs
are sparse. Achieving such a scaling will entail mak-
ing additional assumptions, such as Gaussianity, or non-
existence of higher order interaction terms in log-linear
models. We contrast this with DAG models, where the
local set is of constant size regardless of parametric as-
sumptions made.

FORWARD-BACKWARD SEARCH

Consistency of the score was sufficient to show consis-
tency of a backwards greedy search involving only edge
deletions starting from a complete conditional MRF.
[2] showed that a property called local consistency,
which follows from decomposability and consistency of
the score, is sufficient to design a consistent forward-
backward greedy search in the space of (Markov equiv-
alent) DAGs. The forward stepwise search considers ad-
ditions, rather than deletions, of single edges to improve
the score, which typically produces a more sparse start-
ing model for the subsequent backwards search.

Consider a graph G and another G′ that differs only by
the addition of an edge Vi − Vj or Vi → Vj . A score
S(D;G) is called locally consistent if:

1. Vi 6⊥⊥G0 Vj | bdG(Vi) or Vj 6⊥⊥G0 Vi | bdG(Vj)
then limn→∞ P (S(D;G′) > S(D;G))→ 1

2. Vi ⊥⊥G0 Vj | bdG′(Vi) and Vj ⊥⊥G0 Vi | bdG(Vj)
then limn→∞ P (S(D;G′) < S(D;G))→ 1



Such a property requires a stronger notion of decompos-
ability than is available in our general setting. In Section
4.2 we mention that if our model is an MRF that is mul-
tivariate normal, or corresponds to a log linear discrete
model with only main effects and pairwise interactions,
then it suffices to consider the following terms derived
from the local set: {s(Vi,bdG(Vi)), s(Vj ,bdG(Vj))} for
an edge Vi − Vj , and {s(Vj ,bdG(Vj))} for an edge
Vi → Vj (dropping implicit D and G for brevity). This
is the strong notion of decomposability we need for local
consistency. Thus, in such settings one can follow the
work in [2] to show that PBIC will be locally consistent
and design a search procedure involving a forward phase
followed by a backward phase. The advantage of such a
procedure is that it is more scalable, even more so when
the underlying true model is sparse.

PROOFS

LetM0 denote the true model andM1,M2 two candi-
date models. A scoring criterion S(D;M) is said to be
consistent if:

lim
n→∞

Pn(S(D;M1) < S(D;M2))→ 1 when

M1 6⊇ M0 andM2 ⊇M0 or (*)
M1,M2 ⊇M0 and k1 > k2. (**)

Lemma 1 With dimension fixed and sample size increas-
ing to infinity, the PBIC is a consistent score for curved
exponential families whose natural parameter space Θ
forms a compact set.

Proof. To prove consistency we need to show that,

lim
n→∞

Pn(PBIC(D;M1) < PBIC(D;M2))→ 1

(1)
when (*) or (**).

Note in all following steps, we assume D to be implicit in
the calculation of the likelihoods and pseudolikelihoods.

To prove (1) holds under the scenario (*), it is sufficient
to show that the following is true for some ε > 0

1

n
(lnPLn(θ̂2)− lnPLn(θ̂1)) > ε (2)

It was shown in [3] that for anyM1 outside of a neigh-
bourhood N of θ0, and M2 containing this neighbour-
hood, we can pick a δ > 0 such that:

1

n
(lnLn(θ̂2)− lnLn(θ̂1)) > δ (3)

In order to extend this result to (2), we invoke a result
from [6] stating that

PLn(θ) ≥ dLn(θ) +

d∑
i=1

Hi(P̃n) (4)

where d is the dimensionality of the data, and Hi(P̃n) is
the Shannon entropy of the empirical distribution. It then
follows that (2) holds when (3) is true.

