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Abstract

We describe and analyze a form of condition-
ing that is widely applied within social sci-
ence and applied statistics but that is virtu-
ally unknown within causal graphical models.
This approach, which we term object condi-
tioning, can adjust for the effects of latent con-
founders and yet avoid the pitfall of condition-
ing on colliders. We describe object condi-
tioning using plate models and show how its
probabilistic implications can be explained us-
ing the property of exchangeability. We show
that several seemingly obvious interpretations
of object conditioning are insufficient to de-
scribe its probabilistic implications. Finally,
we use object conditioning to describe and
unify key aspects of a diverse set of techniques
for causal inference, including within-subjects
designs, difference-in-differences designs, and
interrupted time-series designs.

1 INTRODUCTION

A substantial theoretical and methodological infrastruc-
ture has been developed to facilitate accurate estimates of
causal dependence from observational data. Two dom-
inant and almost entirely compatible frameworks have
been developed based on causal graphical models (Pearl,
2009; Spirtes et al., 2000) and potential outcomes (Ru-
bin, 2005; Imbens and Rubin, 2015). Both frameworks
rely heavily on the statistical concept of conditioning,
particularly to adjust causal estimates for the effects of
potential confounding variables. Several methodological
innovations facilitate forms of conditioning, including
propensity score analysis (Rosenbaum and Rubin, 1983),
doubly robust estimators (Bang and Robins, 2005), and
non-parametric estimators (Hill, 2011; Athey and Im-
bens, 2016).

The accuracy of causal estimates based on conditioning
rests on several assumptions that can be difficult to meet
in practice. Accurate causal estimates often require that
all confounding variables have been correctly measured
and that their effects have been correctly modeled. The
relatively low probability that these assumptions can be
simultaneously satisfied has motivated interest in meth-
ods that partially or entirely escape these assumptions.
Some of these methods, such as the FCI algorithm and
its successors (Spirtes et al., 2000; Colombo et al., 2012),
have been developed primarily within the causal graph-
ical models community. Others, such as instrumental
variable designs (Angrist et al., 1996), were originally
developed within fields most commonly associated with
the potential outcomes framework, although these meth-
ods have been widely adopted, analyzed, and extended
within the framework of causal graphical models (e.g.,
Pearl, 1995, 2009; Sharma et al., 2016; Sharma, 2017).

Another large family of methods that partially escapes
these assumptions has been widely adopted within com-
munities that use the potential outcomes framework and
yet has received almost no attention within communi-
ties that predominantly employ causal graphical models.
This family of methods includes the closely related meth-
ods of within-subject designs (Greenwald, 1976), multi-
level models (Goldstein, 1987, 2010), interrupted time-
series designs (Shadish et al., 2001), and difference-in-
differences designs (Shadish et al., 2001). The number
of papers that reference each member of this family of
methods is of the same order of magnitude as the en-
tire literature that references causal graphical models, yet
this family of methods has received almost no attention
within the literature on causal graphical models.

This paper directly addresses that gap by defining and
analyzing object conditioning, the central strategy em-
ployed by each method in this family. We use the syntax
and semantics of plate models to formally describe object
conditioning. We show that, under fairly mild assump-
tions, object conditioning confers a surprising and useful



set of benefits. It can provide accurate causal estimates,
even when some confounders are measured poorly or not
at all; it provides these estimates without risk of collider
bias; and it can reduce variability due to additional co-
variates that are causes of either treatment or outcome
alone. We show that several plausible theories drawn
from within the current framework of causal graphical
models cannot adequately explain the effects of object
conditioning. Finally, we show how object conditioning
describes and unifies several widely used techniques.

2 EXAMPLE

Consider the challenge of causal inference about a com-
plex social media system such as Stack Overflow, a pop-
ular question-and-answer website devoted to the topic of
computer programming. The site makes nearly all data
it generates publicly available, including detailed infor-
mation about users, questions, answers, badges, and top-
ics. Such data make it possible to examine causal claims
about how the design and incentives of the site influence
user behavior (e.g., Oktay et al., 2010; Marder, 2015).

