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Abstract

Bayesian inference was once a gold standard
for learning with neural networks, providing ac-
curate full predictive distributions and well cal-
ibrated uncertainty. However, scaling Bayesian
inference techniques to deep neural networks is
challenging due to the high dimensionality of
the parameter space. In this paper, we construct
low-dimensional subspaces of parameter space,
such as the first principal components of the
stochastic gradient descent (SGD) trajectory,
which contain diverse sets of high performing
models. In these subspaces, we are able to apply
elliptical slice sampling and variational infer-
ence, which struggle in the full parameter space.
We show that Bayesian model averaging over
the induced posterior in these subspaces pro-
duces accurate predictions and well-calibrated
predictive uncertainty for both regression and
image classification.

1 INTRODUCTION

Bayesian methods were once the state-of-the-art approach
for inference with neural networks (MacKay, 2003; Neal,
1996a). However, the parameter spaces for modern deep
neural networks are extremely high dimensional, posing
challenges to standard Bayesian inference procedures.

In this paper, we propose a different approach to ap-
proximate Bayesian inference in deep learning models:
we design a low-dimensional subspace S of the weight
space and perform posterior inference over the parame-
ters within this subspace. We call this approach Subspace
Inference (SI).1.

∗Equal contribution.
1PyTorch code is available at https://github.com/

wjmaddox/drbayes.

It is our contention that the subspace S can be chosen
to contain a diverse variety of representations, corre-
sponding to different high quality predictions, over which
Bayesian model averaging leads to accuracy gains and
well-calibrated uncertainties.

In Figure 1, we visualize the samples from the ap-
proximate posterior and the corresponding predictive
distributions in performing subspace inference for a
ten-dimensional random subspace, and a rich two-
dimensional subspace containing a low-loss curve be-
tween two independently trained SGD solutions (see
Garipov et al., 2018) on a synthetic one-dimensional re-
gression problem. As we can see, the predictive distribu-
tion corresponding to a random subspace does not capture
a diverse set of possible functions required for greater
uncertainty away from the data, but sampling from the
posterior in the rich curve subspace provides meaningful
uncertainty over functions.

Our paper is structured as follows. We begin with a
discussion of related work in Section 2. In Section 3,
we describe the proposed method for inference in low-
dimensional subspaces of the parameter space. In Sec-
tion 4, we discuss possible choices of the low-dimensional
subspaces. In particular, we consider random subspaces,
subspaces corresponding to the first principal components
of the SGD trajectory (Maddox et al., 2019), and sub-
spaces containing low-loss curves between independently
trained solutions (Garipov et al., 2018).

We analyze the effects of using different subspaces and ap-
proximate inference methods, by visualizing uncertainty
on a regression problem in Section 5.1. We then apply the
proposed method to a range of UCI regression datasets in
Section 5.2, as well as CIFAR-10 and CIFAR-100 classi-
fication problems in Section 5.3, achieving consistently
strong performance in terms of both test accuracy and like-
lihood. Although the dimensionality of the weight space
for modern neural networks is extraordinarily large, we
show that surprisingly low dimensional subspaces contain

https://github.com/wjmaddox/drbayes
https://github.com/wjmaddox/drbayes
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Figure 1: Predictive distribution and samples in the parameter space for subspace inference on a synthetic regression
problem in a random subspace (a, b) and subspace containing a near-constant loss (log posterior) curve between two
independently trained solutions (c, d) (see Garipov et al., 2018, for details). On the plots (a, c) data points are shown
with red circles, the shaded region represents the 3σ-region of the predictive distribution at each point, the predictive
mean is shown with a thick blue line and sample trajectories are shown with thin blue lines. Panels (b, d) show the
contour plots of the posterior log-density within the corresponding subspace; magenta circles represent samples from
the posterior in the subspace. In the rich subspace containing the near-constant loss curve, the samples produce better
uncertainty estimates and more diverse trajectories. We use a small fully-connected network with 4 hidden layers. See
Section 5.1 for more details.

a rich diversity of representations. For example, we can
construct 5 dimensional subspaces where Bayesian model
averaging leads to notable performance gains on a 36
million dimensional WideResNet trained on CIFAR-100.

We summarize subspace inference in Algorithm 1. We
note that this procedure uses three modular steps: (1) con-
struct a subspace; (2) posterior inference in the subspace;
and (3) form a Bayesian model average. Different design
choices are possible for each step. For example, choices
for the subspace include a random subspace, a PCA sub-
space, or a mode connected subspace. Many other choices
are also possible. For posterior inference, one can use
deterministic approximations over the parameters in the
subspace, such as a variational method, or MCMC.

Algorithm 1 Bayesian Subspace Inference

Input: data, D; model,M;
1. Construct subspace, i.e. using Alg. 2, Section 4
2. Posterior inference within subspace (Section 3)
3. Form a Bayesian model average (Section 3.2, 3.3)

2 RELATED WORK

Maddox et al. (2019) proposed SWAG, which forms
an approximate Gaussian posterior over neural network
weights, with a mean and low rank plus diagonal covari-
ance matrix formed from a partial trajectory of the SGD
iterates with a modified learning rate schedule. SWAG
provides scalable Bayesian model averaging, with com-
pelling accuracy and calibration results on CIFAR and
ImageNet. The low-rank part of the SWAG covariance
defines a distribution over a low-dimensional subspace

spanned by the first principal components of the SGD
iterates.

