
Towards a Better Understanding and Regularization
of GAN Training Dynamics

Weili Nie
Rice University
wn8@rice.edu

Ankit B. Patel
Rice University & Baylor College of Medicine

abp4@rice.edu

Abstract

Generative adversarial networks (GANs) are
notoriously difficult to train and the reasons
underlying their (non-)convergence behaviors
are still not completely understood. By first
considering a simple yet representative GAN
example, we mathematically analyze its lo-
cal convergence behavior in a non-asymptotic
way. Furthermore, the analysis is extended
to general GANs under certain assumptions.
We find that in order to ensure a good con-
vergence rate, two factors of the Jacobian in
the GAN training dynamics should be simulta-
neously avoided, which are (i) the Phase Fac-
tor, i.e., the Jacobian has complex eigenval-
ues with a large imaginary-to-real ratio, and
(ii) the Conditioning Factor, i.e., the Jacobian
is ill-conditioned. Previous methods of reg-
ularizing the Jacobian can only alleviate one
of these two factors, while making the other
more severe. Thus we propose a new JAcobian
REgularization (JARE) for GANs, which si-
multaneously addresses both factors by con-
struction. Finally, we conduct experiments that
confirm our theoretical analysis and demon-
strate the advantages of JARE over previous
methods in stabilizing GANs.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow
et al., 2014) have achieved great success at generating
realistic samples, with extensive applications (Ho and
Ermon, 2016; Zhu et al., 2017; Karras et al., 2019).
The goal of GANs is to generate samples that are indis-
tinguishable from real data and hence have essentially
learned the underlying data distribution. However, they

are notoriously difficult to train and as such many heuris-
tics have been developed (Radford et al., 2015; Salimans
et al., 2016; Brock et al., 2019). Meanwhile, a lot of the-
oretical work has focused on stabilizing the GAN train-
ing by replacing the Jensen-Shannon (JS) divergence im-
plicit in the vanilla GAN (Goodfellow et al., 2014) with
alternative divergences, such as f -divergence (i.e. f -
GAN) (Nowozin et al., 2016) and Wasserstein distance
(i.e. WGAN) (Arjovsky et al., 2017). Much of the re-
lated work has introduced various regularizers for better
approximating these divergences (Gulrajani et al., 2017;
Roth et al., 2017; Miyato et al., 2018).

But the training dynamics of GANs are still not com-
pletely understood. Typically, the training of GANs is
achieved by solving a zero-sum game via simultane-
ous gradient descent (SimGD) (Goodfellow et al., 2014;
Nowozin et al., 2016; Arjovsky et al., 2017). The origi-
nal work (Goodfellow et al., 2014) showed that SimGD
converges to an equilibrium if the updates are made in the
function space. In practice, with the generator and dis-
criminator being parametrized by two distinct neural net-
works, the updates in the parameter space are no longer
guaranteed to converge due to the highly non-convex
properties of the loss surface (Goodfellow, 2016).

In this work, we conduct a non-asymptotic analysis of
local convergence in GAN training dynamics by evaluat-
ing the eigenvalues of its Jacobian near the equilibrium
and analyzing the convergence rate. We first consider a
simple yet representative GAN example, and then extend
the analysis to the general GANs, where we find that the
number of iterations needed to achieve ε-error may be
unexpectedly large due to the Phase Factor (i.e., the Ja-
cobian has complex eigenvalues with a large imaginary-
to-real ratio) and Conditioning Factor (i.e., the Jacobian
is ill-conditioned) of the Jacobian. We later show that
previous methods of regularizing the Jacobian can only
alleviate one of these two factors, while making the im-
pact of the other factor more severe. Based on our anal-
ysis, we propose a new JAcobian REgularization (JARE)



for GANs and show theoretically that it can alleviate
these two factors simultaneously. Finally, experiments
confirm our theoretical analysis and demonstrate the ad-
vantages of JARE over recently proposed methods.

2 RELATED WORK

Global convergence of GANs. By assuming the GAN
objectives to be convex-concave, many works have
provided the global convergence behaviors of GANs
(Nowozin et al., 2016; Yadav et al., 2018; Gidel et al.,
2019). However, as shown in Section 4, the convex-
concave assumption is too unrealistic to hold true even
in a simple GAN example. Also, Li et al. (2018)
showed the global convergence of GANs by assuming
a parametrized mixture of two Gaussians as the genera-
tor. Nevertheless, their theoretical results only work for
GANs provided an optimal discriminator. These unreal-
istic assumptions together make an inevitably large gap
between their theory and the actual training dynamics of
GANs. Instead, we focus on the local convergence of
GANs, which is a necessary condition of global conver-
gence but more analytically tractable as it eschews such
strong assumptions.

