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Abstract

Due to Van den Oord et al. (2018), probabil-
ity distillation has recently been of interest to
deep learning practitioners, where, as a prac-
tical workaround for deploying autoregressive
models in real-time applications, a student net-
work is used to obtain quality samples in par-
allel. We identify a pathological optimization
issue with the adopted stochastic minimization
of the reverse-KL divergence: the curse of di-
mensionality results in a skewed gradient dis-
tribution that renders training inefficient. This
means that KL-based “evaluative” training can
be susceptible to poor exploration if the target
distribution is highly structured. We then ex-
plore alternative principles for distillation, in-
cluding one with an “instructive” signal, and
show that it is possible to achieve qualitatively
better results than with KL minimization.

1 INTRODUCTION

Deep autoregressive models are currently among
the best choices for unsupervised density modeling
tasks (Van den Oord et al., 2016b,a). However, due
to the factorization induced by such models on the
data space by the chain rule of probability, sampling
from such models requires O(T ) sequential computa-
tion steps, where T is the dimension/sequence-length
of the data. This makes sampling slow and inefficient
for most practical purposes. A recent solution to alle-
viating this bottleneck was proposed by Van den Oord
et al. (2018), who show that an autoregressive WaveNet
model (Van den Oord et al., 2016a) can be distilled into a
student network, which is significantly faster to sample
from due to parallel computation, and therefore much
more suitable for deployment in real-time applications.

In this paper, we identify a fundamental issue with the
approach taken by Van den Oord et al. (2018), and pro-
vide alternative perspectives for distilling the sampling
process of a teacher model.

The solution proposed by Van den Oord et al. (2018) is to
minimize the reverse Kullback-Leibler divergence (KL)
between the student and the teacher distribution. Gen-
erally, this relies on two essential components: (1) the
gradient signal from the teacher network (the WaveNet
model) and (2) invertibility of the student network (the
Parallel WaveNet model). This allows samples drawn
from the student to be evaluated under the likelihood of
both models, and the student can then be updated via
stochastic backpropagation from the teacher. The stu-
dent is implemented with an inverse autoregressive trans-
formation (Kingma et al., 2016) which admits fast sam-
pling at the cost of slow likelihood estimation. On the
other hand, since the autoregressive teacher allows fast
evalution of likelihoods but is slow to sample from, the
approach takes advantage of the best of both worlds.

In theory, it seems that minimizing the KL should be
sufficient for distilling a teacher into a student. However,
in practice, it has been necessary to implement addi-
tional heuristics in order to achieve samples with similar
realism as that of the teacher (Van den Oord et al., 2018;
Ping et al., 2018). In particular, a power loss that biases
the power across frequency bands of the student sampler
to match that of human speech patterns has been crucial
in recent work for generating synthesized speech without
the student collapsing to unrealistic “whispering”.

Our contributions are as follows.
• We show how the reverse-KL loss is ill-suited for

the task of probability distillation. Roughly speaking,
this is because the teacher distribution typically pos-
sesses a low-rank nature for high-dimensional struc-
tured data, making the expansion signal (defined in
Section 3.1), which is necessary for successfully dis-
tilling such a teacher, a rare event.



• We then explore different alternatives for distillation,
by recasting the problem of distillation into learning
a transformation of probability density from a prior
space to the data space. This view connects decoder-
based generative models with probability density dis-
tillation.

• Finally, we run experiments with images and speech
data, demonstrating that it is possible to learn fast sam-
plers with our proposed alternatives, which do not suf-
fer from the pathologies of reverse-KL training.