Silva and Kalaitzis (2015) consider the related problem
of Bayesian inference using projected methods for con-
strained latent variable models, with applications to prob-
abilistic PCA (Roweis, 1998; Bishop, 1999).

Pradier et al. (2018) propose to perform variational in-
ference (VI) in a subspace formed by an auto-encoder
trained on a set of models generated from fast geometric
ensembling (Garipov et al., 2018); this approach requires
training several models and fitting an auto-encoder, lead-
ing to limited scalability.

Similarly, Karaletsos et al. (2018) propose to use a meta-
prior in a low-dimensional space to perform variational
inference for BNNs. This approach can be viewed as a
generalization of hyper-networks (Ha et al., 2017). Al-
ternatively, both Titsias (2017) and Krueger et al. (2017)
propose Bayesian versions of hyper-networks to store
meta-models of parameters.

Patra and Dunson (2018) provide theoretical guarantees
for Bayesian inference in the setting of constrained pos-
teriors. Their method samples from the unconstrained
posterior before using a mapping into the constrained pa-
rameter space. In their setting, the constraints are chosen
a priori; on the other hand, we choose the constraints (e.g.
the subspace) after performing unconstrained inference
via SGD.

Bayesian coresets (Huggins et al., 2016) use a weighted
combination of the full dataset and Bayesian compressed
regression (Guhaniyogi and Dunson, 2015) uses random
projections of the data inputs in linear regression settings;



both are designed for the purpose of efficient inference,
but unlike our subspace inference, these methods operate
solely in data space, rather than in parameter space.

3 INFERENCE WITHIN A SUBSPACE

In this section we discuss how to perform Bayesian in-
ference within a given subspace of a neural network. In
Section 4 we will propose approaches for effectively con-
structing such subspaces.

3.1 MODEL DEFINITION

We consider a model,M, with weight parameters w ∈
Rd. The model has an associated likelihood for the
dataset, D, given by pM(D|w).

We perform inference in a K-dimensional subspace S
defined by

S = {w|w = ŵ + z1v1 + . . . zKvK}
= {w|w = ŵ + Pz}, (1)

where P = (v>1 , . . . , v>K) ∈ Rd×K , ŵ ∈ Rd, z =
(z1, . . . , zK)> ∈ RK . With a fixed ŵ and projection
matrix P , which assign the subspace, the free parameters
of the model, over which we perform inference, are now
simply z ∈ RK . We describe choices for ŵ and P in
Section 4.

ŵ

ŵ + v1

ŵ + v2

S

ŵ + Pz

Figure 2: Illustration of subspace S with shift vector
ŵ and basis vectors v1, v2, with a contour plot of the
posterior log-density over parameters z.

The new model has the likelihood function:

p(D|z) = pM(D|w = ŵ + Pz), (2)

where the right-hand side represents the likelihood for
the model, M, with parameters ŵ + Pz and data D.
We can then perform Bayesian inference over the low-
dimensional subspace parameters z. We illustrate the
subspace parameterization as well as the posterior log-
density over parameters z in Figure 2.

We emphasize that the new model (2) is not a reparame-
terization of the original model, as the mapping from the
full parameter space to the subspace is not invertible. For
this reason, we consider the subspace model parameter-
ized by z as a different model that shares many functional
properties with the original modelM (see Section A.1
for an extended discussion).

3.2 BAYESIAN MODEL AVERAGING

We can sample from an induced posterior over the weight
parameters in the original space by first sampling from the
posterior over the parameters in the subspace z̃ ∼ p(z|D),
using an approximate inference method of choice, and
then transforming those samples into the original space
as w̃ = ŵ + P z̃.

To perform Bayesian model averaging on new test data
points, D∗, we can compute a Monte Carlo estimate of
the integral

p(D∗|D) =
∫
pM(D∗|w̃ = ŵ + Pz)p(z|D)dz (3)

≈ 1
J

J∑
j=1

pM(D∗|w̃ = ŵ + P z̃j) , z̃j ∼ p(z|D) .

Using the Monte Carlo estimate of the integral in (3) pro-
duces mixtures of Gaussian predictive distributions for
regression tasks with Gaussian likelihoods, and categori-
cal distributions for classification tasks.

3.3 APPROXIMATE INFERENCE
PROCEDURES

Our goal is to approximate the posterior p(z|D) over the
free parameters z in the subspace S, in order to perform
a Bayesian model average. As we can set the number of
parameters, K, to be much smaller than the dimension-
ality d of the full parameter space, performing Bayesian
inference becomes considerably more tractable in the sub-
space. We can make use of a wide range of approximate
inference procedures, even if we are working with a large
modern neural network.

In particular, we can use powerful and exact full-batch
MCMC methods to approximately sample from p(z|D),
such as Hamiltonian Monte Carlo (HMC) (Neal et al.,
2011) or elliptical slice sampling (ESS) (Murray et al.,
2010). Alternatively, we can perform a deterministic
approximation q(z|D) ≈ p(z|D), for example using
Laplace or a variational approach, and then sample from
q. The low dimensionality of the problem allows us to
choose very flexible variational families such as RealNVP
(Dinh et al., 2017) to approximate the posterior.



Ultimately, the inference procedure is an experimental
design choice, and we are free to use a wide range of
approximate inference techniques.