For example, we might conjecture that the length of a
posted question might be one cause of the number of an-
swers the question receives. We refer to length as a treat-
ment and answer count as an outcome. A simple analy-
sis would merely examine the joint distribution of length
and answer count for a large number of questions. How-
ever, a savvy analyst would also consider other factors
that could cause treatment, outcome, or both. For exam-
ple, some novice programmers may be unskilled at writ-
ing concise questions and may also tend to ask questions
that draw many potential respondents due to their simple
content (rather than length). This situation could be por-
trayed graphically by the generic model shown in Figure
1a, where the variable X is length, Y is answer count, Z
is programming experience, and the plate C represents
questions and the plate P represents users.

Figure 1: Three simple plate models with child (C) and
parent (P ) plates. (a) A multi-object unit with the vari-
able Z measured. (b) A multi-object unit with the vari-
able Z latent. (c) A single-object unit with the variable
Z latent.

Ideally, we would be able to measure all potential con-
founding factors Z and condition on their effects. How-

ever, many such factors are notoriously difficult to mea-
sure quantitatively and reliably. Fortunately, such mea-
surement can be avoided by using a more nuanced anal-
ysis that employs a within-subjects design, in which
the length and answer-count of multiple postings from
the same individual are compared and then the within-
subject comparisons are aggregated over a large number
of such individuals. In principle, this approach can elim-
inate the effects of many potential latent confounders si-
multaneously because the value of these confounders can
reasonably be assumed to be constant within subjects.

A within-subjects design is a method for causal infer-
ence that employs object conditioning, the topic of this
paper. Defined more formally in Section 3, this ap-
proach conditions on the identities of individuals (e.g.,
User=Robert456) rather than the more conventional
choice of conditioning on the values of variables of
those individuals (e.g., programming-ability=low). Ob-
ject conditioning does not rule out conditioning on vari-
ables, but merely adds to the array of tools available for
causal analysis.

Object conditioning has substantial value for estimating
causal dependence. It can reduce variance in causal esti-
mates by adjusting for other causes of treatment or out-
come (regardless of whether those variables are observed
or latent). More importantly, object conditioning can re-
duce bias in causal estimates by eliminating the effects of
potential confounders that may induce statistical depen-
dence between treatment and outcome (again, regardless
of whether those variables are observed or latent).

A simple (and, as we show later, incorrect) view of ob-
ject conditioning is that it simultaneously conditions on
all variables of an object (e.g., a Stack Overflow user).
Under this simple view, object conditioning would en-
tail substantial risks because it could induce dependence
between treatment-outcome pairs when one or more of
the variables of user represents a collider rather than a
confounder. That is, if treatment and outcome simulta-
neously cause a variable of user, then object condition-
ing on user could induce dependence between treatment
and outcome and increase the bias of our causal estimate.
This effect is referred to as Berkson’s bias or collider bias
(Elwert and Winship, 2014). This prospect is particularly
disturbing because object conditioning provides no fine-
grained choice about which variables are in the apparent
conditioning set. Instead, object conditioning would ap-
pear to condition on a nearly infinite number of possible
variables, some of which might be colliders.

Surprisingly, evidence exists that object conditioning
achieves the advantages noted above (removing the ef-
fects of latent variables) without incurring the potential
risks (collider bias). Specifically, simulation results from



Rattigan et al. (2011) indicate that when a variable Z of
a parent object causes two variables X and Y of a child
object (a confounder), object conditioning on the parent
object appears to produce the same conditional indepen-
dence implications as conditioning on the parent variable
Z, even when Z is latent. In addition, when Z is caused
by X and Y (a collider), object conditioning on the par-
ent object appears to have directly the opposite condi-
tional independence implications as conditioning on Z.
That is, object conditioning does not appear to induce
dependence between X and Y in such situations.

In the following sections, we ask and answer a set of
fundamental research questions about object condition-
ing and its effects: (1) What are the probabilistic impli-
cations of object conditioning? (2) Can the effects of
object conditioning be explained by known principles of
directed graphical models? (3) What new principles, if
any, are necessary to correctly represent the effects of
object conditioning?

3 OBJECT CONDITIONING

Object conditioning can be formally defined within the
framework of plate models, a frequently used formalism
in graphical models. We review this formalism, define
object conditioning, discuss a key probabilistic concept
necessary to understand object conditioning, and discuss
the probabilistic implications of object conditioning.

3.1 PLATE MODELS

Plate models are a common representation for complex
forms of probabilistic graphical models (Buntine, 1994;
Koller and Friedman, 2009). Figure 1 shows three sim-
ple plate models. More general and expressive represen-
tations for such models exist, but plate models are still
widely used because of their simple and familiar nota-
tion. Following Koller & Friedman (2007), we briefly
review key aspects of plate models below.