2 AUTOREGRESSIVE MODELS

Given a joint probability distribution p(x), where x de-
notes a T -dimensional vector, one can factorize the dis-
tribution according to the chain rule of probability, for
arbitrary ordering of dimensions:

p(x) = p(x1)p(x2|x1)...p(xT |x1, ..., xT−1)

=

T∏
t=1

p(xt|x1:t−1) (1)

In the tabular case, i.e. when xt can take V different
possible values, the joint probability can be represented
by a table of O(V T ) entries. When the event set of xt
is uncountable, the joint density is not even tractable.
This motivates the use of a parametric model to com-
press the conditional probability p(xt|x1:t−1), where one
has pθ(x) =

∏T
t=1 pθ(xt|x1:t−1). This is referred to as

an autoregressive model. Parameters are usually shared
across the dimensions of x, since T may vary, for ex-
ample in the case of recurrent neural networks or con-
volutional neural networks, which have been empiri-
cally demonstrated to possess good inductive biases for
tasks involving images (Van den Oord et al., 2016b)
and speech data (Van den Oord et al., 2016a). How-
ever, sampling is sequential, requiring T passes, which
is why autoregressive models are slow to sample from,
making them impractical for tasks requiring sampling,
such as speech generation. This has motivated the work
of Van den Oord et al. (2018), who propose probabil-
ity density distillation to learn a student network with a
structure that allows for parallel sampling, by distilling a
state-of-the-art autoregressive teacher into it.

3 PROBABILITY DISTILLATION
WITH NORMALIZING FLOWS

Van den Oord et al. (2018) propose to distill the prob-
ability distribution parameterized by a WaveNet model
(the teacher network, denoted by T ) by minimizing its

reverse-KL with a student network (denoted by S):

DKL(pS || pT ) = Ex∼pS [log pS(x)− log pT (x)] (2)

The idea is to leverage recent advances in change of vari-
able models (also known as normalizing flows) (Rezende
& Mohamed, 2015; Kingma et al., 2016; Huang et al.,
2018a; Berg et al., 2018) to parallelize the computation
of the sampling process.

First, the student distribution is constructed by trans-
forming an initial distribution pS(z) (e.g. normal or
uniform distribution) in a way such that each dimension
xt in the output x depends only on up to t preceding
variables (according to a chosen ordering) in the input z:

z ∼ pS(z),

xt ← ft(zt;πt(z1, ..., zt−1)), ∀t, (3)

where ft is an invertible map between zt and xt. Unlike
the sampling process of an autoregressive model, where
one needs to accumulate all x1:t−1 to sample xt from
pT (xt|x1:t−1), which scales O(T ), the transformations
ft can be carried out independently of t, allowing for
O(1) time sampling due to the parallel computation.

Second, the entropy term of pS can be estimated
using the change of variable formula:

Ex∼pS(x)[log pS(x)] = Ez∼pS

[
log pS(z)

∣∣∣∣∂f(z)

∂z

∣∣∣∣−1
]

(4)

where f is the multivariate transformation f(z)t
.
=

ft(zt; z<t). Furthermore, owing to the partial depen-
dency of ft, f has a triangular Jacobian matrix, reducing
the computation of the log-determinant of the Jacobian
in Eq. (4) to linear time:∣∣∣∣∂f(z)

∂z

∣∣∣∣ =
∏
t

dft(zt; z<t)

dzt
. (5)

Finally, when the teacher network has a tractable explicit
density, one can evaluate the likelihood of samples drawn
from pS under pT efficiently (in the case of autoregres-
sive models such as WaveNets, one can use teacher forc-
ing, or equivalently, change of variable formula, to com-
pute log-likelihood in parallel).

3.1 ANALYSIS OF THE CURSE OF
DIMENSIONALITY

Assume the student density pS lies within a certain fam-
ily Q. Ideally, if pT ∈ Q, the solution to the minimiza-
tion problem in Equation (2) would be pS = pT . How-
ever, this is not trivial in practice when an oracle solver



(a) Gradients from teacher (red) and student (blue). (b) Rotated by eigenvectors of ΣT .

Figure 1: When distilling the teacher distribution (red) with a student distribution (blue) by minimizing the KL di-
vergence, the student receives two counteracting gradient signals from the two corresponding likelihood terms. The
probability of receiving a signal to expand out the student distribution to fill the teacher is proportional to the relative
amount of space occupied by the shaded area, which vanishes when the covariance matrix of the teacher has trivial
eigenvalues.

does not exist, forcing us to resort to stochastic optimiza-
tion to update pS iteratively. In this section, we identify
a failure mode of distillation when stochastically mini-
mizing the reverse-KL with gradient descent.