3.4 PRIOR CHOICE

There is a significant practical difference between
Bayesian model averaging (Section 3.2) and standard
training (regularized maximum likelihood estimation) for
a range of priors p(z), including vague priors. How-
ever, the exact specification of the prior itself, p(z), if
sufficiently diffuse, is not crucial for good performance.
Moreover, what matters is not the prior over parameters in
isolation, but how this prior interacts with the functional
form of the model. The neural network itself induces a
structured prior distribution over functions, when com-
bined with a vague prior over its parameters. We discuss
reasonable choices of priors for various subspaces in Sec-
tion 4.

3.5 PREVENTING POSTERIOR
CONCENTRATION WITH FIXED
TEMPERATURE POSTERIORS

In the model proposed in Section 3.1, there are only
K � N parameters as opposed to d � N parameters
in the full weight space, while the number of observed
data points N is constant. In this setting, the posterior
can overly concentrate around the maximum likelihood
estimate (MLE), becoming too constrained by the data,
leading to overconfident uncertainty estimates.

To address the issue of premature posterior concentration
in the subspace, we propose to introduce a temperature
hyperparameter that scales the likelihood. In particular,
we use the tempered posterior:

pT (z|D) ∝ p(D|z)︸ ︷︷ ︸
likelihood

1/T
p(z)︸︷︷︸
prior

. (4)

When T = 1 the true posterior is recovered, and as T →
∞, the tempered posterior pT (z|D) approaches the prior
p(z).

The temperature T is a hyper-parameter that can be de-
termined through cross-validation. We study the effect of
temperature on the performance of subspace inference in
Section F.1. When the temperature is close to 1 the poste-
rior concentrates around the MLE and subspace inference
fails to improve upon maximum likelihood training. As
T becomes large, subspace inference produces increas-
ingly less confident predictions. In Section F.1, good
performance can be achieved with a broad range of T .

Tempered posteriors are often used in Bayesian inference
algorithms to enhance multi-modal explorations (e.g.,

Geyer and Thompson, 1995; Neal, 1996b). Similarly,
Watanabe (2013) uses a tempered posterior to recover an
expected generalization error of Bayesian models.

4 SUBSPACE CONSTRUCTION

In the previous section we showed how to perform infer-
ence in a given subspace S . We now discuss various ways
to construct S.

4.1 RANDOM SUBSPACES

To construct a simple random subspace, S, we draw K
random v1, . . . , vK ∼ N (0, Ip) in the weight space. We
then rescale each of the vectors to have norm 1. Random
subspaces require only drawing Kp random normal num-
bers and so are quick to generate and form, but contain
little information about the model. In related work, Li
et al. (2018a) train networks from scratch in a random
subspace without a shift vector, requiring projections into
much higher dimensions than are considered in this paper.

We use the weights of a network pre-trained with stochas-
tic weight averaging (SWA) (Izmailov et al., 2018) as the
shift vector ŵ = wSWA. In particular, we run SGD with
a high constant learning rate from a pre-trained solution,
and form the average wSWA = 1

T

∑
i wi from the SGD

iterates wi.

Since the log likelihoods as a function of neural network
parameters for random subspaces appear approximately
quadratic (Izmailov et al., 2018) a reasonable prior for
p(z) is N (0, σ2IK).

4.2 PCA OF THE SGD TRAJECTORY

Intuitively, we want the subspace S over which we per-
form inference to (1) contain a diverse set of models that
produce meaningfully different predictions and (2) be
cheap to construct. Garipov et al. (2018) and Izmailov
et al. (2018) argue that the subspace spanned by the SGD
trajectory satisfies both (1) and (2). They run SGD starting
from a pre-trained solution with a high constant learning
rate and then ensemble predictions or average the weights
of the iterates. Further, Maddox et al. (2019) showed
fitting the SGD iterates with a Gaussian distribution with
a low-rank plus diagonal covariance for scalable Bayesian
model averaging provides well-calibrated uncertainty esti-
mates. Finally, Li et al. (2018b) and Maddox et al. (2019)
used the first few PCA components of the SGD trajec-
tory for loss surface visualization. These observations
motivate inference directly in the subspace spanned by
the SGD trajectory.

We propose to use the first few PCA components vi of



the SGD trajectory to define the basis of the subspace.
As in Izmailov et al. (2018), we run SGD with a high
constant learning rate from a pre-trained solution and
capture snapshots wi of weights at the end of each of
T epochs. We store the deviations ai = wSWA − wi for
the last M epochs. The number M here is determined
by the amount of memory we can use.2 We then run
PCA based on randomized SVD (Halko et al., 2011)3 on
the matrix A comprised of vectors a1, . . . , aM and use
the first K principal components v1, . . . , vK to define
the subspace (1). Like for the random subspace, we use
the SWA solution (Izmailov et al., 2018) for the shift
vector, ŵ. We summarize this procedure in Algorithm 2.

Algorithm 2 Subspace Construction with PCA

w0: pretrained weights; η: learning rate; T : number of
steps; c: moment update frequency; M : maximum num-
ber of columns in deviation matrix; K: rank of PCA
approximation; P : projection matrix for subspace
wSWA ← w0 {Initialize mean}
for i← 1, 2, ..., T do
wi ← wi−1 − η∇wL(wi−1) {SGD update}
if MOD(i, c) = 0 then
n← i/c {Number of models}

wSWA ←
nwSWA + wi

n+ 1 {Update mean}

if NUM_COLS(A) = M then
REMOVE_COL(A[:, 1])

APPEND_COL(A,wi − w) {Store deviation}
U, S, V > ← SVD(A) {Truncated SVD}
return ŵ = wSWA, P = SV >

Maddox et al. (2019) showed empirically that the log
likelihood in the subspace looks locally approximately
quadratic, and so a reasonable choice of prior p(z) is
N (0, I), when scaling PCA vectors vi to have norms
proportional to the singular values of the matrix A as in
Algorithm 2.

