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Abstract

Non-convex and non-smooth optimization prob-
lems are important for statistics and machine
learning. However, solving such problems is
always challenging. In this paper, we propose
fast proximal gradient descent based methods
to solve a class of non-convex and non-smooth
sparse learning problems, i.e. the `0 regular-
ization problems. We prove improved con-
vergence rate of proximal gradient descent on
the `0 regularization problems, and propose
two accelerated versions by support projection.
The proposed accelerated proximal gradient
descent methods by support projection have
convergence rates which match the Nesterov’s
optimal convergence rate of first-order meth-
ods on smooth and convex objective function
with Lipschitz continuous gradient. Experimen-
tal results demonstrate the effectiveness of the
proposed algorithms. We also propose feed-
forward neural networks as fast encoders to
approximate the optimization results generated
by the proposed accelerated algorithms.

1 INTRODUCTION

Non-convex and non-smooth optimization problems are
challenging ones which have received a lot of attention in
the machine learning literature (Bolte et al., 2014; Ochs
et al., 2015). In this paper, we consider fast optimization
algorithms for a class of non-convex and non-smooth
sparse learning problems, i.e. the `0 regularized problems,
presented as follows:

min
x∈IRn

F (x) = g(x) + h(x), (1)

where h(x) , λ‖x‖0, λ > 0 is a weighting parame-
ter. g is assumed to satisfy the following two conditions

throughout this paper:

(a) g is convex and g has bounded gradient, i.e.
‖∇g(x)‖∞ ≤ G for some constant G and any x ∈ IRn,

(b) g has L-Lipschitz continuous gradient, i.e. ‖∇g(x)−
∇g(y)‖2 ≤ L‖x− y‖2.

Assumption (b) is standard in the analysis of using proxi-
mal method for non-convex problems, e.g. (Bolte et al.,
2014; Ghadimi and Lan, 2016a). When g is aG-Lipschitz
continuous function, its gradient is bounded by G.

When g is the squared loss, i.e.

g(x) = ‖y −Dx‖22, (2)

where y ∈ IRd , D is the design matrix of dimension
d × n, (1) is the well-known `0 penalized Least Square
Estimation (LSE) problem. Due to the nonconvexity im-
posed by the `0 regularization, extensive existing works
resort to solve its `1 relaxation by linear programming or
iterative shrinkage algorithms (Daubechies et al., 2004;
Elad, 2006; Bredies and Lorenz, 2008; Agarwal et al.,
2012). Albeit the nonconvexity of (1), sparse coding
methods such as (Mancera and Portilla, 2006; Bao et al.,
2014) that directly optimize virtually the same objective
as (1) demonstrate compelling performance compared to
its `1 norm counterparts in machine learning and com-
puter vision. Cardinality constraint in terms of `0-norm is
also studied for M-estimation problems by Iterative Hard-
Thresholding (IHT) algorithm proposed by (Blumensath
and Davies, 2008), e.g. (Jain et al., 2014; Shen and Li,
2017). Fast gradient based methods have been studied in
the optimization literature (Nesterov, 2005, 2013; Tseng,
2008; Ghadimi and Lan, 2016b) for non-convex prob-
lems, and general iterative shrinkage and thresholding
algorithm has been applied to problems with non-convex
sparse regularization (Gong et al., 2013).

Due to the special property of `0 regularization function h,
any critial point of g is also a critical point of F . However,
finding a sparse critical point of F is still challenging



due to the non-convexity and nonsmoothness of h. We
use Proximal Gradient Descent (PGD) method to obtain
a sparse sub-optimal solution to (1), and proposed fast
PGD methods with guarantee on fast convergence rate by
a novel operation named support shrinkage. Our main
results are summarized in the subsection below.

1.1 Main Results

We extend the existing Accelerated Proximal Gradient
descent method (APG) (Beck and Teboulle, 2009a,b) on
the `0 regularization problem (1), showing improved con-
vergence rates. More concretely,

• We present Theorem 2 showing that the sequence gen-
erated by PGD converges to a critical point of F , with
convergence rate

F (x(m+1))− F (x∗) ≤ O(
1

m
) (3)

for all m ≥ k0 with some k0 ≥ 0.

• We propose two new accelerated versions of PGD with
a novel support projection operation, namely Nonmono-
tone Accelerated Proximal Gradient Descent with Sup-
port Projection (NAPGD-SP) and Monotone Acceler-
ated Proximal Gradient Descent with Support Projec-
tion (MAPGD-SP). While facing highly non-convex
and non-smooth problem (1), both algorithms match
the Nesterov’s optimal convergence rate of first-order
methods on smooth and convex objective function with
Lipschitz continuous gradient. For both NAPGD-SP
and MAPGD-SP, we show the following convergence
rates:

‖F (x(m))− F (x∗)‖2 ≤ O(
1

m2
), (4)

for all m ≥ k0 with some k0 ≥ 0. Please refer to
Theorem 3 and Theorem 4 in Section 4 for details. It
should be emphasized that this is the same convergence
rate as that of regular APG on convex problems (Beck
and Teboulle, 2009a,b)

The obtained sub-optimal solutions by PGD, NAPGD-
SP and MAPGD-SP are all sparser than the initialization
point, and the support of each obtained solution is a subset
of that of the initialization, which enables interpretable
variable shrinkage.