Local convergence of GANs. Recently, Nagarajan and
Kolter (2017) showed that under some mild assumptions,
the GAN dynamics are locally convergent. Furthermore,
Mescheder et al. (2018) pointed out that if the assump-
tions in Nagarajan and Kolter (2017) are not satisfied,
in particular when data distributions are not absolutely
continuous, the GAN dynamics are not always conver-
gent, unless some regularization techniques are applied,
such as zero-centered gradient penalties (Roth et al.,
2017) and consensus optimization (ConOpt) (Mescheder
et al., 2017). However, these theoretical results are es-
tablished in an asymptotic limit of vanishing step size
where SimGD approximates a continuous-time dynamic
system. In practice, we are more concerned about the
characterization of the non-asymptotic convergence rate
and the choice of the finite step size. This is because even
though the continuous-time dynamic system is conver-
gent, its discrete-time counterpart might still suffer from
a poor convergence behavior. To this end, Liang and
Stokes (2019) analyzed the non-asymptotic local conver-
gence of GANs and revealed that the off-diagonal inter-
action term in the Jacobian can serve as both a blessing
and a curse. Our theoretical results can serve a comple-
mentary to Liang and Stokes (2019) in terms of better
understanding the local convergence of GANs.

General differentiable games. Another line of related
work has focused on analyzing the general differentiable
games with GANs being a specific use case (Balduzzi

et al., 2018; Daskalakis and Panageas, 2018; Letcher
et al., 2019). In particular, Balduzzi et al. (2018) de-
composed the game dynamics into two components and
proposed the Symplectic Gradient Adjustment (SGA) to
find stable fixed points in general games. Interestingly,
SGA shares some similarities with JARE in form al-
though we are motivated from completely different per-
spectives. The major difference between SGA and JARE
is that SGA needs an exclusive sign alignment during
training which JARE does not require, and we argue that
a better understanding and improvement of GAN dynam-
ics should take the GAN properties into account, which
is missing in this line of related work.

3 BACKGROUND

3.1 GAN AS A MINIMAX GAME

Despite many variants, the GAN is best described as a
minimax game in which the two players, usually named
the generator and discriminator, are maximizing and
minimizing the same objective function, respectively.
The GAN game can be formulated as follows:

min
φ

max
θ

f(φ, θ)

f(φ, θ) , Ex∼Pr [g1(Dθ(x))] + Ez∼P0 [g2(Dθ(Gφ(z)))]

(1)

where φ ∈ Φ ⊆ Rm and θ ∈ Θ ⊆ Rn denote the pa-
rameters of the generator Gφ : Z → X and discrimina-
tor Dθ : X → R, respectively, Pr and P0 represent the
true data distribution with support X ⊆ Rd and latent
distribution with support Z . We also denote by Pφ the
generated data distribution. Note that in our definition,
the output of the discriminator Dθ is a real-valued logit
rather than a probability. Therefore, by relating the ob-
jective in (1) to different f -divergences and Wasserstein
distance between Pr and Pφ, g1, g2 : R → R are both
concave functions, which is similar to Nagarajan and
Kolter (2017). For example, we can recover vanilla GAN
with g1(t) = g2(−t) = − log(1 + e−t), WGAN with
g1(t) = g2(−t) = t and reverse Kullback-Leibler (KL)
divergence in f -GAN with g1(t) = −e−t, g2(t) = 1−t1.

For training the minimax GAN game (1), SimGD is the
most commonly used algorithm, in which the parameter
updates are alternatively given as

φ(k+1) = φ(k) − η∇φf(φ(k), θ(k))

θ(k+1) = θ(k) + η∇θf(φ(k), θ(k))
(2)

1Normally, WGAN requires the discriminator parameter
space Θ to be an K-Lipschitz functional space while for f -
divergences, we can simply set Θ = Rn.



where η > 0 is the step size, φ(k) and θ(k) denote the
corresponding parameters in the k-th iteration. Due to
the non-convex properties of the GAN objective (Good-
fellow, 2016), it is difficult to analyze its global conver-
gence in general. To gain key insights into the training in-
stabilities in GANs, we focus on the local convergence of
points near the equilibrium (Nagarajan and Kolter, 2017;
Mescheder et al., 2018, 2017; Heusel et al., 2017).

3.2 ASYMPTOTIC VS. NON-ASYMPTOTIC
CONVERGENCE ANALYSIS

The asymptotic convergence analysis is defined as apply-
ing the “ordinary differential equation (ODE) method” to
analyze the convergence properties of dynamic systems.
For example, consider a discrete-time system character-
ized by the gradient descent v(t+1) = v(t) + ηh(v(t)) for
the gradient h(·) : Rn → Rn and step size η > 0, the
asymptotic convergence analysis assumes the step size η
is infinitely small such that the discrete-time system can
be approximated by an ODE v̇(t) = h(v(t)). Accord-
ing to the Linearization Theorem (Arrowsmith and Place,
1992), if the Jacobian of the dynamic system A , ∂h(v)

∂v
evaluated at a stationary point v∗ is Hurwitz, namely,
Re{λi(A)} < 0,∀i = 1, · · · , n, the equivalent ODE will
converge to v∗ for all points in its neighborhood.