Relationship to Eigenvalues of the Hessian Li et al.
(2018b) and Gur-Ari et al. (2019) argue that the first
principal components of the SGD trajectory correspond
to the top eigenvectors of the Hessian of the loss, and
that these eigenvectors change slowly during training.
This observation suggests that these principal components
captures many of the sharp directions of the loss surface,
corresponding to large Hessian eigenvalues. We expect
then that our PCA subspace should include variation in

2We use M = 20 in our experiments. To side-step any
memory issues, we could use any online PCA technique instead,
such as frequent directions (Ghashami et al., 2016).

3Implemented in sklearn.decomposition.TruncatedSVD.

the type of functions that it contains. See Appendix C
for more details as well as a computation of Hessian and
Fisher eigenvalues through a GPU accelerated Lanczos
algorithm (Gardner et al., 2018).

4.3 CURVE SUBSPACES

Garipov et al. (2018) proposed a method to find paths of
near-constant low loss (and consequently high posterior
density) in the weight space between converged SGD
solutions starting from different random initializations.
These curves lie in 2-dimensional subspaces of the weight
space. We visualize the loss surface in such a space
for a synthetic regression problem in Figure 1 (d). This
curve subspace provides an example of a rich subspace
containing diverse high performing models, and stress-
tests the inference procedure for effectively exploring a
highly non-Gaussian distribution.

To parameterize the curve subspace we set ŵ = (w1 +
w0)/2, v1 = (w0 − ŵ)/‖w0 − ŵ‖, v2 = (w1/2 −
ŵ)/‖w1/2 − ŵ‖, where w0 and w1 are the endpoints,
and w1/2 is the midpoint of the curve.

In this case, the posterior in the subspace is clearly non-
Gaussian. However, a vague but centred standard Gaus-
sian prior N (0, I) is reasonable as a simple choice with
our parameterization of the curve subspace.

4.4 COMPUTATIONAL COST OF SUBSPACE
CONSTRUCTION

We consider the cost of constructing each of the subspaces
described in Section 4.1-4.3. We note that constructing
any subspace in our approach is a one-time computation.

The random subspace (Section 4.1) is virtually free to
construct, as it only requires sampling K independent
Gaussian vectors.

To construct the PCA subspace (Section 4.2), we run
SVD on the deviation matrix A, which is a one-time
computation and is very fast. In particular, exact SVD
takesO(min(M2d, d2M)), while randomized SVD takes
O(Md logK + (M + d)K2) (see Section 1.4.1 of Halko
et al. (2011)). For our largest examples, while the number
of parameters in the model d is on the order of 107, M is
on the order of 102; thus, taking the exact SVD is linear
in the number of parameters. For example, using standard
hardware (a Dell XPS-15 laptop, with Intel core i7, 16Gb
RAM), it takes 4 minutes to perform exact SVD on our
largest model, WideResNet on CIFAR-100, with 36 mil-
lion parameters. By comparison, it takes approximately
eight hours on an NVIDIA 1080Ti GPU to train the same
WideResNet on CIFAR-100 to completion.

The curve subspace (Section 4.3) is the most expensive



to construct, as it requires pre-training the two solutions
corresponding to the endpoints of the curve, and then run-
ning the curve-finding procedure in Garipov et al. (2018),
which in total is roughly 3× the cost of training a single
DNN of the same architecture.

Constructing the subspace is in general very fast and
readily applicable to large deep networks, with minimal
overhead compared to standard training.

5 EXPERIMENTS

We evaluate subspace inference empirically using the
random, PCA, and curve subspace construction methods
discussed in Section 4, in conjunction with the approxi-
mate posterior inference methods discussed in Section 3.3.
In particular, we experiment with the No-U-Turn-Sampler
(NUTS) (Hoffman and Gelman, 2014), Elliptical Slice
Sampling (ESS) (Murray et al., 2010) and Variational
Inference with fully factorized Gaussian approximation
family (VI) and Real-valued Non-Volume Preserving flow
(RealNVP) (Dinh et al., 2017) family. Section B contains
more details on each of the approximate inference meth-
ods. We use the priors for p(z) discussed in Section 4.

We show that approximate Bayesian inference within a
subspace provides good predictive uncertainties on re-
gression problems, first visually in Section 5.1 and then
quantitatively on UCI datasets in Section 5.2.

We then apply subspace inference to large-scale image
classification on CIFAR-10 and CIFAR-100 and obtain
results competitive with state-of-the-art scalable Bayesian
deep learning methods.

5.1 VISUALIZING REGRESSION
UNCERTAINTY

We want predicted uncertainty to grow as we move away
from the data. Far away from the data there are many
possible functions that are consistent with our observa-
tions and thus there should be greater uncertainty. How-
ever, this intuitive behaviour is difficult to achieve with
Bayesian neural networks (Foong et al., 2019). Fur-
ther, log-likelihoods on benchmark datasets (see Section
5.2) do not necessarily test this behaviour, where over-
confident methods can obtain better likelihoods (Yao et al.,
2019).