The general accelerated algorithms in (Li and Lin, 2015)
have linear convergence rate with θ ∈ [1/2, 1), and sub-
linear rate O(k−

1
1−2θ ) with θ ∈ (0, 1/2), where θ is the

Kurdyka- Lojasiewicz (KL) exponent and both rates are
for objective values. To the best of our knowledge, the ma-
chine learning and optimization literature has no concrete
results on which interval θ lies in ((0, 1/2) or [1/2, 1)),
when the sequence is approaching to a critical point of

problem (1) using general algorithms such as those in (Li
and Lin, 2015) and (Bolte et al., 2014). θ could take values
in both intervals as the sequence approaches to a critical
point. Therefore, one can only claim a conservative sub-
linear convergence rate (O(k−

1
1−2θ ) and θ ∈ (0, 1/2))

for problem (1) (e.g., by (Bao et al., 2014)). The al-
gorithms in our work impose support projection so that
the sequence has the same support after finite k0 itera-
tions. By the support shrinkage property, we prove the
convergence rate O( 1

k ) for vanilla PGD and O( 1
k2 ) for

the proposed NAPGD-SP and MAPGD-SP on problem
(1), which are not guaranteed by the general algorithms
in (Li and Lin, 2015). It can also be verified that they
achieve linear convergence rates when g is strongly con-
vex. Again, the convergence results mentioned above and
presented in this paper can not be guaranteed by the gen-
eral algorithms in (Li and Lin, 2015) with analysis via KL
property, to the best of our knowledge. Our results are
among the very few results in the machine learning and
optimization literature about fast optimization methods
on non-convex and non-smooth problems involving `0

regularization. Moreover, our methods reveal the hidden
convexity in `0 regularization problems and have the po-
tential to be extended to more general non-convex and
non-smooth problems.

1.2 Notations

Throughout this paper, we use bold letters for matrices
and vectors, regular lower letters for scalars. The bold
letter with subscript indicates the corresponding element
of a matrix or vector, and the bold letter with superscript
indicates the corresponding column of a matrix, i.e. Di

indicates the i-th column of matrix D. ‖ · ‖p denotes
the `p-norm of a vector, or the p-norm of a matrix. We
let βI denote the vector formed by the elements of β
with indices in I when β is a vector, or matrix formed by
columns of β with indices indices in I when β is a matrix.
supp(·) indicates the support of a vector, i.e. the set of
indices of nonzero elements of this vector. σt(·) is the
t-th largest singular value of a matrix, and σmin(·) and
σmax(·) indicate the smallest and largest singular value of
a matrix respectively. |A| denotes the cardinality of a set
A, supp(·) indicates the support of a vector. We denote
by Col(A) the subspace spanned by columns of matrix A.
We let S = supp(x(0)) be the support of the initialization
point x(0) for optimization, and D = maxi ‖Di‖2.

2 ALGORITHMS

We introduce PGD and their accelerated versions with
support projection in this section.



2.1 Proximal Gradient Descent for `0 Sparse
Approximation

The `0 regularization problem (1) is NP-hard in general
(Natarajan, 1995). Therefore, the literature extensively
resorts to approximate algorithms, such as Orthogonal
Matching Pursuit (Tropp, 2004), or that using surrogate
functions (Hyder and Mahata, 2009). In addition, PGD
has been used by (Bao et al., 2014) to find an approximate
solution to (1) with g being the squared loss (2), and that
method is proved to have sublinear convergence rate with
satisfactory empirical results. The success of PGD raises
an interesting question that what is the convergence rate
of PGD on the general `0 regularization problem (1).

In this section, we first present PGD to optimize (1) in
an iterative shrinkage manner. Then we introduce two of
its accelerated versions, namely Nonmonotone Acceler-
ated Proximal Gradient Descent with Support Projection
(NAPGD-SP) and Monotone Accelerated Proximal Gradi-
ent Descent with Support Projection (MAPGD-SP). Both
NAPGD-SP and MAPGD-SP feature support projection
for fast convergence.

2.2 Proximal Gradient Descent

In the k-th iteration of PGD for k ≥ 1, gradient descent
is performed on the squared loss term g(x) to obtain an
intermediate variable as the result of gradient descent, i.e.
x(k) − s∇g(x(k)), where s > 0 is the step size, and 1

s
is usually chosen to be larger than a Lipschitz constant
L for the gradient of function g(·), namely ‖∇g(u) −
∇g(v)‖2 ≤ L‖u− v‖2 for any u,v ∈ IRn.