Showing that (1) holds under the scenario (**) is equiva-
lent to showing that the following difference isOp(1/n):

1

n
| lnPLn(θ̂1)− lnPLn(θ̂2)| (5)

Consider the difference between the full log-likelihoods:

1

n
| lnLn(θ̂1)− lnLn(θ̂2)|. (6)

We first closely follow the proof in [3] to show that
the quantity in (6) is Op(1/n). Consider data drawn
from a curved exponential family density p(X; θ) =
h(X)exp(θT (X) − Z(θ)), where θ ∈ Rk is a set of
canonical parameters in the natural parameter space Θ,
T (X) is a set of sufficient statistics, and Z(θ) is a nor-
malizing function. For a particular choice of a modelM
in this setting, the BIC can be written as lnLn(D; θ̂) −
k
2 ln(n) or equivalently,

sup
θ∈M∩Θ

n∑
i=1

θT (Xi)− Z(θ)− k

2
ln(n), (7)

Note that for simplicity of notation and without loss of
generality, we set h(X) = 1. Now consider Tn =
1
n

∑n
i=1 T (Xi), the sample average of the sufficient

statistics. We can then express (7) as

n sup
θ∈M∩Θ

θTn − Z(θ)− k

2
ln(n). (8)

Define the quantities Sn,i and Un as,

Sn,i ≡ sup
θi∈Mi∩Θ

θiTn − Z(θi) = θ̂n,iTn − Z(θ̂n,i),

Un ≡ θ0Tn − Z(θ0),

where θ̂n,i is the MLE. We now show that Sn,i−Un and
by extension each term in (6) is Op(1/n). Since θ0 lies
in both model spaces under scenario (**),

Sn,i−Un = (θ̂n,i−θ0)Tn−Z(θ̂n,i)+Z(θ0) ≥ 0. (9)

Considering the Taylor expansion ofZ about θ0, we have
that Z(θ̂n,i)− Z(θ0) = (θ̂n,i − θ0)∇Z(θ0) +Op(1/n),



where the Op(1/n) term comes from the efficiency of
MLE [4]. Plugging this into (9) we get,

Sn,i−Un = (Tn−∇Z(θ0))(θ̂n,i−θ0)+Op(1/n). (10)

By the Central Limit Theorem, Tn − ∇Z(θ0) is
Op(1/

√
n) and by the efficiency of MLE, θ̂n,i − θ0 is

also Op(1/
√
n). Thus, Sn,i − Un is Op(1/n), and we

have our result.

In order to extend this result to (5), we once again invoke
the result from [6] that

PLn(θ) ≥ dLn(θ) +

d∑
i=1

Hi(P̃n) (11)

where Hi(P̃n) is the Shannon entropy of the empirical
distribution. We see that as long d � n (which in our
setting we assume to be true), (6) beingOp(1/n) implies
that (5) is as well.

Lemma 2 Let G and G′ be graphs which differ by a
single edge between Vi and Vj . For conditional MRFs in
the exponential family, the local score difference between
G and G′ is given by:

∑
V ∈loc(Vi,Vj ;G)∩Bloc

{sV
(
D;G

)
−

sV
(
D;G′

)
}, where sV (.) denotes the component of the

score for V .

Proof. A conditional MRF corresponding to p(B |
paG(B)) for a block B in a CG G in the (conditional)
exponential family has a probability distribution of the
general form:

p(B | paG(B);ψ) = (12)

exp

 ∑
{C∈C((GbdG(B))a):C6⊆paG(B)}

ψCT (C)− Z(ψ,paG(B))


where {

ψC : C ∈ C((GbdG(B))
a),C 6⊆ paG(B)

}
is a set of canonical parameters associated with potential
functions φC in the CG factorization,{

T (C) : C ∈ C((GbdG(B))
a),C 6⊆ paG(B)

}
is a set of sufficient statistics for ψC, and Z(θ,paG(B))
is a normalizing function.

Assume V is in a clique C that contains the edge Vi−Vj
in G, and let G− be the edge subgraph of G with that edge
removed. Then p(V | bdG(V )) will only be a function of
clique parameters ψS, where S ⊆ C((GbdG(B))

a) : C 6⊆
paG(B) and V ∈ S. All others terms in the factorization

cancel by definition of conditioning. As a consequence,
p(V | bdG(V )) will be a function of ψC.

However, after Vi − Vj is removed, C will no longer be
a clique in G−, by definition, but will instead decom-
pose into two cliques, say C1 and C2. By following the
above reasoning, p(V | bdG−(V )) will be a function of
all clique parameters {ψS : S ⊆ C((GbdG(B))

a),C 6⊆
paG(B), V ∈ S}, which will include ψC1 and ψC2 . Since
the parameterization for p(V | bdG−(V )) is thus differ-
ent in models for G and G−, the contribution to the score
associated with this term will also be different.