Objects are a basic element of plate models represented
in the graphical notation as rectangles referred to as
plates. Objects typically correspond to entities that have
physical or conceptual existence in common parlance.
Object instances within a domain of analysis can be di-
vided into a set of mutually exclusive and collectively
exhaustive classes O = {O1 . . . Ok} which define their
type. Examples of object classes mentioned in Section 2
include users, questions, answers, badges, and topics.
Throughout this paper, we use letters in the lower right
corner of plates to denote the object type denoted by that
plate (e.g., the lettersC and P in Figure 1) whereas some
plate notation uses similar letters to denote the cardinal-
ity of the corresponding objects. When needed, we use

cardinality notation (e.g., |C|) to denote the latter quan-
tity.

Relationships between objects are represented by the
manner in which plates overlap. Nested plates imply a
one-to-many relationship between the object classes rep-
resented by the outer and inner plates, respectively. In-
tersecting plates imply a many-to-many relationship be-
tween the two object classes represented by the intersect-
ing plates. For example, the plate models in Figure 1a
and 1b indicate that objects of typeP have a one-to-many
relationship with objects of type C. For ease of exposi-
tion, in the case of the simple nesting shown in Figure 1a
and 1b, we refer to P as a parent object and C as a child
object.

Random variables are represented as circles contained
within the plate representing the object class to which the
variable corresponds. In Figure 1a and 1b, the variables
X and Y characterize objects of type C and the vari-
able Z characterizes objects of type P . Dependencies
are represented by directed edges between variables. In
the context of causal graphical models, edges represent
direct causal dependence. Thus, in Figure 1, Z is a com-
mon cause of both X and Y .

A unit Ui refers to one or more related object classes that
will be analyzed simultaneously. A unit instance ui,j is
an element of the class Ui. Each row of a typical tabu-
lar data set records the values of variables corresponding
to a unit instance, and |Ui| = N , where N is sample
size. This usage follows both statistical and social sci-
ence practice, where units are sometimes referred to as
“units of analysis”, “experimental units”, or “sampling
units”. Where clear from context, the term unit may also
denote a single unit instance ui,j .

The simplest unit consists of a single object, such as a
person, but units often refer to sets of objects. In gen-
eral, units are defined as a tuple 〈O,R,P〉, where O
is a set of object types from which each element of the
unit is drawn, R is the set of relations that hold between
object types in O, and P ∈ O is the perspective ob-
ject type for data analysis (typically, the locus of treat-
ment and outcome). When |O| > 1, we refer to the
unit as a multi-object unit. For example, a multi-object
unit in the domain of Stack Overflow could be defined
as 〈{author, post}, {author ≺ post}, post〉, where ≺
indicates a one-to-many relationship. An analysis based
on such a unit would study posts, along with characteris-
tics of the authors of those posts. Prior work in relational
learning (Maier et al., 2013, 2014) refers to P as a per-
spective, the term we use here.

Multi-object units are common in statistical and causal
analysis, although their existence is often apparent only



in the definition of variables. For example, an analysis
of academic publishing might appear to use a unit of pa-
per, but also include variables such as the impact fac-
tor of a paper’s venue in the analysis, implying a multi-
object unit consisting of both papers and venues. The
relationship between object classes within a unit can be
one-to-one, one-to-many, or many-to-many. For exam-
ple, venues have a one-to-many relationship with papers,
while authors have a many-to-many relationship with pa-
pers.

Plate models can represent multi-object units, although
P is typically implicit. The directed structure of typi-
cal plate models explicitly defines a generative process
for sampling from the joint probability distribution over
the values of variables in instances of those multi-object
units. Plate models also imply the existence of a gen-
erative process over the objects and relationships that
constitute the instances of multi-object units, although
plate models are typically formalized in ways that as-
sume, rather than define, this process. Koller and Fried-
man (2009) explicitly define plate models as assuming
that a set of objects are given, although it is common for
authors to refer to a plate model “generating” a set of
object instances.

A single plate model can provide the basis for defining
several possible units, because the perspective is only
implicit. For example, in the plate model shown in
Figure 1a, either the parent P or child C plate could
be defined as the perspective for a particular analy-
sis. These could correspond to, respectively, analyses of
whether user expertise is a cause of asking more ques-
tions (P=user) or whether longer questions cause more
answers (P=question).