The proximal mapping associated with h is defined as
proxh(u) = arg min

v
h(v) + 1

2‖v − u‖22. x(k+1) is then

the solution to the following the proximal mapping on
x(k) − s∇g(x(k)):

x(k+1) = proxsh(x(k) − s∇g(x(k)))

= arg min
v∈IRn

1

2s
‖v − (x(k) − s∇g(x(k)))‖22 + λ‖v‖0

= T√2λs(x
(k) − s∇g(x(k))), (5)

where Tθ is an element-wise hard thresholding operator:

[Tθ(u)]j =

{
0 : |uj | ≤ θ

uj : otherwise
, 1 ≤ j ≤ n.

The iterations start from k = 1 and continue until the
sequence {F (x(k))}k or {x(k)}k converges or maximum
iteration number is achieved. The optimization algorithm
for the `0 sparse approximation problem (1) by PGD is
described in Algorithm 1. In practice, the time complexity
of optimization by PGD is O(Mdn) where M is the
number of iterations (or maximum number of iterations)
for PGD.

Algorithm 1 Proximal Gradient Descent for the `0 Regu-
larization Problem (1)
Input:

The weighting parameter λ, the initialization x(0).
1: for k = 0, . . . , do
2: Update x(k+1) according to (5)
3: end for

Output: Obtain the sparse solution x̂ upon the termina-
tion of the iterations.

2.3 Accelerated Proximal Gradient Descent with
Support Projection

The Nonmonotone Accelerated Proximal Gradient De-
scent with Support Projection (NAPGD-SP) and Mono-
tone Accelerated Proximal Gradient Descent (MAPGD-
SP) with Support Projection (MAPGD-SP) are introduced
in the following two subsections. Both algorithms are
feministic of regular APG (Beck and Teboulle, 2009a,b),
and they achieve fast convergence by virtue of support
projection to be explained in the next subsections.

2.3.1 Nonmonotone Accelerated Proximal
Gradient Descent with Support Projection

The update rules in the k-th iteration of NAPGD-SP are
presented as follows.

u(k) = x(k) +
tk−1 − 1

tk
(x(k) − x(k−1)), (6)

w(k) = Psupp(x(k))(u
(k)), (7)

x(k+1) = proxsh(w(k) − s∇g(w(k))), (8)

tk+1 =

√
1 + 4t2k + 1

2
, (9)

where PS′(u) indicates the novel support projection op-
erator which returns a vector whose elements with indices
in S′ are the same as those in u, while all the other ele-
ments vanish. Note that (6), (8) and (9) also appear in
regular nonmonotone APG (Beck and Teboulle, 2009b)
for convex problems, and support projection is employed
to enforce the support shrinkage property so as to guaran-
tee fast convergence for the non-convex `0 regularization
problem. The algorithm for NAPGD-SP is shown in Al-
gorithm 2.

We say that a strict support shrinkage happens if
supp(x(k+1)) ⊂ supp(x(k)). Algorithm 2 describes
NAPGD-SP for the `0 regularization problem (1).

2.3.2 Monotone Accelerated Proximal Gradient
Descent

The update rules in the k-th iteration of MAPGD-SP are
presented as follows. The algorithm for MAPGD-SP is



Algorithm 2 Nonmonotone Accelerated Proximal Gradi-
ent Descent with Support Projection for the `0 Regular-
ization Problem (1)
Input:

The weighting parameter λ, the initialization x(0),
z(1) = x(1) = x(0), t0 = 0.

1: for k = 1, . . . , do
2: Update u(k), w(k), x(k+1), tk+1 according to (6),

(7), (8), (9) respectively.
3: end for

Output: Obtain the sparse solution x̂ upon the termina-
tion of the iterations.

shown in Algorithm 3. Again, (10), (12) and (13) also in
regular monotone APG (Beck and Teboulle, 2009a) for
convex problems, and support projection is introduced in
(11) to constrain the support of the intermediate variable
w(k).

u(k) = x(k) +
tk−1

tk
(z(k) − x(k)) +

tk−1 − 1

tk
(x(k) − x(k−1)),

(10)

w(k) = Psupp(z(k))(u
(k)), (11)

z(k+1) = proxsh(w(k) − s∇g(w(k))), (12)

tk+1 =

√
1 + 4t2k + 1

2
, (13)

x(k+1) =

{
z(k+1) if F (z(k+1)) ≤ F (x(k))

x(k) otherwise.
(14)

Algorithm 3 Monotone Accelerated Proximal Gradient
Descent with Support Projection for the `0 Regularization
Problem (1)
Input:

The weighting parameter λ, the initialization x(0),
z(1) = x(1) = x(0), t0 = 0.

1: for k = 1, . . . , do
2: Update u(k), w(k), z(k+1), tk+1, x(k+1) according

to (10), (11), (12), (13), and (14) respectively.
3: end for

Output: Obtain the sparse solution x̂ upon the termina-
tion of the iterations.