We use a fully-connected architecture with hidden layers
that have [200, 50, 50, 50] neurons respectively. The net-
work takes two inputs, x and x2 (the redundancy helps
with training), and outputs a single real value y = f(x).
To generate the data we set the weights of the network
with this same architecture randomly, and evaluate the
predictions f(x) for 400 points sampled uniformly in in-

tervals [−7.2,−4.8], [−1.2, 1.2], [4.8, 7.2]. We add Gaus-
sian noise to the outputs y = f(x) + ε(x). We show the
data with red circles in Figure 3.

We train an SWA solution (Izmailov et al., 2018), and
construct three subspaces: a ten-dimensional random
subspace, ten-dimensional PCA-subspace and a two-
dimensional curve subspace (see Section 4). We then
run each of the inference methods listed in Section B in
each of the subspaces. We visualize the predictive dis-
tributions in the observed space for each combination of
method and subspace in Figure 8 and the posterior den-
sity overlayed by samples of the subspace parameters in
Figure 9.

In Figure 9 the shape of the posterior in random and
PCA subspaces is close to Gaussian, and all approximate
inference methods produce reasonable samples. In the
mode connecting curve subspace the posterior has a more
complex shape. The variational methods were unable to
produce a reasonable fit. The simple variational approach
is highly constrained in its Gaussian representation of the
posterior. However, RealNVP in principle has the flexibil-
ity to fit many posterior approximating distributions, but
perhaps lacks the inductive biases to easily fit these types
of curvy distributions in practice, especially when trained
with the variational ELBO. On the other hand, certain
MCMC methods, such as elliptical slice sampling, can
effectively navigate these distributions.

In the top row of Figure 3 we visualize the predictive dis-
tributions for elliptical slice sampling in each of the sub-
spaces. In order to represent this uncertainty, the posterior
in the subspace must assign mass to settings of the weights
that give rise to models making a diversity of predictions
in these regions. In the random subspace, the predictive
uncertainty does not significantly grow far away from the
data, suggesting that it does not capture a diversity of
models. On the other hand, the PCA subspace captures
a diverse collection of models, with uncertainty growing
away from the data. Finally, the predictive distribution for
the curve subspace is the most adaptive, suggesting that it
contains the greatest variety of models corresponding to
weights with high posterior probabilities.

In the bottom row of Figure 3 we visualize the predictive
distributions for simple variational inference applied in
the original parameter space (as opposed to a subspace),
SWAG (Maddox et al., 2019), and a Gaussian process
with an RBF kernel. The SWAG predictive distribution is
similar to the predictive distribution of ESS in the PCA
subspace, as both methods attempt to approximate the
posterior in the subspace containing the principal com-
ponents of the SGD trajectory; however, ESS operates
directly in the subspace, and is not constrained to a Gaus-
sian representation. Variational inference interestingly
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Figure 3: Predictive distribution for visualizing uncertainty in regression. Data (red circles), predictive mean (dark blue
line), sample posterior functions (light blue lines), ±3 standard deviations about the mean (shaded region). Elliptical
slice sampling (ESS) with either a PCA or curve subspace provides uncertainty that intuitively grows away from the
data, unlike variational inference in the full parameter space or ESS with a random subspace. This intuitive behaviour
matches a GP with an RBF kernel, except the GP is less confident for extrapolation.

appears to underfit the data, failing to adapt the posterior
mean to structured variations in the observed points, and
provides relatively homogenous uncertainty estimates,
except very far from the data. We hypothesize that under-
fitting happens because the KL divergence term between
approximate posterior and prior distributions overpowers
the data fit term in the variational lower bound objective,
as we have many more parameters than data points in this
problem (see Blundell et al. (2015) for details about VI).
In the bottom right panel of Figure 3 we also consider a
Gaussian process (GP) with an RBF kernel — presently
the gold standard for regression uncertainty. The GP pro-
vides a reasonable predictive distribution in a neighbour-
hood of the data, but arguably becomes underconfident
for extrapolation, with uncertainty quickly blowing up
away from the data.

5.2 UCI REGRESSION

We next compare our subspace inference methods on UCI
regression tasks to a variety of methods for approximate
Bayesian inference with neural networks.4 To measure
performance we compute Gaussian test likelihood (details
in Appendix E.1.1). We follow convention and parame-
terize our neural network models so that for an input x

4We use the pre-processing from https://github.
com/hughsalimbeni/bayesian_benchmarks.

they produce two outputs, predictive mean µ(x,w) and
predictive variance σ(x,w). For all datasets we tune the
temperature T in (2) by maximizing the average likeli-
hood over 3 random validations splits (see Appendix F.1
for a discussion of the effect of temperature).

5.2.1 Large UCI Regression Datasets

We experiment with 5 large regression datasets from UCI:
elevators, keggdirected, keggundirected, pol, protein and
skillcraft. We follow the experimental framework of Wil-
son et al. (2016).

On all datasets except skillcraft we use a feedforward
network with five hidden layers of sizes [1000, 1000, 500,
50, 2], ReLU activations and two outputs µ(x,w) and
σw(x) parameterizing predictive mean and variance. On
skillcraft, we use a smaller architecture [1000, 500, 50, 2]
like in Wilson et al. (2016). We additionally learn a global
noise variance s2, so that the predictive variance at x is
σ2(x,w, s) = s2 + σ2

w(x), where σ2
w(x) is the variance

output from the final layer of the network. We use softplus
parameterizations for both σw and s to ensure positiveness
of the variance, initializing the global variance at s2 = 1
(the total variance in the dataset).