3.2 DEFINING OBJECT CONDITIONING

Consider the probability space denoted by the tuple
(Ω,F , P ). Ω is a sample space of all possible units1,F is
a set of events in which each event contains one or more
units, and P is a function from events to probabilities. F
is a σ-algebra on Ω, a collection of subsets of units that
is closed under complement and under countable unions.

Object conditioning partitions Ω based on an event de-
fined by the identity of one or more object instances con-
tained within those units. Object conditioning on object
class O′ partitions Ω based on the identity of instances
within an object class O′ that is a non-perspective mem-
ber of U ′ with equal or lower cardinality than the num-
ber of instances in the data. Object conditioning thus

1The term outcome is typically used, but we use unit to
avoid confusion with the term used in causal inference to de-
note a possible effect.

defines a sub-σ-algebra FO′ . The occurrence of a given
object instance o′ in a given unit u′ corresponds to an
event on which a probability distribution or expectation
of some other event A can be conditioned, producing
P (A|o′∈u′) or E(A|o′∈u′), respectively.

Conditioning on a discrete variable of O′ similarly de-
fines a sub-σ-algebra FV , in which FV ⊆ FO. That is,
object conditioning provides equivalent or finer-grained
subsets of Ω than does conditioning on a variable of the
same object class. For example, the analysis outlined in
Section 2 would partition data records (each of which
corresponds to a question) into as many discrete sets as
there are Users, which is substantially finer-grained than
would typically be produced by conditioning on a vari-
able such as the programming-ability of a User.

Under the assumptions of object conditioning, any vari-
able of an object type on which we condition (e.g., User)
can take on only a single value within any element of the
partition defined by that object type. If that variable is la-
tent, we will not know its value, but the variable can take
on only a single value for all units in any given subset of
the sample space defined by the conditioning event (e.g.,
questions asked by user5).

Object conditioning is useful across a wide range of unit
structures. For simplicity of exposition, our focus in
this paper is object conditioning in cases in which units
U = 〈{O1, O2}, {O1 ≺ O2}, O2〉 consist of objects
drawn from two classes O1 and O2, O1 has a one-to-
many relationship with O2, O2 is the perspective, and
we condition on object instances from O1. In principle,
the conditioning event can reference any number of ob-
ject classes that are present within a unit, but we focus
on cases that condition on objects within a single object
class. Rattigan (2012) discusses how to apply object con-
ditioning under a wider set of conditions. In addition,
all of the effects we discuss here can be demonstrated
by plate models with only three variables and three pos-
sible dependence structures among those variables—a
confounder (common cause), a mediator (causal chain),
and a collider (common effect)—even though the effects
hold for a much wider class of dependence structures.

Within the framework of causal graphical models, ob-
ject conditioning is a highly unconventional choice. It is
almost never done explicitly. The theoretical infrastruc-
ture for d-separation and causal identifiability was origi-
nally derived only for single-object units. Only recently
(Maier et al., 2014; Maier, 2014; Lee and Honavar,
2016) have the underlying principles of d-separation
been extended to multiple-object units, and this work
has shown that the well-known rules of d-separation for
single-object units do not directly apply to multi-object
units. Object conditioning further extends the known dif-



ferences between the analysis of causal dependence in
single-object units and multi-object units.

This paper follows an earlier proposal by two of the au-
thors for object conditioning in causal graphical models
(Rattigan et al., 2011).2 However, we now know that the
explanation in that paper of the probabilistic implications
of object conditioning is both incorrect and incomplete
(see Section 5 for details), and the new explanation we
propose is one of the principal contributions of this pa-
per.

There exists a special case in which conditioning on ob-
jects and conditioning on variables is equivalent. Specif-
ically, conditioning on Z (a variable of the parent object)
will approach or be equivalent to conditioning on P (the
parent object) as |Z| approaches |P |. However, in the
vast majority of cases |Z| � |P | and |FV | ⊂ |FO|.
Thus the two conditioning operations are only rarely
equivalent. In addition, the special case identified above
demonstrates another reason to understand the effects
of object conditioning. When variable conditioning is
equivalent to object conditioning, analysts who are un-
aware of the effects of object conditioning could observe
an apparent set of conditional independencies (X not
marginally independent of Y , but X conditionally inde-
pendent of Y given Z) and incorrectly conclude that Z
must be part of a d-connecting path between X and Y .
Knowledge of the effects of object conditioning would
allow them to correctly infer that the observed evidence
only implies that one or more variables on P lie on the
d-connecting path betweenX and Y (and that those vari-
ables may not include Z).