3 ANALYSIS OF PROXIMAL
GRADIENT DESCENT

In this section we present the analysis for the convergence
rate of PGD in Algorithm 1. We first present the support
shrinkage property in the following lemma, showing that
the support of the sequence {x(k)}k shrinks.
Lemma 1. (Support shrinkage for proximal gradient de-
scent in Algorithm 1 and sufficient decrease of the objec-

tive function) If s ≤ min{ 2λ
G2 ,

1
L}, then

supp(x(k+1)) ⊆ supp(x(k)), k ≥ 0, (15)

namely the support of the sequence {x(k)}k shrinks.
Moreover, the sequence of the objective {F (x(k))}k is
nonincreasing, and the following inequality holds for
k ≥ 0:

F (x(k+1)) ≤ F (x(k))−
( 1

2s
− L

2

)
‖x(k+1) − x(k)‖22.

(16)
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Figure 1: Illustration of the support shrinkage prop-
erty shown in Lemma 1. Each green box indicates a
nonzero element, and each white box indicate a zero
element. As the iteration proceeds, some of the green
boxes gradually turn white while no white box turn
green, which reflects the support shrinkage property, i.e.
supp(x(k+1)) ⊆ supp(x(k)) for k ≥ 0.

Figure 1 illustrates the support shrinkage property. Under
the mild conditions in Lemma 1, the support shrinkage
property (15) holds, and |supp(x(k))| ≤ |supp(x(k))|.
Given fixed λ, one may be concerned that a very small
step for the gradient descent is required to ensure the
support shrinkage property. Note that when g is chosen
as (2) for sparse approximation problem, the canonical
choice for L is 2‖D‖22. Let ‖y −Dx(0)‖22 = x0, and it
can be verified that G ≤ 2D

√
x0 + λ|S|. If the size of

the dictionary n is moderately large compared to d and
|S|, then we show in Theorem 1 that 2λ

G2 ≥ 1
L , i.e. our

choice for s in Lemma 1 would not lead to a smaller step
size for gradient descent with high probability, compared
to the case when the conventional choice (with s less than
1
L ) is adopted.

Theorem 1. Suppose D ∈ IRd×n (n ≥ d) is a random
matrix whose elements are i.i.d. samples from the stan-
dard Gaussian distribution N (0, 1). Then with probabil-

ity at least 1− e−nt
2

2 − ne−t,

2λ

G2
≥ 1

L
(17)



if

n ≥
(√
d+ t+

√
(d+ 2

√
dt+ 2t)(x0 + λ|S|)

λ

)2
,

(18)

and t can be chosen as t0 log n for t0 > 0 to ensure that
(18) holds and (17) holds with high probability.

It follows from (15) that 0 ≤ |supp(x(k))| ≤ |S| for
any k ≥ 0, and the sequence {x(k)}k generated by Al-
gorithm 1 according to (5) can be segmented into the
following |S|+ 1 subsequences {X (t′)}|S|t′=0 with

X (t′) = {x(k) : |supp(x(k))| = t′, k ≥ 0}, 0 ≤ t′ ≤ |S|.
(19)

It can be verified that
|S|⋃
t′=0

X (t′) = {x(k)}∞k=0, and

X (t1)
⋂
X (t′) = ∅. Therefore, {X (t′)}|S|t′=0 forms a dis-

joint cover of the sequence {x(k)}∞k=0. We are certainly
interested in the nonempty subsequences in {X (t′)}|S|t′=0,
which are formally defined as subsequences with shrink-
ing support in Definition 1. These nonempty subse-
quences still form a disjoint cover of {x(k)}∞k=0 and they
are in descending order of the support size.
Definition 1. (Subsequences with shrinking support)
All the T ≤ |S| + 1 nonempty subsequences among
{X (t′)}|S|t′=0 are defined to be subsequences with shrink-
ing support, denoted by {Xt}Tt=1. The subsequences with
shrinking support form a disjoint are ordered with de-
creasing support size, i.e. |supp(x(k2))| < |supp(x(k1))|
for any x(k1) ∈ Xt1 and x(k2) ∈ Xt2 with any 1 ≤ t1 <
t2 ≤ T .

We have the following lemma about the properties of
subsequences with shrinking support.
Lemma 2. (Properties of the subsequences with shrink-
ing support)

(i) All the elements of each subsequence Xt (t =
1, . . . , T ) in the subsequences with shrinking sup-
port have the same support. In addition, for any
1 ≤ t1 < t2 ≤ T and any x(k1) ∈ Xt1 and
x(k2) ∈ Xt2 , we have k1 < k2, supp(x(k2)) ⊂
supp(x(k1)).

(ii) All the subsequence except for the last one, namely
Xt (t = 1, . . . , T − 1), have finite size. Moreover,
XT has infinite number of elements, and there exists
k0 ≥ 0 such that {x(k)}∞k=k0

⊆ XT .

Before stating Theorem 2 about the convergence rate
of PGD, the definition of critical point is introduced as
follows.

Definition 2. (Subdifferential and critical points) Given
a non-convex function f : IRn → IR ∪ {+∞} which is a
proper and lower semi-continuous function.

• for a given x ∈ domf , its Frechet subdifferential of f
at x, denoted by ∂̃f(x), is the set of all vectors u ∈ IRn

which satisfy

lim inf
y 6=x,y→x

f(y)− f(x)− 〈u,y − x〉
‖y − x‖

≥ 0.