In the non-asymptotic convergence analysis, however,
we consider the discrete system directly to obtain the
number of iterations needed to achieve an ε-error solu-
tion with a finite step size. Particularly, given the Jaco-
bian A, to ensure the non-asymptotic convergence, we
first provide an appropriate range of step size η by solv-
ing the inequalities |1 + λi(A)| < 1,∀i = 1, · · · , n.
Based on the constraint of the step size, we get the mini-
mum value of |1 + λi(A)|, and thus are able to evaluate
the minimum number of iterations for an ε-error solution,
which characterizes the convergence rate. Therefore, the
non-asymptotic analysis could more precisely reveal the
convergence performance of the dynamic system than the
asymptotic analysis.

4 A SIMPLE GAN EXAMPLE

For illustration, we first consider a simple GAN exam-
ple, in which the true data distribution is an isotropic
Gaussian with a nonzero mean, i.e. x ∼ N (v, σ2I)
where x ∈ Rn (assuming d = n) and latent distribu-
tion is also a Gaussian with the same shape but a zero
mean, i.e. z ∼ N (0, σ2I) where z ∈ Rn. Basically,
the problem becomes whether the generator could trans-
late the latent Guassian to match the real Gaussian. To
this end, we can assume the generator and discriminator
are both linear, i.e. Dθ(x) = θTx (assuming m = n)
and Gφ(z) = φ+ z, which are both provably expressive

enough to learn the true data distribution. Thus, the GAN
game objective in (1) can be rewritten as

f(φ, θ) =Ex∼N (v,σ2I)[g1(θTx)]

+ Ez∼N (0,σ2I)[g2(θT (φ+ z))]
(3)

It is easy to verify that the equilibrium exists, which is
(φ∗, θ∗) = (v, 0). Before proceeding to the analysis, we
show that this simple GAN example is in fact a concave-
concave game, essentially different from the previous
convex-concave assumption in GANs (Nowozin et al.,
2016; Yadav et al., 2018; Gidel et al., 2019).

Lemma 1. The objective f(φ, θ) in (3) is concave-
concave w.r.t. (φ, θ).

Proof: See Appendix A.1. �

By considering a small open neighborhood of (φ∗, θ∗) of
radius δ, denoted by Bδ(φ∗, θ∗), we introduce the local
properties in this simple GAN example as follows.

Lemma 2. The second-order derivative of f(φ, θ) in (3)
w.r.t. (φ, θ) ∈ Bδ(φ∗, θ∗) is given by

∇2f(φ, θ) ,

[
∇2
φφf(φ, θ) ∇2

φθf(φ, θ)

∇2
θφf(φ, θ) ∇2

θθf(φ, θ)

]
≈
[

0 g′2(0)I
g′2(0)I (g′′1 (0) + g′′2 (0))

(
σ2I + vvT

)] (4)

Proof: See Appendix A.2. �

Without loss of generality, we focus on the vanilla GAN
objective, i.e. g1(t) = g2(−t) = − log(1 + e−t), in the
rest of the paper, since the analysis in general applies to
different GAN objectives. To simplify notations, we let
w , (φ− v, θ) so the equilibrium becomes w∗ = 0 and
the SimGD updates in (2) can be rewritten as

w(k+1) = w(k) + η∇̃f(w(k)) (5)

where ∇̃f(w(k)) ,

[
−∇φf(w(k))
∇θf(w(k))

]
, and thus the Jaco-

bian at w(k) is given by

A(w(k)) ,
∂∇̃f(w(k))

∂w(k)

T

=

[
−∇2

φφf(w(k)) −∇2
φθf(w(k))

∇2
θφf(w(k)) ∇2

θθf(w(k))

]

In the next, we will replace A(w(k)) by A for brevity.

Theorem 1. For any point within Bδ(w
∗), the Ja-

cobian A in the simple vanilla GAN example trained
via SimGD has the following eigenvalues: λ1,2(A) =
−σ2±

√
(σ2)2−4
4 and λ3,4(A) =

−β2±
√

(β2)2−4
4 where

β2 , σ2 + ‖v‖2.



Proof: See Appendix A.3. �

The above theorem shows that Re{λ1,2(A)} < 0 and
Re{λ3,4(A)} < 0, and thus the SimGD updates in this
simple GAN example are asymptotically locally con-
vergent, which is consistent with Nagarajan and Kolter
(2017). Next, we discuss lower bounds of the non-
asymptotic convergence rate in two cases.

On the one hand, assuming the variance satisfies 0 <
σ2 < 2, λ1,2(A) become complex-valued. Denote by

ζ ,
∣∣∣ Im{λ1,2(A)}

Re{λ1,2(A)}

∣∣∣ the absolute value of the imaginary-to-
real ratio of λ1,2(A). The non-asymptotic convergence
property determined by λ1,2(A) is given as follows.

Corollary 1. To ensure non-asymptotic local conver-
gence, the step size should satisfy 0 < η < 4√

1+ζ2
. The

number of iterations to achieve an ε-error solution satis-

fies N ≥ 2 log
C0
ε

log(1+ 1
ζ2

)
where C0 is a constant. Specifically,

as ζ →∞, N will be at least O
(
ζ2 log 1

ε

)
.