3.3 EXCHANGEABILITY

Before discussing the probabilistic implications of ob-
ject conditioning, we ground the discussion in an un-
conventional part of probability theory. The traditional
discussion of probabilistic implications of specific causal
structures (e.g., Pearl, 2009) is grounded in principles of
conditional independence. Here, we expand the relevant
principles to include conditional exchangeability.

A sequence of random variables X1, . . . , XN is
said to be exchangeable if their joint distribution
is invariant under permutations: F (X1, . . . , XN ) =
F (Xπ(1), . . . , Xπ(N)) where π(·) is a valid permutation
of the values 1, . . . , N . Informally, the values of X are

2The earlier paper used the term relational blocking, but
we now recommend the term object conditioning. The newer
term more clearly describes the functioning of the approach. It
distinguishes the use of the approach in observational analy-
sis from the use of blocking in experiments. Finally, the term
blocking has an alternative meaning related to d-separation in
graphical models that could prove confusing to some readers.

said to be exchangeable if, given a finite sequence of ob-
servations, any re-ordering of this sequence is equally
probable. Conditional exchangeability is defined anal-
ogously to conditional independence: Given a sub-σ-
algebra Fs, conditional exchangeability of X is satisfied
if, for every element of Fs, X is exchangeable.

The exchangeability of a sequence of random variables
is directly relevant to the analysis of observational data.
Each unit’s version of a random variable X can be
thought of as a separate (and potentially exchangeable)
random variable X1, . . . , XN . Note that if these ran-
dom variables X1, . . . , XN are independent and iden-
tically distributed (as often assumed), then this implies
exchangeability. However, the converse is not true: ex-
changeability does not imply independence. To under-
stand the difference, consider X = x1, x2, . . . , xn, a fi-
nite sequence of independent draws from a Bernoulli dis-
tribution with parameter p. If p is known, then the draws
are independent. However, if p is unknown, then any set
of draws {x1, x2, . . . , xk} where k < n is informative
about p and thus provides information about xk+1. The
draws are exchangeable because any permutation of the
indices would leave the distribution of X unaffected, but
the draws are not independent if p is unknown (de Finetti,
1931; Kallenberg, 2005; Freer and Roy, 2012; Greenland
and Draper, 2011). This latter case is directly analo-
gous to object conditioning, which partitions the space of
multi-object units in such a way that Z is known to have
only a single value, but the specific value is unknown.

Exchangeability and conditional exchangeability have
long been considered a key property for causal in-
ference under the potential outcomes framework (e.g.,
Greenland and Robins, 1986; Robins and Greenland,
1992). Hernán and Robins (2006) note that ”...condi-
tional exchangeability—or some variation of it—is the
weakest condition required for causal inference from ob-
servational data.” The traditional logic of exchangeabil-
ity in causal inference is relatively straightforward: If
treatment X is conditionally exchangeable given Z, then
each subset of the sample space defined by some unique
value of Z is the equivalent of a randomized experiment.
Exchangeability is largely ignored among researchers in
causal graphical models in favor of the apparently equiv-
alent property of conditional independence. Below, we
show that conditional exchangeability is necessary to un-
derstand some cases of object conditioning, and that con-
ditional independence alone cannot explain these cases.

3.4 EXPLAINING OBJECT CONDITIONING

Given the definition of object conditioning, how can we
explain its apparent effects? The empirical evidence
cited in Section 2 indicates that object conditioning has



substantially different probabilistic implications than tra-
ditional conditioning on the values of a variable. How
can we explain these implications?

We assume the following generative process for multi-
object units. Data instances ui,j are drawn randomly
from the population of multi-object units. Specifically,
for each ui,j , a parent object is sampled without replace-
ment from the set of all parent objects and then child ob-
jects are randomly sampled from the set of all child ob-
jects conditioned on that parent object. Then, variables
X , Y , and Z are generated according to a specific causal
structure (see below). Each Xi, Yi, and Zi is identically
distributed, respectively.