Empirically, there are two stages during stochastic mini-
mization of the reverse-KL:

(i) pS starts to fit to the mode of pT , and

(ii) pS gradually expands from the mode of pT to fit
the shape of the distribution.

Stage (i) is fast due to the well-known zero forcing prop-
erty of the reverse-KL (Minka et al., 2005). Figure 1.3 of
Turner & Sahani (2011) shows that pS tends to be more
concentrated when it is assumed to be fully factorial (in-
dependent). We show that even when Q contains pT ,
stochastic optimization can be slow in stage (ii) and thus
result in a more concentrated, suboptimal pS . This im-
plies it is not only a matter of the assumption on the fam-
ily of pS , but on how we optimize it.

Intuitively, for each sample x drawn from pS using
reparamerization, the negative gradient of the integrand
in Equation (2) with respect to x is made up of two coun-
teracting factors: one that pushes x away from the mode
of the student density pS (max entropy) and one that
pulls x towards the mode of the teacher density pT (min
energy). These two counteracting terms form the “error”
component of the path derivative (Roeder et al., 2017):

∇x(log pSφ(x)− log pT (x))∇φfφ(z), x = fφ(z),
(6)

when the student is updated (see Appendix B for

more details). Hence, there is an intrinsic exploration-
exploitation tradeoff in the nature of this method. We
show below that this learning algorithm tends to exploit
more: the gradient of a sample x is much more likely to
point towards the high density region under the teacher,
which means− log pT dominates, collapsing the student.

To analyze the efficiency of training with reverse-KL, we
consider the case when both the student and teacher are
multivariate normal centered at the origin, as a model
of the problem. Assume without loss of generality1 that
pS = N (0, I) and pT = N (0,ΣT ) (both centered at 0
to analyze the efficiency of stage (ii)), where I is an n-
by-n identity matrix and ΣT ∈ Sn++ is a positive definite
matrix.

Let gx
.
= ∇x(log pT (x)−log pS(x)) be the negative gra-

dient wrt the random variable x ∼ pS . We are interested
in the event {x>gx > 0}, which we call the expansion
signal, as it denotes the event of the gradient pointing
away from the teacher’s mode, thereby helping the stu-
dent expand its probability mass. The following proposi-
tion establishes the connection between the eigenvalues
of the covariance matrix ΣT and the probability of the
expansion signal.
Proposition 1. Let pS = N (0, I) and pT (0,ΣT ). Draw
x ∼ pS . Let AU be the surface area of the unit sphere
U = {x : ‖x‖2 = 1}, and AU∩ρ be the surface area

1When the covariance matrix of the student distribution ΣS
is not an identity matrix, one can transform both pS and pT
via the change of variable: x′ = U−>x where ΣS = U>U
is the Cholesky decomposition of the covariance matrix; such
that pS(x′) is standardized, pT (x′) has a “relative” covariance
(due to the rotation under U−>), and our analysis carries on.



of {x ∈ U :
∑
i ρix

2
i > 0}. Then the probability of

{x>gx > 0} is given by

AU∩ρ

AU
(7)

where ρi = 1 − 1
d2i

and d2i is the i-th eigenvalue of the
covariance matrix.

Proof. By definition, we have gx = −Σ−1T x + x. Let
ΣT = ΛDΛ−1 be the eigen-decomposition of the co-
variance, where Dii = d2i is the i-th eigenvalue and the
columns of Λ are the eigenvectors. Due to the rotational
invariance and the uniformity of the density of the stan-
dard normal pS on the level set {x : ‖x‖2 = r} for any
r > 0,

P
{
x>gx > 0

}
= P

{
x>Λ(I−D−1)Λ−1x > 0

}
= P

{∑
i

(
1− 1

d2i

)
x2i > 0

}
=
AU∩ρ

AU
.