• The limiting-subdifferential of f at x ∈ IRn, denoted
by written ∂f(x), is defined by

∂f(x) = {u ∈ IRn : ∃xk → x, f(xk)→ f(x),

ũk ∈ ∂̃f(xk)→ u}.

The point x is a critical point of f if 0 ∈ ∂f(x).

Denote by S∗ the support of any element in XT . If
{x(k)}∞k=0 generated by Algorithm 1 has a limit point
x∗, then the following theorem shows that the sequence
{x(k)}∞k=0 converges to x∗, and x∗ is a critical point of
F (·) whose support is S∗.

Theorem 2. (Convergence of PGD for the `0 regulariza-
tion problem (1)) Suppose s ≤ min{ 2λ

G2 ,
1
L}, and x∗ is a

limit point of {x(k)}∞k=0. Then the sequence {x(k)}∞k=0
generated by Algorithm 1 converges to x∗, and x∗ is a
critical point of F (·). Moreover, there exists k0 ≥ 0 such
that for all m ≥ k0,

F (x(m+1))− F (x∗) ≤ 1

2s(m− k0 + 1)
‖x(k0) − x∗‖22.

(20)

Remark 1. It should be emphasize that k0 is a bounded
by a constant determined by x0,g, λ and S. Please refer to
the proof of this theorem in the supplementary document
of this paper.

4 ANALYSIS OF ACCELERATED
PROXIMAL GRADIENT DESCENT
WITH SUPPORT PROJECTION

We analyze the convergence rates of NAPGD-SP and
MAPGD-SP in the following two subsections.

4.1 Nonmonotone Accelerated Proximal Gradient
Descent with Support Projection

Lemma 3 shows the support shrinkage property for
NAPGD-SP, based on which the convergence rate of
NAPGD-SP is presented in Theorem 3.



Lemma 3. (Support shrinkage for nonmonotone acceler-
ated proximal gradient descent with support projection in
Algorithm 2) The sequence {x(k)}k generated by Algo-
rithm 2 satisfies

supp(x(k+1)) ⊆ supp(x(k)), k ≥ 1, (21)

namely the support of the sequence {x(k)}∞k=1 shrinks.

Denote by S∗ the support of any element in XT . If
{x(k)}∞k=0 generated by Algorithm 1 has a limit point
x∗, then the following theorem shows that the sequence
{F (x(k))}∞k=0 converges to F (x∗) with Nesterov’s opti-
mal convergence rate.
Theorem 3. (Convergence of Nonmonotone Accelerated
Proximal Gradient Descent for the `0 regularization prob-
lem (1)) Suppose s ≤ min{ 2λ

G2 ,
1
L}, and x∗ is a limit

point of {x(k)}∞k=0 generated by Algorithm 2. There ex-
ists k0 ≥ 1 such that

F (x(m+1))− F (x∗) ≤ 4

(m+ 1)2
V (k0) (22)

for all m ≥ k0, where

V (k0) ,
( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1x

(k0) + x∗‖22

+ t2k0−1

(
F (x(k0))− F (x∗)

))
. (23)

4.2 Monotone Accelerated Proximal Gradient
Descent with Support Projection

Lemma 4 shows the support shrinkage property for
MAPGD-SP, based on which the convergence rate of
MAPGD-SP is presented in Theorem 4.
Lemma 4. (Support shrinkage for accelerated proximal
gradient descent with support projection in Algorithm 3)
The sequence {z(k)}∞k=1 and {x(k)}∞k=1 generated by Al-
gorithm 3 satisfy

supp(z(k+1)) ⊆ supp(z(k)), (24)

supp(x(k+1)) ⊆ supp(x(k)), (25)

namely the support of both sequences shrinks.

Similar to the nonmonotone case, denote by S∗ the sup-
port of any element in XT . If {x(k)}∞k=0 generated by
Algorithm 3 has a limit point x∗, then the following theo-
rem shows that the sequence {F (x(k))}∞k=0 converges to
F (x∗) with Nesterov’s optimal convergence rate.
Theorem 4. (Convergence of Monotone Accelerated
Proximal Gradient Descent for the `0 regularization prob-
lem (1)) Suppose s ≤ min{ 2λ

G2 ,
1
L}, and x∗ is a limit

point of {x(k)}∞k=0 generated by Algorithm 3. There ex-
ists k0 ≥ 1 such that

F (x(m+1))− F (x∗) ≤ 4

(m+ 1)2
W (k0) (26)

for all m ≥ k0, where

W (k0) ,
( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1z

(k0) + x∗‖22

+ t2k0−1(F (x(k0))− F (x∗))
)
. (27)

5 ROADMAP OF PROOFS

The key point in the proof of Theorem 2 is that, during
the last stage of the optimization wherein the variable
{x(k)}∞k=k0

has the same support S∗, the optimization
for the `0 regularization problem behaves the same as
convex optimization. The same idea is employed to prove
Theorem 3 and Theorem 4. In fact, x(k+1) is the solution
to the proximal mapping (5), so we have

x(k+1) = proxsh(x(k) − s∇g(x(k)))