Proof: See Appendix A.4. �

It means when the absolute value of the imaginary-
to-real ratio of λ1,2(A) increases, the number of it-
erations N for a certain convergence performance in-
creases (quadratically in the limit). Since we know

ζ =
√

( 2
σ2 )2 − 1 in the simple vanilla GAN example,

which is a monotonically decreasing function of σ2, if
we set σ2 = 0.01 for instance, then N ≥ O(104 log 1

ε )
which shows a quite slow convergence rate.

On the other hand, we assume β2 > 2, then λ3,4(A)
are real-valued. Without loss of generality, we assume
|λ3(A)| ≥ |λ4(A)| and the absolute value of their ratio
is denoted by τ ,

∣∣∣λ3(A)
λ4(A)

∣∣∣. Thus, τ is a lower bound
of the condition number of the Jacobian, and the non-
asymptotic convergence property determined by λ3,4(A)
is given as follows.

Corollary 2. To ensure non-asymptotic local conver-
gence, the step size should also satisfy 0 < η < 4√

τ
. For

τ > 2, the number of iterations N to achieve an ε-error

solution satisfies N >
log ε

C1

log (1− 2
τ )

where C1 is a constant.

Specifically, as τ →∞, N will be at least O(τ log 1
ε ).

Proof: See Appendix A.5. �

It means when the absolute value of λ3(A)
λ4(A) increases, the

number of iterations N for a certain convergence per-
formance also increases (linearly in the limit). Since
we know τ = 1

4 (β2 +
√

(β2)2 − 4)2 in the simple
vanilla GAN example, which is a monotonically increas-
ing function of β2, if we set ‖v‖ = 10 for instance, then
N ≥ O(104 log 1

ε ), which also implies a very poor con-

vergence rate.

In summary, there may exist the following two factors of
the Jacobian in the GAN dynamics simultaneously (e.g.,
0 < σ2 < 2 and β2 > 2 in the simple GAN example)
that result in the GAN training issues.

• Phase Factor: The Jacobian A has complex eigen-
values with a large imaginary-to-real ratio, which
has also been reported in Mescheder et al. (2017).

• Conditioning Factor: The Jacobian A is ill-
conditioned, i.e., the largest absolute value of its
eigenvalues is much larger than the smallest one.

As we can see later in general GANs, it is the special na-
ture of the Jacobian in GANs that makes the GAN train-
ing dynamics more unstable than other neural network
optimization problems. In particular, Theorem 1 reveals
that in the simple GAN example, both σ2 and β2 should
not be too small or too large, which is a relatively strict
requirement for local convergence. Furthermore, simply
changing the expressive power of the generator or dis-
criminator may not easily alleviate these two factors si-
multaneously. Please see Appendix B for an example
of changing the discriminator representations. There-
fore, how to simultaneously alleviate these two factors
we have identified above becomes an important question
for the GAN training.

5 JACOBIAN REGULARIZATION

A straightforward method to alleviate these two factors
simultaneously is to introduce a regularization matrix Γ
such that the training updates in (5) become

w(k+1) = w(k) + ηΓ∇̃f(w(k)) (6)

and thus the (regularized) Jacobian is given by A =

Γ∂∇̃f(w(k))
∂w(k)

T

. The goal is to find a regularization matrix
Γ such that we can appropriately control the eigenvalues
of the Jacobian for points near the equilibrium.

5.1 REVISITING PREVIOUS METHODS

There are several gradient-based regularization methods
that have been proposed to deal with the training insta-
bilities of GANs from the perspective of controlling the
Jacobian such as only regularizing generator (Nagarajan
and Kolter, 2017) and ConOpt (Mescheder et al., 2017).

Only regularizing generator. To overcome the non-
convergence issue of training WGAN via SimGD, Na-
garajan and Kolter (2017) has proposed to only regular-
ize the generator by using the gradient of the discrimina-
tor in a principled way. The regularized updates for the



generator become

φ(k+1) = φ(k) − η∇φf(w(k))− 1

2
ηγ∇φ

∥∥∥∇θf(w(k))
∥∥∥2

where the discriminator updates remain the same with
SimGD, and thus the corresponding regularization ma-

trix is Γ =

[
I −γ∇2

φθf(w(k))

0 I

]
with γ being a tunable

hyperparameter.

ConOpt. By directly alleviating the impact of the
Phase Factor, Mescheder et al. (2017) has proposed
ConOpt and its regularized updates are

w(k+1) = w(k) + η∇̃f(w(k))− 1

2
ηγ∇

∥∥∥∇f(w(k))
∥∥∥2

where the corresponding regularization matrix is Γ =[
I + γ∇2

φφf(w(k)) −γ∇2
φθf(w(k))

γ∇2
θφf(w(k)) I − γ∇2

θθf(w(k))

]
.

Only regularizing discriminator. Similar to only reg-
ularizing generator in (Nagarajan and Kolter, 2017), a
straightforward idea is to only regularize the discrimina-
tor instead by using the gradient of the generator and its
regularized updates for the discriminator become

θ(k+1) = θ(k) + η∇θf(w(k))− 1

2
ηγ∇θ

∥∥∥∇φf(w(k))
∥∥∥2

where the generator updates remain the same with
SimGD, and thus the corresponding regularization ma-

trix is Γ =

[
I 0

γ∇2
θφf(w(k)) I

]
.