Illustration of the proposition. What the proposition
implies is that the chances of receiving a gradient sig-
nal that points outward depend on the eigenvalues of
the covariance matrix of the teacher: the greater the
number of eigenvalues that are smaller than 1 (more ill-
conditioned), the lower the chances. This means that the
expansion signal via the path derivative can be increas-
ingly unlikely when the dimensionality in x grows and
pT is highly structured. Consider Figure 1a for exam-
ple, where the solid contour plot and dashed contour plot
represent the densities of pT and pS , respectively. For
a random sample drawn from pS , marked by the yellow
star, the gradients of log pT and − log pS with respect to
it are represented by the red and blue arrows. The net
gx here can be decomposed into two parts: one that is
perpendicular to x, gx,⊥, and one that is parallel with x,
gx,‖. In this example, x and gx,‖ point in opposite direc-
tions, meaning the back-propagated signal would pull x
towards the mode of pT .

Asymptotics of teacher density. On average, the
chances of getting a stochastic gradient signal that push
the points away from the mode is the fraction of the area
of the unit sphere intersecting with the hypercone, repre-
sented by the shaded area in Figure 1b. In practice, such
a condition coefficient can be very small, as it is well
known that a high dimensional distribution over struc-
tured data is effectively low-rank. This makes it harder
for pS to expand its probability mass along the high den-
sity manifold under pT . In fact, the smallest eigenvalue

of a normalized (scaled by 1/T ) Wishart distribution 2

converges almost surely to zero as the dimensionality T
approaches infinity (Silverstein et al., 1985). For a more
general depiction of the asymptotic distribution of the
eigenvalues, see the Marchenko-Pastur Law (Marchenko
& Pastur, 1967).

Although our analysis here deals with the Gaussian case
for ease of analysis, the theme extends to any degenerate
distribution. For realistic data distributions, such as nat-
ural images, the data usually lies within low-dimensional
manifolds (Carlsson et al., 2008; Fefferman et al., 2016;
Narayanan & Mitter, 2010), and our arguments apply
generally for such cases.

3.2 EMPIRICAL DEMONSTRATION

We showed above that with increasing dimensionality,
and for a structured teacher, there is a diminishing prob-
ability of gradient signals that can push the student to
expand around the mode of the teacher. We speculate
that the distilled density of the student will therefore be
collapsed around the mode of the teacher density, result-
ing in student samples having higher likelihood under the
teacher than a “typical” sample drawn from the teacher
would normally have. We validate this hypothesis in the
following experiment.

We take both pT and pS to be multivariate Gaussian dis-
tributions, with the sampling process defined as x ←
µ + R · z where µ ∈ RT , R ∈ RT×T and z ∼ N (0, I).
We randomly initialize each element of R for T inde-
pendently according to the standard Gaussian, set µ =
[2, ..., 2]> to be a vector of T 2’s, and fix them while
training S to distill T . For T ∈ [4, 16, 32, 64], training
proceeds as follows: we sample x from the student, es-
timate log pS(x) using the change of variable formula,
and evaluate x under log pT . We use a minibatch size
of 64 and learning rate of 0.005 with the Adam opti-
mizer (Kingma & Ba, 2014), and make 5000 updates.
For evaluation, we draw 1000 samples from both pT and
pS , and display the empirical distribution of log pT (x) in
Figure 2a.

First, we observe that the log-likelihood of the teacher
samples deviate from 0 as dimensionality grows. In fact,
assuming xt is sampled i.i.d. (for simplicity) from a dis-
tribution whose second moment m2 exists, the l2 norm
of x̄ .

= x√
T

would almost surely converge to m2, by
the strong law of large numbers. This is a phenomenon
known as the concentration of measure. To see this, ob-
serve that:

2Wishart is the conjugate prior of the precision matrix (in-
verse of covariance) of a multivariate Gaussian



(a) Distillation with KL (b) With z-reconstruction (c) With x-reconstruction

Figure 2: We distill a Gaussian teacher with a Gaussian student. x-axis: likelihood under the teacher; y-axis: count of sam-
ples drawn from the teacher (real samples) and the learned student (generated samples). (a-d) in the subfigures correspond to
{4, 16, 32, 64}− dimensional multivariate Gaussians.