= arg min
v∈IRn

1

2s
‖v − (x(k) − s∇g(x(k)))‖22 + h(v). (28)

It follows from (28) that

1

s
(z(k+1) − (x(k) − s∇g(x(k)))) + ∂h(x(k+1)) = 0

⇒ −∇g(x(k))− 1

s
(x(k+1) − x(k)) ∈ ∂h(x(k+1)). (29)

Since x(k+1) = T√2λs(x
(k) − s∇g(x(k))), we have

[∂h(x(k+1))]j = 0 for any j ∈ supp(x(k+1)). It fol-
lows that for any vector v ∈ IRn such that supp(v) =
supp(x(k+1)), the following equality holds:

h(v) = h(x(k+1)) + 〈−∇g(x(k))− 1

s
(x(k+1) − x(k)),

v − x(k+1)〉. (30)

When h is convex and differentiable, then we have

h(v) ≥ h(x(k+1)) + 〈∇h(x(k+1)),v − x(k+1)〉. (31)

The inequality (31) is crucial in the proof of convergence
guarantee for proximal gradient descent on convex prob-
lems. It is not guaranteed to hold when h is non-convex
and non-smooth, e.g. when h(·) = λ‖ · ‖0. However, due
to the properties of thec and the solution to the proximal
mapping associated with the `0-norm (28), (30), which
has a similar form to (31), holds when v has the same
support as that of x(k+1). Therefore, in each stage of
the optimization by Algorithm 1, the variable sequence
has fixed support and (31) is applicable, leading to the
convergence of proximal gradient descent on the non-
convex and non-smooth `0 regularization problem with
the same convergence rate as that for the canonical convex
problems.

To elaborate more details in proof of Theorem 2, due to
the convexity and Lipschitz continuity of g we have

F (x(k+1)) = g(x(k+1)) + h(x(k+1))



≤ g(v) + 〈∇g(x(k)),x(k+1) − v〉

+
L

2
‖x(k+1) − x(k)‖22 + h(x(k+1)). (32)

According to Lemma 1, {F (x(k))}k is nonincreasing, it
follows that {x(k)}k is a bounded sequence with a con-
verging subsequence. It can be proved that the subse-
quence converges to a critical point of F (·), denoted by
x∗, and supp(x∗) = S∗.

Now supp(x∗) = supp(x(k+1)) = S∗, we let v = x∗

and combine (30) and (32), we have

F (x
(k+1)

)− F (x
∗
) ≤

1

s
〈x(k+1) − x

(k)
,x
∗ − x

(k)〉 −
1

2s
‖x(k+1) − x

(k)‖22

=
1

2s

(
‖x(k) − x

∗‖22 − ‖x
(k+1) − x

∗‖22
)
. (33)

Summing (33) over k = k0, . . . ,m with m ≥ k0, we
have
m∑

k=k0

F (x
(k+1)

)− F (x
∗
) ≤

m∑
k=k0

1

2s

(
‖x(k) − x

∗‖22 − ‖x
(k+1) − x

∗‖22
)

=
1

2s

(
‖x(k0) − x

∗‖22 − ‖x
(m+1) − x

∗‖22
)
, (34)

which leads to the main conclusions Theorem 2.

6 DISCUSSION ABOUT CONSISTENCY
OF THE OPTIMIZATION RESULTS

Another interesting question is that whether the critical
point, x∗, obtained by our proposed algorithms is optimal
from the perspective of statistics. We consider the `0
penalized LSE problem presented as follows:

min
x∈IRn

F (x) = ‖y −Dx‖22 + h(x), (35)

where g(x) = ‖y − Dx‖22, y ∈ IRd, D is the design
matrix of dimension d×n. Let x̄∗ be the globally optimal
solution to (35), S̄∗ = supp(x̄∗). The following theorem
presents the bound between x∗ and x̄∗.
Theorem 5. (Sub-optimal solution is close to the globally
optimal solution for `0 penalized LSE) Suppose DS∪S̄∗

has full column rank with κ0 , σmin(DS∪S̄∗) > 0. Let
κ > 0 such that 2κ2

0 > κ and b is chosen according to
(36) as below:

0 < b < min{min
j∈S∗

|x∗j |,
λ

maxj /∈S∗ | ∂g∂xj |x=x∗ |
,

min
j∈S̄∗

|x̄∗j |,
λ

maxj /∈S̄∗ | ∂g∂xj |x=x̄∗|
}. (36)

Let F = (S∗\ S̄∗)∪(S̄∗\S∗) be the symmetric difference
between S∗ and S̄∗, then

‖x∗ − x̄∗‖2 ≤
1

2κ2
0 − κ

( ∑
j∈F∩S∗

(max{0, λ
b
− κ|x∗j − b|})2

+
∑

j∈F\S∗
(max{0, λ

b
− κb})2) 1

2 . (37)

According to Theorem 5, when λ
b −κ|x

∗
j − b| for nonzero

x∗j and λ
b − κb are no greater than 0, the sub-optimal

solution x∗ is equal to the globally optimal solution x̄∗.
In this case, the support identification is guaranteed by
the existing results in the support recovery property of `0

optimization in Theorem 4 of (Zhang and Zhang, 2012).