Their convergence behaviors in terms of stabilizing the
simple vanilla GAN example (3) are given as follows.

Theorem 2. In the simple vanilla GAN example, none of
the previous gradient-based regularization methods (i.e.,
only regularizing generator, ConOpt and only regulariz-
ing discriminator) are capable of simultaneously allevi-
ating the Phase Factor and Conditioning Factor.

Proof: See Appendix D.1. �

From the above theorem, together with the example of
changing the representations in Appendix B, we can see
that without carefully taking into account both the Phase
Factor and Conditioning Factor, these GAN variants
might still suffer from the poor convergence even in the
simple GAN example.

5.2 JARE

Based on the above theoretical analysis, we propose a
new but simple Jacobian regularization, called JARE,
which also applies the regularization terms based on the

gradients of the generator and discriminator. Specifi-
cally, the regularized updates are given by

φ(k+1) = φ(k) − η∇φf(w(k))− 1

2
ηγ∇φ

∥∥∥∇θf(w(k))
∥∥∥2

θ(k+1) = θ(k) + η∇θf(w(k))− 1

2
ηγ∇θ

∥∥∥∇φf(w(k))
∥∥∥2
(7)

Similarly, the corresponding regularization matrix is Γ =[
I −γ∇2

φθf(w(k))

γ∇2
θφf(w(k)) I

]
with γ > 0 being a

tunable hyperparameter.

Note that the key difference between JARE and
ConOpt is that JARE does not introduce the Hessians
∇2
φφf(w(k)) and ∇2

θθf(w(k)) in the regularization ma-
trix Γ. Intuitively, a reason for not doing this is to avoid
the risk of reversing the gradient flows, which may di-
verge the GAN training dynamics (see Appendix C for a
detailed explanation). The following theorem shows the
eigenvalues of the Jacobian in the simple vanilla GAN
example trained via the proposed method.

Theorem 3. For any point within Bδ(w
∗), the

Jacobian A in the simple vanilla GAN example
trained via JARE has the following eigenvalues:

λ1,2(A) =
−(σ2+γ)±

√
(σ2+γ)2−(γ2+4)

4 and λ3,4(A) =
−(β2+γ)±

√
(β2+γ)2−(γ2+4)

4 , where β2 , σ2 + ‖v‖2.

Proof: See Appendix D.2. �

From the above theorem, given 0 < σ2 < 2 and β2 > 2,
we can evaluate both ζ ,

∣∣∣ Im{λ1,2(A)}
Re{λ1,2(A)}

∣∣∣ and τ ,
∣∣∣λ3(A)
λ4(A)

∣∣∣,
two key variables that reflect the impact of the Phase
Factor and Conditioning Factor, respectively, and see
how the tunable parameter γ in JARE changes their val-
ues. The results are given in the following corollary.

Corollary 3. In the simple vanilla GAN example trained
via JARE, ζ monotonically decreases as γ increases, and
if γ ≥ 2, τ also monotonically decreases as γ increases.
In the limit of γ → ∞, we get ζ → 0 (i.e., no complex
eigenvalues) and τ → 1 (i.e., well conditioned). There-
fore, we can make γ large enough in JARE to alleviate
the impact of the Phase Factor and Conditioning Factor
simultaneously.

Proof. See Appendix D.3. �

As we know from Corollary 1 and 2, if ζ → 0 and τ → 1,
the non-asymptotic convergence rate will be increasingly
improved. Therefore, the above corollary justifies that
the proposed JARE will provide a good local conver-
gence behavior by applying a reasonably large hyperpa-
rameter γ. However, we cannot make γ arbitrarily large
in JARE. According to the non-asymptotic analysis, the



step size in JARE should satisfy 0 < η < ηmax where
ηmax , 8 min{γ+σ

2

γ2+4 ,
1

(β2+γ)+
√

2β2γ+(β2)2−4
}. As we

can see ηmax decreases with the increment of γ, and goes
to 0 as γ →∞. So when γ is sufficiently large, we have
to make the step size infinitely small accordingly.

6 EXTENSIONS TO GENERAL GANS

The above analysis is based on the simple GAN example,
and here we can extend it to the more general GAN sce-
nario. First, we show that the two factors identified above
can also be significant issues in general GANs. Second,
we show that JARE can alleviate both of these factors
simultaneously in general GANs.

For ease of analysis, we make the following assumption
in terms of equilibrium point in general GANs (Nagara-
jan and Kolter, 2017; Mescheder et al., 2018).

Assumption 1. In equilibrium, the optimal generated
distribution satisfies pφ∗ = pr, and the optimal discrimi-
nator satisfies Dθ∗(x) = 0 for the local neighborhood of
any x ∈ X .

Basically, this assumption means that the generator is
powerful enough to match the true data distribution in
equilibrium where the discriminator cannot distinguish
the real and fake samples. In order to avoid trivial solu-
tions, we also make an assumption as follows (Nagarajan
and Kolter, 2017).