We compare subspace inference to deep kernel learn-
ing (DKL) (Wilson et al., 2016) with a spectral mixture
base kernel (Wilson and Adams, 2013), SGD trained

https://github.com/hughsalimbeni/bayesian_benchmarks
https://github.com/hughsalimbeni/bayesian_benchmarks
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networks with a Bayesian final layer as in Riquelme
et al. (2018) and two approximate Gaussian processes:
orthogonally decoupled variational Gaussian processes
(OrthVGP) (Salimbeni et al., 2018) and Fastfood approx-
imate kernels (FF)5 (Yang et al., 2015). We show the
test log-likelihoods and RMSEs in Appendix Tables 5
and 6, and the 95% credible intervals in Appendix Table
7. We summarize the test log-likelihoods in Figure 4.
Subspace inference outperforms SGD by a large margin
on elevators, pol and protein, and is competitive on the
other datasets. Compared to SWAG, subspace inference
typically improves results by a small margin.

Finally, we plot the coverage of the 95% predictive inter-
vals in Figure 10. Again, subspace inference performs at
least as well as the SGD baseline, and has substantially
better calibration on elevators and protein.

5.2.2 Small UCI Regression Datasets

We compare subspace inference to the state-of-the-art
approximate BNN inference methods including determin-
istic variational inference (DVI) (Wu et al., 2019), deep
GPs (DGP) with two GP layers trained via expectation
propagation (Bui et al., 2016), and variational inference
with the re-parameterization trick (Kingma and Welling,
2013). We follow the set-up of Bui et al. (2016) and use a
fully-connected network with a single hidden layer with
50 units. We present the test log-likelihoods, RMSEs and
test calibration results in Appendix Tables 2, 3 and 4. We
additionally visualize test log-likelihoods in Figure 4 and
calibrations in Appendix Figure 10.

Our first observation is that SGD provides a surprisingly
strong baseline, sometimes outperforming DVI. The sub-
space methods outperform SGD and DVI on naval, con-
crete and yacht and are competitive on the other datasets.

5Results for FF are from Wilson et al. (2016).

5.3 IMAGE CLASSIFICATION

Next, we test the proposed method on state-of-the-art
convolutional networks on CIFAR datasets. Similarly
to Section 5.1, we construct five-dimensional random
and five-dimensional PCA subspaces around a trained
SWA solution. We also construct a two-dimensional curve
subspace by connecting our SWA solution to another
independently trained SWA solution. We use the value
T = 5000 for temperature in all the image classification
experiments with random and PCA subspaces, and T =
10000 in the curve subspace (Section 3.5), from cross-
validation using VGG-16 on CIFAR-100.

We visualize the samples from ESS in each of the sub-
spaces in Figure 5. For VI we also visualize the 3σ-region
of the closed-form approximate posterior in the random
and PCA subspaces. As we can see, ESS is able to capture
the shape of the posterior in each of the subspaces.

In the PCA subspace we also visualize the SWAG ap-
proximate posterior distribution. SWAG overestimates
the variance along the first principle component (horizon-
tal axis in Figure 5b) of the SGD trajectory6. VI in the
subspace is able to provide a better fit for the posterior
distribution, as it is directly approximating the posterior
while SWAG is approximating the SGD trajectory.

We report the accuracy and negative log-likelihood for
each of the subspaces in Table 1. Going from random,
to PCA, to curve subspaces provides progressively better
results, due to increasing diversity and quality of models
within each subspace. In the remaining experiments we
use the PCA subspace, as it generally provides good per-
formance at a much lower computational cost than the
curve subspace.

We next apply ESS and simple VI in the PCA subspace
on VGG-16, PreResNet-164 and WideResNet28x10 on

6See also Figure 5 in Maddox et al. (2019).
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Figure 5: Posterior log-density surfaces, ESS samples (shown with magenta circles), and VI approximation posterior
distribution (3σ-region shown with blue dashed line) in (a) random, (b) PCA and (c) curve subspaces for PreResNet-164
on CIFAR-100. In panel (b) the dashed black line shows the 3σ-region of the SWAG predictive distribution.

Table 1: Negative log-likelihood and Accuracy
for PreResNet-164 for 10-dimensional random, 10-
dimensional PCA, and 2-dimensional curve subspaces.
We report mean and stdev over 3 independent runs.

Random PCA Curve

NLL 0.6858± 0.0052 0.6652± 0.004 0.6493± 0.01
Accuracy (%) 80.17± 0.03 80.54± 0.13 81.55± 0.26

CIFAR-10 and CIFAR-100. We report the results in Ap-
pendix Tables 8, 9. Subspace inference is competitive
with SWAG and consistently outperforms most of the
other baselines, including MC-dropout (Gal and Ghahra-
mani, 2016), temperature scaling (Guo et al., 2017) and
KFAC-Laplace Ritter et al. (2018).

6 CONCLUSION

Bayesian methods were once a gold standard for inference
with neural networks. Indeed, a Bayesian model aver-
age provides an entirely different mechanism for making
predictions than standard training, with benefits in accu-
racy and uncertainty representation. However, efficient
and practically useful Bayesian inference has remained a
critical challenge for the exceptionally high dimensional
parameter spaces in modern deep neural networks. In this
paper, we have developed a subspace inference approach
to side-step the dimensionality challenges in Bayesian
deep learning: by constructing subspaces where the neu-
ral network has sufficient variability, we can easily apply
standard approximate Bayesian inference methods, with
strong practical results.