‖x̄‖22 = x̄>x̄ =

T∑
t=1

x̄2t =

T∑
t=1

(
xt√
T

)2

(8)

=
1

T

T∑
t=1

x2t −→ m2, a.s. as T →∞. (9)

The concentration is due to the compromise between
density and volume of space (which vanishes exponen-
tially as dimensionality grows). The consequence is that
when one samples from a high dimensional Gaussian,
the norm of the sample can be well described a constant,
which means one is effectively sampling from the shell
of the Gaussian ball.

Second, with an increasing number of dimensions, we
observe that pS does indeed concentrate more on the high
density region of pT . This suggests that the imbalanced
gradient signal poses an optimization problem for distil-
lation of higher dimensional structured distributions. To
validate this, we repeat the experiment 8 times, and esti-
mate the probability of the gradient signal pointing away
from the mode of the teacher throughout training of the
student by drawing 128 samples at each time step (aver-
aging out all 1,024 binary values).

The resulting plots are shown in Figure 3. The sudden
increase in the probability at the initial stage indicates
that the student quickly fits to and concentrate around
the mode of the teacher, as per stage (i). After the stu-
dent expands to a reasonable size and shape, per stage
(ii), the probablity drops and getting an expansion sig-
nal along the thin manifold under the teacher density
becomes increasingly unlikely as dimensionality grows,
which is consistent with Proposition 1.

Additionally, the mismatch of norm (after centering, i.e.
likelihood) in Figure 2a implies that the use of KL would
result in a mismatch of certain important statistics (such
as norm of the samples, which is a perceivable feature in
images and audio frames) even when pS is fairly close to
pT .

Figure 3: Estimate of probability of expansion signal through-
out training of the student (with reverse-KL loss). The legend
indicates the dimensionality of the problem.

Finally, in the above study, we only identify this opti-
mization difficulty in the case of Gaussian teacher and
Gaussian student. However, it is also well known that the
reverse-KL tends to be mode-seeking (see Figure 4b,4c
for example), and is not well-suited for learning multi-
modal densities (Turner & Sahani, 2011; Huang et al.,
2018b).

4 PROBABILITY DISTILLATION
WITH INVERSE MATCHING

In this section, we discuss possible alternatives for dis-
tilling a teacher. We assume there exists an invertible
mapping from a prior space Z to the data space X , such
that one can trivially sample from a prior distribution
z ∼ pT (z) and pass the sample through this invert-
ible map such that the sample is distributed according to
pT (x). For Gaussian conditional autoregressive models,
for example, one would sequentially pass scalar standard
Gaussian noise zt through the following recursive func-
tion xt = µt(x1:t−1) + σt(x1:t−1) · zt. For notational
convenience, we denote the “inverse” of this transforma-



tion by T : X → Z , as this is the inverse autoregressive
transformation that can be parallelized. The goal is to
learn the sampling transformation, i.e. T −1. Similarly,
we define the forward pass of the student as the mapping
S : Z → X .

Ideally, since the transformation is deterministic, it’s
most natural to simply minimize the prediction loss ac-
cording to some distance metric d(T −1(z),S(z)), where
z ∼ pT (z). When this loss function equals zero almost
everywhere, passing the prior sample through S would
induce an identical distribution as pT . We refer to this
setup as distillation with oracle prediction. However,
preparing such a dataset of T −1(z) samples would typi-
cally be time-consuming. We present the following two
alternatives.

1. Distillation with z-reconstruction. We consider
minimizing d(z, T ◦ S(z)), which is a reconstruction
loss and the student network and teacher network are
viewed as the encoder and decoder, respectively. In
this case, since T is invertible and fixed, the only func-
tional form of S that gives zero reconstruction would
be T −1, which means the random variable S(Z) should
also be distributed according to pT . In fact, minimiz-
ing the z-reconstruction loss corresponds to a paramet-
ric distance induced by the teacher network. Define
dT (a, b)

.
= d(T (a), T (b)), where d is a distance met-

ric. Then

dT (T −1(z),S(z)) = d(T ◦ T −1(z), T ◦ S(z))

= d(z, T ◦ S(z)).