Note that the objects and relationships that comprise a
unit are generated prior to the values of variables. This
assumption is implicit in plate models and many other
models, in that nearly all such models assume a set of
interrelated objects whose variable values are unknown
but whose object structure already exists. A violation of
this assumption would mean that variables of objects par-
tially or completely determine the relationships among
those objects.

Note also that each Xi, Yi, and Zi is identically dis-
tributed, respectively. Each variable of a child object that
is caused by a variable of a parent object is generated
with respect to the same value of the variable of the par-
ent object. This assumption is explicit in plate models,
but we raise it here to emphasize its importance. Specif-
ically, consider units U1 = 〈{O1, O2}, {O1 ≺ O2}, O2〉
in which Z = z1 for object o1,j in unit instance u1,j and
in which Z = z1 for all instances of O2 in u1,j . That
is, the value of Z for an object instance o1,j will remain
constant across all child objects related to o1,j . A viola-
tion of this assumption would mean that different child
objects of the same parent object would experience dif-
ferent “versions” of a variable of the parent.

To explore the conditional exchangeability implications
of object conditioning, we consider three canonical cases
of conditioning that directly match those in Pearl’s clas-
sic definitions of d-separation (Pearl, 2009). Specifically,
we examine cases in which the unit is 〈{P,C}, {P ≺
C}, C〉, in which each unit instance consists of a child
object with its associated parent object, and a data set
consists of |C| data instances. Within each unit, a vari-
able Z of the parent object P forms the middle node of
a three-node structure with two variables X and Y of the
child object C. In the three cases, Z corresponds to a
confounder, a mediator, or a collider, respectively. Each
of these structures is shown in Figure 2.

In each of these cases, we prove that, under object con-
ditioning, the values of X and the values of Y are ex-

Figure 2: Three simple causal structures in which a vari-
able Z of a parent object serves as a (a) confounder, (b)
mediator, or (c) collider, respectively.

changeable. This directly implies the lack of a biasing
path between the treatment X and outcome Y (Flan-
ders and Eldridge, 2015; Angrist et al., 1996; Hernán and
Robins, 2006). All three theorems below prove the same
property in different contexts.

Definition 1. Given the structures of Figure 2, exchange-
ability among values of X and among values of Y holds
if, given two permutations πx(·) and πy(·):

p(x1, . . . , xn, y1, . . . , yn)

= p(xπx(1), . . . , xπx(n), y1, . . . , yn)

= p(x1, . . . , xn, yπy(1), . . . , yπy(n))

= p(xπx(1), . . . , xπx(n), yπy(1), . . . , yπy(n)).

Alternatively, p(Xi, Yi) = p(Xi, Yj) = p(Xj , Yi) =
p(Xj , Yj).

First, consider a version of the generative process in
which Z is a confounder (abbreviated as C1 and illus-
trated in Figure 2a). Object conditioning on P produces
exchangeability among the values of X and among val-
ues of Y within the set of child objects of each instance
of P . Proofs appear in the supplemental materials.

Theorem 1. Under C1, object conditioning on P pro-
duces exchangeability among values of X and among
values of Y .

That is, no xi provides special information about the
value of the corresponding yi, thus values of X are ex-
changeable and values of Y are exchangeable. However,
any value xi provides information about z which, in turn,
provides information about yj , thusX and Y are not con-
ditionally independent given the object P , but X and Y
are conditionally independent given the variable Z.

Next, consider a version of the generative process in
which Z is a mediator (abbreviated as C2 and illustrated
in Figure 2b). Object conditioning on P produces ex-
changeability among values of X and among values of
Y within the set of child objects of each instance of P .

Theorem 2. Under C2, object conditioning on P pro-
duces exchangeability among values of X and among
values of Y .



Again, any value xi provides information about z which,
in turn, provides information about yj , thus X and Y are
not conditionally independent given P , but X and Y are
conditionally independent given Z.

Finally, we consider a version of the generative process
in which Z is a collider (abbreviated as C3 and illus-
trated in Figure 2c). Once again, object conditioning
on P produces exchangeability among values of X and
among values of Y within the set of child objects of each
instance of P .

Theorem 3. Under C3, object conditioning on P pro-
duces exchangeability among values of X and among
values of Y .

This exchangeability is a direct consequence of both X
and Y being i.i.d. Here, X and Y are marginally inde-
pendent and remain independent even when conditioned
on the object P . In contrast, X and Y are not condition-
ally independent given the variable Z.