7 EXPERIMENTAL RESULTS

We demonstrate empirical results of the proposed fast
PGD methods in this section. We first study the `0 pe-
nalized LSE problem where g is chosen as (2), and the
initialization point guarantees that DS has full column
rank. We conduct experiments on the MNIST handwrit-
ten digits database. The MNIST data set contains 70, 000
examples of handwritten digits, of which 10, 000 consti-
tute a test set. Each example is a 28× 28 grayscale image
and represented by a 784-dimensional vector. We first run
online dictionary learning (Mairal et al., 2010) to learn a
dictionary matrix D of 300 columns. We then randomly
choose an image as y, and optimize problem (1) by PGD,
NAPGD-SP and MAPGD-SP to obtain x∗. We plot the
illustration of the sequence of the objective values, i.e.
f(x(k)), with respect to the iteration number k for mono-
tone and nonmonotone algorithms in Figure 2, where
mAPG and nmAPG indicate monotone and nonmonotone
APG in (Li and Lin, 2015), and APG is the regular ac-
celerated gradient descent without support projection. y
is randomly chosen for 500 times and the average error
of the 500 trials are reported. All the three optimization
methods converge within 50 iterations for most cases. It
can be observed that NAPGD-SP and MAPGD-SP con-
verge faster than PGD and mAPG or nmAPG, demonstrat-
ing the empirical evidence of the provable convergence
results in this paper.

Moreover, Figure 3 illustrates the results of monotone
algorithms for the `0 regularized logistic regression, i.e.

minx
1
n

n∑
i=1

log(1 + exp(−yix′xi)) + λ‖x‖0 with λ =

0.0001 on the MNIST data set. The same experiment
procedure is performed as that for the `0 penalized LSE
problem. Note that the first part of the objective function
is convex with bounded gradient.

It is worthwhile to mention that message-passing algo-
rithms, such as approximate message-passing (AMP)
(Donoho et al., 2009) and Expectation-Maximization
AMP (EM-AMP) (Vila and Schniter, 2011), have also
been used to solve optimization problems associated with
compressive sensing. AMP and EM-AMP algorithms
mainly handle compressing sensing problems where g is
the squared loss function. On the other hand, our conver-
gence results are established for general convex function
g.
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Figure 2: (a) Illustration of the objective value with respect to the iteration number for monotone algorithms (b)
Illustration of the objective value with respect to the iteration for nonmonotone algorithms
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Figure 3: Illustration of the objective value with respect to
the iteration number for `0 regularized logistic regression

We also propose feed-forward neural networks as fast
encoders to approximate the sparse codes generated by
the proposed accelerated algorithms for `0 penalized LSE
problem. We design an encoder, termed Deep-NMAPGD-
SP, to approximate the optimization results of NMAPGD-
SP. Each layer of Deep-NMAPGD-SP is designed to sim-
ulate the operations in each iteration of NMAPGD-SP. We
use T pairs of data and the corresponding optimization
results of NMAPGD-SP, i.e. {y(t),x(t)}Tt=1, as the train-
ing data for Deep-NMAPGD-SP. Deep-NMAPGD-SP is
trained by minimizing the average `2 distance between
the ground truth optimization results and the predicted

results: 1
N

T∑
t=1
‖f(y(t))−x(t)‖22. Inspired by (Gregor and

LeCun, 2010), it is expected that the encoder designed
in accordance with the optimization can approximate the

optimization results by using far less number of layers
than that of the original iterative optimization.

Similarly, a deep encoder named Deep-MAPGD-SP
is designed to approximate the optimization results of
MAPGD-SP. Figure 4 illustrates the architecture of Deep-
NMAPGD-SP and Deep-MAPGD-SP. We using half of
the optimization results on the MNIST data set as the train-
ing data for Deep-NMAPGD-SP, and the other half serve
as the test data. The same setting is also appplied to Deep-
MAPGD-SP. The test error of both Deep-NMAPGD-SP
and Deep-MAPGD-SP are less than 0.007, demonstrat-
ing the effectiveness of fast encoders for the proposed
algorithms in this paper.

We conduct an additional experiment with Deep-
NMAPGD-SP and Deep-MAPGD-SP on the CIFAR-10
data set, which contains images of 10 categories with
each category having 6000 images. We randomly choose
10000 images from the whole data set, and use half of
the chosen images for training and the other half for test.
The test error of both Deep-NMAPGD-SP and Deep-
MAPGD-SP on the CIFAR-10 data set are 0.1792 and
0.2084 respectively. For experiments on the MNIST data
set and the CIFAR-10 data set, the Deep-NMAPGD-SP
and Deep-MAPGD-SP are trained for 300 epoches. The
initial learning rate is 0.001, and it is divided by 10 at
the 50-th epoch and the 100-the epoch during the training
process.