Interestingly, dT is also a metric:

Proposition 2. dT is a metric if and only if T is injective.

Proof. Trivially, positive-definiteness and symmetry are
inherited from d if and only if T is an injection. To see
that subadditivity is also preserved, for some a, b and
c, let Ta = T (a), Tb = T (b) and Tc = T (c). Since
d(Ta, Tb) ≤ d(Ta, Tc) + d(Tb, Tc), due to the subaddi-
tivity of d, for any Ta, Tb and Tc, we have dT (a, b) ≤
dT (a, c) + dT (b, c) for any a, b and c.

This means that the z-reconstruction loss behaves like
a distance between T −1(z) and S(z). So when z-
reconstruction is minimized, it implies S gets closer to
T −1 in the sense of the induced (parametric) metric dT .
However, this parametric metric is not necessarily good,
which we will demonstrate empirically in Section 4.1. A
potential failure mode for it is when the teacher has ex-
tremely high uncertainty, e.g. large standard deviation
for the conditional gaussian distribution, which would
result in an inverse mapping (scaled by 1/σ) with an ex-
tremely small slope.

2. Distillation with x-reconstruction. Finally, we con-
sider minimizing the reconstruction loss d(x,S ◦ T (x)),
where x ∼ pD, the (empirical) data distribution, treat-
ing the teacher network as the encoder, and the student
network as the decoder. When the teacher density co-
incides with the underlying data distribution, this would
be equivalent to training with oracle prediction, as T (X)
would be distributed according to pT (z). This is a rea-
sonable assumption when pT approximates pD well, and
this is in fact true as pT is usually trained with maximum
likelihood under pD. This training criterion is more “in-
structive” in the sense that the student network is shown
what a typical sample looks like, whereas both reverse-
KL and z-reconstruction rely on “evaluating” the sam-
ples drawn from the student network, and then correcting
the student based on the (possibly imperfectly calibrated)
score assigned by the teacher. Hence, x-reconstruction
does not suffer from the exploration problem intrinsic to
the evaluative training of reverse-KL minimization and
z-reconstruction.

Now we revisit the two essential components required
for distillation with reverse-KL.

1. Invertibility: None of the three training criteria we
explored involves estimating the entropy of pS , so in
principle, we do not require invertibility of the stu-
dent. In fact the entropy of pS is implicitly maxi-
mized since T is bijective. To prevent degenerate pS ,
one simply needs to avoid using hidden units of di-
mensionality smaller than the input size without skip
connectivity, which compresses the noise.

2. Differentiability: For distillation with oracle predic-
tion and x-reconstruction, we only require the trans-
lation between X and Z , via T and T −1, which
is readily accessible for many standard distributions,
e.g. linear map between Gaussians (both T and T −1),
logistic-linear map from mixture of logistics to uni-
form (T only, but sampling is achievable by sampling
the mixture component first), and neural transforma-
tion (Huang et al., 2018a) (T only). We also note that
it is possible to recover uniform density from discrete
data, by injecting noise proportional to the probability
per class to break ties when passing the data through
the cumulative sum of the probability (CDF).

4.1 EXPERIMENTS

4.1.1 Linear model with increasing dimensionality

We replicate the experiment in Section 3.2 with z-
reconstruction and x-reconstruction loss (equivalent to
oracle prediction in this case). Mapping T from X to
S is simply inverse of the sampling transformation. In
Figure 2, we observe that both models outperform distil-
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Figure 4: Density distillation of teacher models trained on MNIST (first row) and Fashion-MNIST(second row). Column 1:
samples from teacher network T . Column 2: samples from student trained with the KL loss SKL. Column 3: samples from student
trained with the z-reconstruction loss Sz . Column 4: samples from student trained with the x-reconstruction loss Sx. Column 5:
samples from student trained with the x-reconstruction loss where x is sampled from the teacher SO .