In particular, we have demonstrated that simple affine
subspaces constructed from the principal components of
the SGD trajectory contain enough variability for prac-
tically effective Bayesian model averaging, often out-
performing full parameter space inference techniques.
Such subspaces can be surprisingly low dimensional (e.g.,

5 dimensions), and combined with approximate inference
methods, such as slice sampling, which are good at au-
tomatically exploring posterior densities, but would be
entirely intractable in the original parameter space. We
further improve performance with subspaces constructed
from low-loss curves connecting independently trained
solutions (Garipov et al., 2018), with additional com-
putation. Subspace inference is particularly effective at
representing growing and shrinking uncertainty as we
move away and towards data, which has been a particular
challenge for Bayesian deep learning methods.

Crucially, our approach is modular and easily adaptable
for exploring both different subspaces and approximate
inference techniques, enabling fast exploration for new
problems and architectures. There are many exciting
directions for future work. It could be possible to explic-
itly train subspaces to select high variability in the func-
tional outputs of the model, while retaining quality solu-
tions. One could also develop Bayesian PCA approaches
(Minka, 2001) to automatically select the dimensionality
of the subspace. Moreover, the intuitive behaviour of the
regression uncertainty for subspace inference could be
leveraged in a number of active learning problems, such
as Bayesian optimization and probabilistic model-based
reinforcement learning, helping to address the current
issues of input dimensionality in these settings.

The ability to perform approximate Bayesian inference
in low-dimensional subspaces of deep neural networks
is a step towards, scalable, modular, and interpretable
Bayesian deep learning.

Acknowledgements

WJM, PI, PK and AGW were supported by an Ama-
zon Research Award, Facebook Research, and NSF IIS-
1563887. WJM was additionally supported by an NSF
Graduate Research Fellowship under Grant No. DGE-
1650441.



References

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer,
F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.,
Horsfall, P., and Goodman, N. D. (2018). Pyro: Deep
universal probabilistic programming. Journal of Ma-
chine Learning Research.

Bishop, C. M. (1999). Bayesian PCA. In Advances in
neural information processing systems, pages 382–388.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. (2015). Weight uncertainty in neural networks.
arXiv preprint arXiv:1505.05424.

Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li,
Y., and Turner, R. (2016). Deep gaussian processes
for regression using approximate expectation propaga-
tion. In International Conference on Machine Learning,
pages 1472–1481.

Demmel, J. W. (1997). Applied Numerical Linear Alge-
bra. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Den-
sity estimation using real nvp. In International Confer-
ence on Learning Representations.

Foong, A. Y. K., Li, Y., Hernández-Lobato, J. M., and
Turner, R. E. (2019). ’In-Between’ Uncertainty in
Bayesian Neural Networks. arXiv e-prints, page
arXiv:1906.11537.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In International Conference on Machine
Learning, pages 1050–1059.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D.,
and Wilson, A. G. (2018). Gpytorch: Blackbox matrix-
matrix gaussian process inference with gpu accelera-
tion. In Advances in Neural Information Processing
Systems, pages 7587–7597.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. (2018). Loss surfaces, mode con-
nectivity, and fast ensembling of dnns. In Advances
in Neural Information Processing Systems, volume
abs/1802.10026.

Geyer, C. J. and Thompson, E. A. (1995). Annealing
markov chain monte carlo with applications to ances-
tral inference. Journal of the American Statistical As-
sociation, 90(431):909–920.

Ghashami, M., Liberty, E., Phillips, J. M., and Woodruff,
D. P. (2016). Frequent directions: Simple and determin-
istic matrix sketching. SIAM Journal on Computing,
45(5):1762–1792.

Guhaniyogi, R. and Dunson, D. B. (2015). Bayesian com-
pressed regression. Journal of the American Statistical
Association, 110(512):1500–1514.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017).
On calibration of modern neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 1321–1330. JMLR. org.

Gur-Ari, G., Roberts, D. A., and Dyer, E. (2019).
Gradient descent happens in a tiny subspace.
https://openreview.net/forum?id=ByeTHsAqtX.

Ha, D., Dai, A., and Le, Q. V. (2017). Hypernetworks. In
International Conference on Learning Representations.
arXiv preprint arXiv:1609.09106.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011).
Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decomposi-
tions. SIAM review, 53(2):217–288.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
(2013). Stochastic variational inference. The Journal
of Machine Learning Research, 14(1):1303–1347.

Hoffman, M. D. and Gelman, A. (2014). The no-u-turn
sampler: adaptively setting path lengths in hamiltonian
monte carlo. Journal of Machine Learning Research,
15(1):1593–1623.

Huggins, J., Campbell, T., and Broderick, T. (2016).
Coresets for scalable bayesian logistic regression. In
Advances in Neural Information Processing Systems,
pages 4080–4088.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. (2018). Averaging weights leads to
wider optima and better generalization. In Uncertainty
in Artificial Intelligence.

Karaletsos, T., Dayan, P., and Ghahramani, Z. (2018).
Probabilistic meta-representations of neural networks.
arXiv preprint arXiv:1810.00555.