Assumption 2. The two concave functions g1 and g2 sat-
isfy g′′1 (0) + g′′2 (0) < 0 and g′1(0) = −g′2(0) 6= 0.

For example, the vanilla GAN loss and reverse KL diver-
gence satisfy this assumption but the WGAN loss does
not. Under these two assumptions, the Jacobian of gen-
eral GANs is given as follows:

Lemma 3. For an equilibrium point (φ∗, θ∗) satisfying
Assumptions 1 and 2, the Jacobian A in general GANs
trained via SimGD can be written in the form

A =

[
0 −P
PT Q

]
(8)

where P ∈ Rm×n and Q ∈ Rm×m are given by

P =g′2(0)Ez∼P0
[∇φGφ(z)∇2

xθDθ(x)]|x=Gφ(z)
Q =(g′′1 (0) + g′′2 (0))Ex∼Pr [∇θDθ(x)∇θDθ(x)T ]

(9)

Proof: See Appendix E.1. �

The off-diagonal matrix P represents how sensitive the
discriminator is to the generator’s local updates. The
diagonal matrix Q represents the local geometry of the
discriminator. It is easy to verify that the Jacobian A in

the simple GAN example is a special case of Lemma 3.
Note that for WGAN, since g′′1 (0) = g′′2 (0) = 0, we have
Q = 0 and therefore it is not even asymptotically conver-
gent (Nagarajan and Kolter, 2017), rendering a conver-
gence rate analysis irrelevant. We are now ready to com-
pute the eigenvalues of the Jacobian A in general GANs.

Theorem 4. For the equilibrium point (φ∗, θ∗) satisfying
Assumptions 1 and 2, the eigenvalues of the Jacobian A
in general GANs trained via SimGD can be written in the
form

λ(A) =
a1 ±

√
a21 − 4a2
2

(10)

where a1 and a2 are certain convex combinations of the
eigenvalues of Q and PTP , respectively. That is,

a1 =

m∑
i=1

αiλi(Q), a2 =

m∑
i=1

α̃iλi(P
TP ) (11)

for some coefficients αi ≥ 0 with
∑m
i=1 αi = 1 and some

coefficients α̃i ≥ 0 with
∑m
i=1 α̃i = 1.

Proof: See Appendix E.2. �

Let λmin(·) and λmax(·) denote the minimum and maxi-
mum eigenvalues of a square matrix, respectively. From
Lemma 3 we know Q � 0, so λmin(Q) ≤ λi(Q) ≤
λmax(Q) ≤ 0, ∀i. Also, by definition we have PTP � 0,
so 0 ≤ λmin(PTP ) ≤ λi(PTP ) ≤ λmax(PTP ), ∀i. The
convex combination in Eq. (11) then implies

λmin(Q) ≤a1 ≤ λmax(Q) ≤ 0

0 ≤ λmin(PTP ) ≤a2 ≤ λmax(PTP )

Therefore, how to balance the eigenvalue distributions of
Q and PTP plays an essential role in determining the
eigenvalues of the Jacobian A. To see this, we consider
two relatively extreme cases as follows:

First, if the maximum absolute value of the eigenvalues
ofQ is much smaller than the minimum absolute value of
the eigenvalues of PTP , in particular we assume Q and
PTP satisfy c|λmin(Q)|2 = 4|λmin(PTP )| with c � 1,
then for any coefficients αi and α̃i in Theorem 4, we
have a21 < 4a2 and thus λ(A) is complex-valued with
the imaginary-to-real ratio satisfying ζ =

√
c− 1. We

can see that as c becomes larger, the impact of Phase
Factor will be more severe.

Second, if the minimum absolute value of the eigenval-
ues ofQ is much larger than the maximum absolute value
of the eigenvalues of PTP , in particular we assume Q
and PTP in some GAN scenario satisfy c′|λmax(Q)|2 =
4|λmax(PTP )| with c′ � 1, then for any coefficients αi
and α̃i in Theorem 4, we have a21 > 4a2 and thus λ(A)



Requirements stable SimGD stable JARE
Q is well-conditioned X
PTP is well-conditioned X X
Q matches PTP X

Table 1: The general requirements of ensuring a good
local convergence behavior in both the GAN trained via
SimGD (called “stable SimGD”) and the GAN trained
via the proposed JARE (called “stable JARE”). The more
requirements that the GAN training needs, the more dif-
ficult to ensure a good local convergence behavior.

is real-valued with the absolute value of eigenvalue ratio

satisfying τ = (
√

1
c′ +

√
1
c′ − 1)2. We can observe that

when c′ is smaller, the impact of Conditioning Factor
will also be increasingly severe.

Therefore, even ifQ and PTP themselves are both well-
conditioned with all real eigenvalues, there still exist ei-
ther the Phase Factor or Conditioning Factor in the Ja-
cobian A due to the imbalance between their eigenvalue
distributions. More generally in real GANs, it is also
likely that either Q or PTP becomes ill-conditioned, the
GAN training dynamics will suffer more from the co-
existence of Phase Factor and the Conditioning Factor.
Note that the simple vanilla GAN example in Section 4
is just an illustrative special case of general GANs.