(a) l2 reconstruction (b) l1 reconstruction (c) l2, noise (d) l1, noise (e) (l2 + l1)/2, noise

Figure 5: Experiments with a ResNet student using (a) l2 x-reconstruction loss, (b) l1 x-reconstruction loss, (c) adding N(0, 0.5)
noise to the encodings z and using l2 x-reconstruction loss, (d) adding N(0, 0.5) noise to z and using l1 x-reconstruction loss, and
(e) adding N(0, 0.5) noise to z and using a mixed loss l2 + l1. In general, we observe that adding noise significantly improves
sample quality, and training with l1 losses lead to sharper samples.

lation with reverse-KL, since likelihood of samples (un-
der the teacher) drawn from them follow more closely
the shape of the empirical distribution of likelihood of
samples drawn from the teacher. It is worth noting that z-
reconstruction also starts to fail with an increasing num-
ber of dimensions, suggesting that it might be subject to
poor gradient signal if the transformation T is more com-
plex; we elaborate more on this in the next section. On
the other hand x-reconstruction is quite robust to dimen-
sionality (and potentially complexity) of the underlying
distribution.

4.1.2 Distillation with different losses

In this section, we distill PixelCNN++ (Salimans et al.,
2017) teacher networks trained on the MNIST handwrit-
ten digits dataset (LeCun et al., 1998) and the Fashion-

MNIST dataset (Xiao et al., 2017). We trained the
teacher model for 100 epochs and distilled it into the
student with another 100 epochs of updates, using mini-
batch size of 64, learning rate of 0.0005 for the Adam
optimizer with a decay rate of 0.95 per epoch, 3 ResNet
blocks per downsampling and upsampling convolution,
32 hidden channels, and a single Gaussian conditional.
The data is preprocessed with uniform noise between
pixel values and rescaled using the logit function. We use
l2 loss for the reconstruction and prediction methods.

First, we observe that when trained with the reverse-KL
loss, the students collapse on undesirable modes. As
shown in (Figure 4b), the inductive bias of the causal
convolution leads to higher density of the samples with
striped textures. When trained with the z-reconstruction
loss, the MNIST student samples all collapse to the same



Figure 6: (left) Teacher samples with a PixelCNN on CIFAR-10, (right) Student samples using x-reconstruction under
the l1 loss, with noise injection.

digit. Interestingly, when we visualize the correspond-
ing T −1(z) as we slightly perturb the norm of z (see
Appendix A), we observe that the digits abruptly change
identity. This suggests that when moving onto a differ-
ent sublevel set of norm in z-space, the corresponding
x jumps from one digit manifold to another, and the di-
rection of z does not preserve digit identity. This might
explain why the student collapses to a digit: this is due
to the bad local minimum that corresponds to relatively
low reconstruction cost in the z-space.

Next, we observe that the student trained with x-
reconstruction loss (Figure 4d) does not have good qual-
ity samples while the reconstructions are visually perfect.
We hypothesize this is due to the well-known problem of
mismatch between the empirical distribution of the en-
codings T (x) and the prior distribution pS(z) of training
decoder based generative models (Kingma et al., 2016).
We contrast this with a student trained on oracle predic-
tions (Figure 4e) and observe that the latter’s samples
match the teacher’s samples better.

Finally, we see that the samples from the teacher trained
on Fashion-MNIST with the x-reconstruction loss (Fig-
ure 4i) have a smoother texture than the one trained with
oracle samples (Figure 4j), which again, are perceptually
closer to samples from the teacher. We elaborate more
on this discrepancy in the next section.

4.1.3 Learning to distill and learning to generate

Since we are not constrained in our modeling choice for
the student, we experiment with a ResNet student which

is trained to directly map an encoded datapoint from the
teacher back to the datapoint. The ResNet is deep enough
so that the receptive field at the output is sufficient to
span all of the encoded z, so that far-away influence is
still exploitable.