Kingma, D. P., Salimans, T., and Welling, M. (2015).
Variational dropout and the local reparameterization
trick. In Advances in Neural Information Processing
Systems, pages 2575–2583.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste,
A., and Courville, A. (2017). Bayesian hypernetworks.
arXiv preprint arXiv:1710.04759.

Lakshminarayanan, B., Pritzel, A., and Blundell, C.
(2017). Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In Advances in Neural
Information Processing Systems, pages 6402–6413.



Li, C., Farkhoor, H., Liu, R., and Yosinski, J. (2018a).
Measuring the intrinsic dimension of objective land-
scapes. In International Conference on Learning Rep-
resentations. arXiv preprint arXiv:1804.08838.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
(2018b). Visualizing the Loss Landscape of Neural
Nets. In Advances in Neural Information Processing
Systems. arXiv: 1712.09913.

MacKay, D. J. (2003). Information theory, inference and
learning algorithms. Cambridge university press.

Maddox, W., Garipov, T., Izmailov, P., Vetrov, D.,
and Wilson, A. G. (2019). A simple baseline for
bayesian uncertainty in deep learning. arXiv preprint
arXiv:1902.02476.

Minka, T. P. (2001). Automatic choice of dimensionality
for pca. In Advances in neural information processing
systems, pages 598–604.

Murray, I., Prescott Adams, R., and MacKay, D. J. (2010).
Elliptical slice sampling. In Artificial Intelligence and
Statistics.

Neal, R. M. (1996a). Bayesian learning for neural net-
works, volume 118. Springer Science & Business Me-
dia.

Neal, R. M. (1996b). Sampling from multimodal dis-
tributions using tempered transitions. Statistics and
computing, 6(4):353–366.

Neal, R. M. et al. (2003). Slice sampling. The annals of
statistics, 31(3):705–767.

Neal, R. M. et al. (2011). Mcmc using hamiltonian dynam-
ics. Handbook of markov chain monte carlo, 2(11):2.

Patra, S. and Dunson, D. B. (2018). Constrained bayesian
inference through posterior projections. arXiv preprint
arXiv:1812.05741.

Pradier, M. F., Pan, W., Yao, J., Ghosh, S., and Doshi-
velez, F. (2018). Projected BNNs: Avoiding weight-
space pathologies by learning latent representations
of neural network weights. arXiv preprints, page
arXiv:1811.07006.

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep
bayesian bandits showdown. In International Confer-
ence on Learning Representations.

Ritter, H., Botev, A., and Barber, D. (2018). A scalable
laplace approximation for neural networks. In Interna-
tional Conference on Learning Representations.

Roweis, S. T. (1998). EM algorithms for PCA and SPCA.
In Advances in neural information processing systems,
pages 626–632.

Salimbeni, H., Cheng, C.-A., Boots, B., and Deisenroth,
M. (2018). Orthogonally decoupled variational gaus-

sian processes. In Advances in Neural Information
Processing Systems, pages 8725–8734.

Silva, R. and Kalaitzis, A. (2015). Bayesian inference via
projections. Statistics and Computing, 25(4):739–753.

Titsias, M. K. (2017). Learning model reparametriza-
tions: Implicit variational inference by fitting mcmc
distributions. arXiv preprint arXiv:1708.01529.

Watanabe, S. (2007). Almost all learning machines are
singular. In 2007 IEEE Symposium on Foundations of
Computational Intelligence, pages 383–388. IEEE.

Watanabe, S. (2013). A widely applicable bayesian in-
formation criterion. Journal of Machine Learning Re-
search, 14(Mar):867–897.

Wilson, A. and Adams, R. (2013). Gaussian process
kernels for pattern discovery and extrapolation. In
International Conference on Machine Learning, pages
1067–1075.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
(2016). Deep kernel learning. In Artificial Intelligence
and Statistics, pages 370–378.

Wu, A., Nowozin, S., Meeds, E., Turner, R. E.,
Hernández-Lobato, J. M., and Gaunt, A. L. (2019). De-
terministic Variational Inference for Robust Bayesian
Neural Networks. In Inernational Conference on Learn-
ing Representations. arXiv:1810.03958.

Yang, Z., Wilson, A., Smola, A., and Song, L. (2015). A
la carte–learning fast kernels. In Artificial Intelligence
and Statistics, pages 1098–1106.

Yao, J., Pan, W., Ghosh, S., and Doshi-Velez, F. (2019).
Quality of Uncertainty Quantification for Bayesian
Neural Network Inference. arXiv preprints, page
arXiv:1906.09686.


	INTRODUCTION
	RELATED WORK
	INFERENCE WITHIN A SUBSPACE
	MODEL DEFINITION
	BAYESIAN MODEL AVERAGING
	APPROXIMATE INFERENCE PROCEDURES
	PRIOR CHOICE
	PREVENTING POSTERIOR CONCENTRATION WITH FIXED TEMPERATURE POSTERIORS

	SUBSPACE CONSTRUCTION
	RANDOM SUBSPACES
	PCA OF THE SGD TRAJECTORY
	CURVE SUBSPACES
	COMPUTATIONAL COST OF SUBSPACE CONSTRUCTION

	EXPERIMENTS
	VISUALIZING REGRESSION UNCERTAINTY
	UCI REGRESSION
	Large UCI Regression Datasets
	Small UCI Regression Datasets

	IMAGE CLASSIFICATION

	CONCLUSION