Assume V is not in a clique that contains the edge Vi−Vj
in G, and let G− be the edge subgraph of G with that edge
removed, as before. Then p(V | bdG(V )) will only be
a function of clique parameters ψS, where S contains V ,
all others will cancel by definition of conditioning.

Note that since no such S contains the edge Vi−Vj in G,
the set of cliques S in G is the same as the set of cliques S
in G−. Moreover, since G− is an edge subgraph of G, no
new cliques are introduced. As a result, p(V | bdG−(V ))
will be parameterized by the same set of ψS in the model
for G− as it was in the model for G.

Our conclusion then follows because, by properties of
the exponential family, the sufficient statistics for a
clique parameter ψS are functions of only S. Since draws
from p(S) are fixed, the estimates for ψS will coincide
if the data is evaluated under the model for G, and the
model for G−. Furthermore, the number of parameters
in p(V | bdG(V )) and p(V | bdG−(V )) is the same.
This implies the score contribution for p(V | bdG(V )) in
G will equal the score contribution of p(V | bdG−(V ))
in G−. The only terms remaining in the score differ-
ence between G and G′ are then local scores for V ∈
loc(Vi, Vj ;G).

This implies the conclusion.

Lemma 3 If the generating distribution is Markov to
a CG satisfying tier symmetry and the causal ordering
assumption, then the search space of GREEDY NET-
WORK SEARCH consists of graphs belonging to their
own equivalence classes of size 1.

Proof. Under the restrictions listed above, the only
changes allowed are edge deletions or additions of the
form Li − Lj , Ai − Aj , Yi − Yj , Li → Aj , Li → Yj ,
Ai → Yj .

Consider an edge deletion Vi − Vj in G, giving rise to
a graph G′. Notice that boundaries of Vi and Vj have
changed. Thus by the local Markov property on chain
graphs, G and G′ must imply different conditional inde-



pendences. Concretely, G implies:

Vi ⊥⊥ V \ clG(Vi) | bdG(Vi)

Vj ⊥⊥ V \ clG(Vj) | bdG(Vj)

while G′ implies:

Vi ⊥⊥ V \ (clG(Vi) \ Vj) | bdG(Vi) \ Vj
Vj ⊥⊥ V \ (clG(Vj) \ Vi) | bdG(Vj) \ Vi

We can similarly show that an edge deletion Vi → Vj
also implies different conditional independences in G and
G′. Thus, in general, an edge deletion or addition in our
search space gives rise to graphs that are not Markov
equivalent and hence, reside in their own equivalence
classes of size 1.

Theorem 1 If the generating distribution is in the expo-
nential family (with compact natural parameter space Θ)
and is Markov and faithful to a CG satisfying tier sym-
metry and causal ordering, then GREEDY NETWORK
SEARCH is consistent.

Proof. The algorithm begins with a complete conditional
MRF that contains the true underlying distribution. We
are guaranteed that the truth is contained in every state
through the entirety of the algorithm by the following
argument. Consider the first edge deletion performed by
GNS to a conditional MRF that does not contain the true
model. It follows from consistency of the PBIC that any
such deletion would decrease the score. Choosing such
an edge deletion would contradict the greediness of the
algorithm.

Now assume the algorithm stops at a sub optimal con-
ditional MRF G that contains the truth but has more pa-
rameters than the true model G∗. We know there exists a
series of single edge deletions in EN that takes us from
G to G∗. By Lemma 3, each of these edge deletions yield
graphs in separate equivalence classes. It follows then
from the consistency of the PBIC that each of these edge
deletions strictly increases the score (each edge deletion
yields a smaller model containing the truth) and thus, a
local optimum found by greedily maximizing the PBIC
corresponds to finding the global optimum G∗.

Corollary 1.1 The HETEROGENOUS procedure is con-
sistent.

Proof. By consistency of GNS, each conditional MRF
returned for L, A, and Y corresponds to the true model.
The union of these will then produce the true CG on V.

Corollary 1.2 When the true network ties are homoge-
nous, HOMOGENOUS network search is consistent.

Proof. Each of the homogenous procedures described
above can be decomposed into a series of single edge
deletions that we have shown to be consistent.
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