8 APPENDIX

Proof of Theorem 5. It can be verified that when b is cho-
sen according to (36), both x∗ and x̄∗ are local solutions
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Figure 4: (a) Illustration of Deep-NMAPGD-SP for approximate NMAPGD-SP (b) Illustration of Deep-MAPGD-SP
for approximate MAPGD-SP

to the capped-`1 problem as below:

min
x∈IRn

‖y −Dx‖22 + R(x; b), (38)

where R(x; b) =
n∑
j=1

R(xj ; b), R(t; b) = λmin{|t|,b}
b for

some b > 0. It can be seen that R(x; b) approaches the
`0-norm when b→ 0+.

In the following text, let βI indicates a vector whose
elements are those of β with indices in I. Let ∆ =
x̄∗ − x∗, ∆̃ = ∂̃R(x̄∗; b)− ∂̃R(x∗; b). We have

‖2D>D∆ + ∆̃‖2 = 0.

It follows that

2∆>D>D∆ + ∆>∆̃ ≤ ‖∆‖2‖2D>D∆ + ∆̃‖2 = 0.

We now present another property on any nonconvex
function P using the degree of nonconvexity defined as
θ(t, κ) , sups{−sgn(s−t)(∂̃R(s; b)−∂̃R(t; b))−κ|s−
t|} on the regularizer R. For any s, t ∈ IR, we have

− sgn(s− t)
(
∂̃R(s; b)− ∂̃R(t; b)

)
− κ|s− t| ≤ θ(t, κ)

by the definition of θ. It follows that

θ(t, κ)|s− t| ≥ −(s− t)
(
∂̃R(s; b)− ∂̃R(t; b)

)
− κ(s− t)2 − (s− t)

(
∂̃R(s; b)− ∂̃R(t; b)

)
≤ θ(t, κ)|s− t|+ κ(s− t)2. (39)

Applying (39) with P = Pj for j = 1, . . . , n, we have

2∆>D>D∆ ≤ −∆>∆̃ = −∆>F∆̃F −∆>S∗∩S̄∗∆̃S∗∩S̄∗

≤ |x̄∗F − x∗F|>θ(x∗F, κ) + κ‖x̄∗F − x∗F‖22
+ ‖∆S∗∩S̄∗‖2‖∆̃S∗∩S̄∗‖2
≤ ‖θ(x∗F, κ)‖2‖x̄∗F − x∗F‖2 + κ‖x̄∗F − z∗F‖22

+ ‖∆‖2‖∆̃S∗∩S̄∗‖2
≤ ‖θ(x∗F, κ)‖2‖∆‖2 + κ‖∆‖22 + ‖∆‖2‖∆̃S∗∩S̄∗‖2. (40)

On the other hand, ∆>D>D∆ ≥ κ2
0‖∆‖22. It follows

from (40) that

2κ2
0‖∆‖22 ≤ ‖θ(x∗F, κ)‖2‖∆‖2 + κ‖∆‖22 + ‖∆‖2‖∆̃S∗∩S̄∗‖2.

When ‖∆‖2 6= 0, we have

2κ2
0‖∆‖2 ≤ ‖θ(x∗F, κ)‖2 + κ‖∆‖2 + ‖∆̃S∗∩S̄∗‖2

⇒ ‖∆‖2 ≤
‖θ(x∗F, κ)‖2 + ‖∆̃S∗∩S̄∗‖2

2κ2
0 − κ

. (41)

According to the definition of θ, it can be verified that
θ(t, κ) = max{0, λb −κ|t−b|} for |t| > b, and θ(0, κ) =

max{0, λb − κb}. Therefore,

‖θ(x∗F, κ)‖2 =
( ∑
j∈F∩S∗

(max{0, λ
b
− κ|x∗j − b|})2

+
∑

j∈F\S∗
(max{0, λ

b
− κb})2) 1

2 . (42)

In addition, for k ∈ S∗ ∩ S̄∗, since (D>D∆)k = 0 we
have ∆̃k = 0. It follows that

‖∆‖2 ≤
1

2κ2
0 − κ

(( ∑
j∈F∩S∗

(max{0, λ
b
− κ|x∗j − b|})2

+
∑

j∈F\S∗
(max{0, λ

b
− κb})2) 1

2

)
. (43)

This proves the result of this theorem.

9 CONCLUSION

We present fast Proximal Gradient Descent (PGD) meth-
ods to solve the `0 regularization problem. We first prove
improved convergence rate of PGD on the `0 regular-
ization problem, then propose Nonmonotone Acceler-
ated Proximal Gradient Descent with Support Projection
(NAPGD-SP) and Monotone Accelerated Proximal Gra-
dient Descent with Support Projection (MAPGD-SP) as
fast algorithms for the `0 regularization problem. The
potential of the proposed methods are evidenced by ex-
periments.
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