In summary, we need to make sure that Q and PTP are
both well-conditioned (which requires a well-designed
generator and discriminator) and have similar eigenval-
ues (which requires the discriminator to well match the
generator) to avoid these two factors in general GANs.
Generally, these requirements are difficult to satisfy,
which explains why GANs are hard to train and also why
they are so sensitive to network architectures and other
hyperparameters.

Next, we compute the eigenvalues of the Jacobian A in
general GANs trained with our proposed JARE.

Theorem 5. For the equilibrium point (φ∗, θ∗) satisfying
Assumptions 1 and 2, the eigenvalues of the Jacobian A
in general GANs trained via JARE satisfy that in the limit
γ →∞,

λ(A) = −γλ(PTP ) (12)

Proof: See Appendix E.3. �

We can see that λ(A) in (12) is real-valued, which means
there is no Phase Factor any more with a sufficiently
large regularization term γ in JARE. Also, the eigen-
value distribution of the JacobianA now only depends on
PTP , which means in general GANs trained via JARE,
the imbalance between the eigenvalue distributions of Q
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(a) Discriminator training curve
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(b) Generator training curve

Figure 1: Training dynamics of SimGD, ConOpt and JARE
(Ours) in the simple vanilla GAN example where µ = 4 and
σ2 = 0.04. (a) shows the discriminator convergence where
“d norm” denotes the l2 distance between current and optimal
value of the discriminator parameters, and (b) shows the gen-
erator convergence where “g norm” denotes the l2 distance be-
tween current and optimal value of the generator parameters.

and PTP will not result in an undesirable properties of
the Jacobian A. Instead, we only need to make sure
PTP is well-conditioned to achieve a good convergence
behavior. The comparison between GANs trained via
SimGD and JARE regarding the requirements of good
training dynamics is illustrated in Table 1. In this sense,
JARE will be significantly easier to train, with greater
stability and more robustness to different network archi-
tectures and hyperparameters.

7 EXPERIMENTS

Isotropic Gaussian. First, we empirically verify our the-
ory in the simple vanilla GAN example. Specifically,
we consider a two-dimensional case, i.e. n = 2 and
the mean of true data is v =

[
0, µ
]T

. To test the lo-
cal convergence, the parameters of both the discrimina-
tor and generator are initialized within Bδ(w

∗) where
δ = 0.05. For hyperparameters, we set the learning
rate to be η = 0.001, the regularization parameter to be
γ = 10, the optimizer to be stochastic gradient descent
(SGD) with a batch size 128, and run 15K iterations.

Figure 1 shows the discriminator and generator training
curves, respectively, for three training methods: SimGD,



(a) SimGD

(b) ConOpt (γ = 10)

(d) Ours (γ = 10)

Figure 2: Comparison of SimGD, ConOpt and JARE (Ours)
on the mixture of Gaussians over iterations where r = 2 and
γ = 10 for both ConOpt and JARE. From left to right, each row
consists of the results after 0, 2000, 4000, 6000, 8000 iterations.

ConOpt and JARE (Ours) by letting µ = 4 and σ2 =
0.04. We observe that for SimGD, the training curves
oscillate with very weak damping which becomes even
weaker if we increase µ or decrease σ2 (See Figures
5 and 6 in Appendix F.1). It verifies that SimGD suf-
fers from poor convergence caused by the Phase Factor
and Conditioning Factor. Also, ConOpt could alleviate
the Phase Factor since oscillations caused by complex
eigenvalues disappear. However, its generator conver-
gence is heavily slowed down by the Conditioning Fac-
tor which becomes worse as we increase µ (See Figure 5
in Appendix F.1). In contrast, the JARE enjoys a decent
convergence rate for both the generator and discriminator
by alleviating the two factors simultaneously.

Mixture of Gaussians. We also test JARE in a com-
monly used toy example where the goal is to learn a
mixture of Gaussians with modes uniformly distributed
around a circle with radius r. Here we set r = 2
while keeping other settings and network architectures
the same with Mescheder et al. (2017). We run SimGD,
ConOpt and JARE (Ours) with RMSProp (Tieleman and
Hinton, 2012) and learning rate of 10−4 for 10K it-
erations, and the input noise is sampled from a 64-
dimensional Gaussian N (0, rI64). Figure 2 shows their
results over different iterations. We can see that SimGD
oscillates among different modes and fails to converge,
while ConOpt and JARE can both converge to the target
data distribution. Please see Figures 7 and 8 in Appendix
F.2 for more detailed comparisons among these methods,
where we show JARE with γ = 1000 tends to behave
slightly better than ConOpt in more difficult settings.