Using the l1 reconstruction cost leads to sharper samples
from the student (contrast 5a with 5b). It appears to us
that the l2 loss tends to maintain global details, while the
l1 loss can sometimes sacrifice global coherence for lo-
cal structure, potentially due to the sparsity induced by
it. In 5e, we use an average of both losses in an attempt
to maintain both these characteristics, but we notice evi-
dence of the failings manifesting to some extent as well.

A significant improvement in sample quality is observed
upon adding Gaussian noise to the encodings before
training the student (contrast 5a,5b with 5c,5d). Our intu-
ition for this is as follows: providing a decoder network
with pairs of points in the data space and the correspond-
ing encoded (or latent) space would typically result in
z-space not being sampled almost everywhere, since im-
age data (and therefore the corresponding encoding in
z-space) usually lies on a lower-dimensional manifold,
as discussed earlier. Adding noise enhances the support
of the distribution, effectively spreading the “responsi-
bility” of an encoding to cover more volume, which
smoothens the mapping learned by a decoder. When
the goal is to sample from a prior, training methods that
encourage such z-space-filling strategies and smoother
mappings improve sample quality, which is reminiscent
of decoder-based sampling models such as variational
auto-encoders (Kingma & Welling, 2014).



This leads us to an important point about these experi-
ments: since the student is trained on noised (encoded)
points from the data distribution, this is no longer purely
density distillation. The student no longer aims to repro-
duce the sampling behavior of the teacher (as in 4e), but
rather uses the teacher to provide structural information
through its encodings. This information, when “spread
out” through noise-injection and used by a student to
learn decodings into real data (through a reconstruction
penalty or more sophisticated losses) results in a network
that can now be considered as a stand-alone generator,
with the teacher acting as an inference machine that pre-
serves information in the latent space. This can poten-
tially allow a student to outperform its teacher in terms
of sample quality, by enabling the learning of a smoother
mapping from z-space to data space.

As a demonstration on more realistic data, we train a Pix-
elCNN on CIFAR-10 and distill it with a ResNet student
using x-reconstruction with the l1 loss, and noise injec-
tion (Figure 6). We observe that the student learns the
desired sampling behaviour, and additionally, owing to
the more instructive training with data samples, there is
greater global coherence in the samples as compared to
the teacher. There is an obvious relative lack of low-level
precision, but we believe this comes primarily from the
pixel-position uncertainty induced by the pixelwise loss,
and could potentially be fixed by augmentating the loss
with sophisticated image priors (Ulyanov et al., 2018).

4.1.4 Neural vocoder

Finally, we compare distillation with x-reconstruction
and distillation with reverse-KL on the neural vocoder
task for speech synthesis (Sotelo et al., 2017). The neural
vocoder has been an essential component of many text-
to-speech models proposed recently (Wang et al., 2017;
Shen et al., 2018; Arik et al., 2017; Ping et al., 2018).
We train our teacher to map vocoders (Morise et al.,
2016) to raw audio using the SampleRNN model (Mehri
et al., 2016). We model the conditional distribution
of the teacher with a unimodal Gaussian distribution,
which makes it easy to compute the corresponding z.
We specifically compare against closed form regularized
KL with Gaussian conditionals as proposed in Ping et al.
(2018). We design our student network with a WaveNet
architecture consisting of six flows, and perform sam-
pling as in Parallel WaveNet (Van den Oord et al., 2018).
Each flow is a dilated residual block of 10 layers with
a convolution kernel width of 2, and 64 output chan-
nels. With the x-reconstruction method under an l1
loss, we find that our student produces samples without
the characteristic whispering of the reverse-KL trained
student. We have uploaded samples for comparison
at https://soundcloud.com/inverse-matching/

sets/samples-for-inverse-matching.

5 CONCLUSION

In this paper, we investigated problems with distilling
an autoregressive generative model under a reverse-KL
cost between the student and the teacher, where the stu-
dent can perform efficient parallel generation. Specif-
ically, we showed that distillation with the reverse-KL
can suffer from imbalanced gradient signals due to the
curse of dimensionality, making the expansion signal
necessary for efficient exploration unlikely. Further, we
explored different alternatives which work qualitatively
better when compared against distillation with reverse-
KL.
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