CIFAR-10. In this experiment, we quantitatively evalu-

(a) Inception score

(b) FID

Figure 3: Inception scores and FIDs of different methods:
GAN, SN-GAN, ConOpt and JARE (Ours) in different GAN
settings (A-F) on CIFAR-10. For inception score, the higher is
better and for FID, the lower is better.

ate the sample quality of JARE on the CIFAR-10 dataset
(Torralba et al., 2008) with the inception score (Sali-
mans et al., 2016) and Frechet inception distance (FID)
(Heusel et al., 2017). We test the dependencies of JARE
on different network architectures and hyperparameters.
We compare with other GAN training methods, includ-
ing the standard GAN (Goodfellow et al., 2014) (de-
noted as ‘GAN’), ConOpt (Mescheder et al., 2017) and
SN-GAN (Miyato et al., 2018). For all methods, we
use the non-saturating loss as suggested in Goodfellow
et al. (2014). For fair comparison, we test 6 settings:
the standard CNN model in Miyato et al. (2018) with
batch normalization (Ioffe and Szegedy, 2015) on gener-
ator (A) or without batch normalization on generator (B),
the DCGAN-like architecture with a constant number of
filters in Mescheder et al. (2017) via the Adam optimizer
(Kingma and Ba, 2015) (C) or via the RMSProp opti-
mizer (D), and the ResNet (He et al., 2016) architectures
v1 (E) or v2 (F) with a constant number of filters where
Mf = 64. Please see Appendix F.3 more details. Un-
less otherwise stated, we use the Adam optimizer with
β1 = 0.5 and β2 = 0.999. Also, we use a batch size of
64 and run all experiments with a learning rate of 10−4

for 500K iterations. For ConOpt, we set γ = 10, and for
JARE, we set γ = 100.



Figure 4: Training time on CIFAR-10 with different training
methods: GAN, SN-GAN, ConOpt and JARE (Ours) in all the
A-F settings.

Figure 3 shows the inception scores and FIDs for dif-
ferent training methods with all 6 settings on CIFAR-
10 (also see Figure 9 in Appendix F.4 for the gener-
ated samples). We can see that JARE is more robust
than other methods regarding different network architec-
tures and tuning hyperparameters, which shows the po-
tential advantages of JARE in stabilizing the real GAN
training. Both SN-GAN and ConOpt perform almost the
best in their own proposed GAN architectures but per-
form poorly in other cases. Besides, the training time (in
seconds per 1K runs) on CIFAR-10 with these different
methods is given in Table 4. We can see that the training
time of JARE is always lower than ConOpt and on par
with SN-GAN, which is not much higher than the stan-
dard GAN, which means the extra computational cost in-
troduced by the regularization terms in JARE is relatively
low at least in there settings.

8 DISCUSSION AND CONCLUSIONS

In this paper, we first analyzed the non-asymptotic lo-
cal convergence behavior of GAN training dynamics in a
simple GAN example and later extended the analysis to
the general GAN scenario. We found out that in order to
ensure a good convergence behavior in GANs, both the
Phase Factor and Conditioning Factor need to be ad-
dressed simultaneously. However, we showed that pre-
vious gradient-based regularizations can only avoid one
factor while making the other more severe. Therefore,
we proposed a new Jacobian regularization for GANs,
called JARE, and showed theoretically it can alleviate
the two factors simultaneously. Finally, we did experi-
ments on isotropic Gaussian, mixture of Gaussians and
CIFAR-10 to show the training stability of JARE.

However, the proposed JARE also has its limitation: Al-
though it is constructed in a principled way and the pre-
liminary experimental results showed its potential ben-
efits at stabilizing GANs, in order to scale to the large-

scale GAN training (Brock et al., 2019), we will need
to get rid of the computationally expensive second-order
derivatives in the regularization term of JARE. A po-
tential direction of alleviating this limitation could be
interpreting JARE as a form of adversarial extrapo-
lation where two agents playing the game anticipate
each other’s learning updates, which we think is game-
theoretic, intuitive and thought-provoking.

For example, different from current extrapolation meth-
ods applied in GANs (Gidel et al., 2019; Daskalakis
et al., 2018; Yadav et al., 2018), we can introduce the
adversarial extrapolation as follows:

φ(k+1) = φ(k) − η∇φf(φ(k), θ(k+
1
2 ))

θ(k+1) = θ(k) + η∇θf(φ(k+
1
2 ), θ(k))

(13)

where the intermediate prediction terms φ(k+
1
2 ) and

θ(k+
1
2 ) are given by

φ(k+
1
2 ) = φ(k) − γ

2
∇φf(φ(k), θ(k))

θ(k+
1
2 ) = θ(k) +

γ

2
∇θf(φ(k), θ(k))

(14)

As we can see, by applying the first-order Taylor approx-
imation with respect to θ(k+

1
2 ) and φ(k+

1
2 ), respectively,

we have

f(φ(k), θ(k+
1
2 )) ≈ f(φ(k), θ(k)) +

γ

2

∥∥∥∇θf(φ(k), θ(k))
∥∥∥2

f(φ(k+
1
2 ), θ(k)) ≈ f(φ(k), θ(k))− γ

2

∥∥∥∇φf(φ(k), θ(k))
∥∥∥2

Thus, by substituting the above two approximations into
(13), we can get the proposed JARE in (7).

From the above analysis, the new adversarial extrapola-
tion method derived directly from JARE may enjoy both
our theoretical grounding and the computational bene-
fits of the first-order optimization methods. We leave
the further investigation of the adversarial extrapolation
method, and the relationship between JARE and other
extrapolation methods in GANs, as the future work.
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