3.5 IMPLICATIONS

What does this mean for causal inference? Object con-
ditioning produces exchangeability given all three of the
canonical causal structures. These theoretical results are
consistent with the empirical evidence cited in Section
2 of Rattigan et al. (2011), although the results indi-
cate that the explanation in that earlier paper misinter-
preted conditional exchangeability as conditional inde-
pendence. The proofs also indicate that object condi-
tioning can provide a powerful tool for overcoming la-
tent confounding, one of the most persistent and impla-
cable challenges to effective causal inference. Indeed,
where it is applicable, object conditioning can be argued
to improve over conventional conditioning on the mea-
sured value of a potential confounder on the parent ob-
ject. First, object conditioning does not run the risk of
inducing dependence because of inadvertently condition-
ing on a collider. Second, it avoids the potential problem
of measurement error, which introduces bias into esti-
mates of causal effect (Scheines and Ramsey, 2016).

4 USE OF OBJECT CONDITIONING

We are not the first to recognize the value of object condi-
tioning, although we are the first to accurately explain its
surprising probabilistic implications for causal graphical
models. As mentioned in Section 1, object conditioning
abstractly describes the central features of a family of
methods commonly used in social science, economics,
medicine, and other fields. Instances from this family in-
clude within-subject designs, multi-level models, inter-
rupted time-series designs, and difference-in-differences

designs. Each are described in more detail below.

These methods attempt to estimate the strength of causal
dependence between treatment and outcome, often de-
noted as treatment effect. We denote the methods be-
low as designs, a term used to describe a set of analysis
choices that allow stronger causal conclusions than if the
design had not been employed. Finally, one of the meth-
ods we discuss below—multi-level models—is a mod-
eling formalism rather than a design, but we denote all
methods below as designs for ease of exposition.

Within-subject designs analyze subjects (e.g., persons)
who each receive two or more treatments at different
times (Greenwald, 1976). Within-subject designs esti-
mate treatment effect based on a systematic comparison
of the outcome values corresponding to the same sub-
ject (unit). The example given in Section 2 is a within-
subjects design. Closely related design elements include
twin studies (Boomsma et al., 2002) and the use of block-
ing in experimental studies (Fisher, 1935).

Key features of within-subject designs can be repre-
sented by object conditioning in which the parent ob-
ject corresponds to the subject and the child objects cor-
respond to treatment episodes that generate treatment-
outcome pairs that vary by episode. Note that some co-
variates reside on the parent object (e.g., the level of pro-
gramming knowledge of the writer of a question), rather
than on the object corresponding to the treatment episode
(e.g., the length of a post).

Multi-level models (MLMs) explicitly analyze units
consisting of multiple types of objects nested within one
another (Goldstein, 1987, 2010; Gelman and Hill, 2007).
They estimate treatment effect by modeling the influence
of variables on low-level objects as well as the aggregate
effects of higher-level objects, even when the specific ex-
tent of higher-level effects is due to latent factors. MLMs
are also sometimes referred to as hierarchical models or
nested data models.

Key features of multi-level models can be represented as
object conditioning, because MLMs typically use only
a single variable to correspond to the identity of given
higher-level object. The example in Section 2 corre-
sponds directly to a simple MLM.

Interrupted time-series (ITS) designs analyze a tem-
poral sequence of outcome values for each unit over
a period in which the value of treatment changes at
known times (McDowall et al., 1980). ITS designs es-
timate treatment effect by comparing, within each unit,
the outcome under the new treatment value with the as-
sumed unchanged continuation of the previous outcome
trend. Closely related concepts include studies that an-
alyze panel data or longitudinal data, as well as studies



that employ cross-over or repeated measures designs.

Key features of ITS designs can be represented as object
conditioning, where individual treatment episodes corre-
spond to child objects and the parent object corresponds
to an unchanging entity. In Stack Overflow, for exam-
ple, the parent object could correspond to a user (whose
characteristics are assumed to be constant over short time
intervals) and the child objects could correspond to short
time intervals directly before and after a treatment event
such as the awarding of a badge.

Difference-in-differences (DID) designs are similar to
ITS designs, but examine outcome values for units that
have received multiple values of treatment and units
whose value of treatment has not changed (Shadish et
al., 2001). They estimate treatment effect by comparing
the change in the outcome variable for units experiencing
multiple values of treatment with units experiencing only
one value. DID designs can be viewed as an elaboration
of ITS designs that increases external validity.

Each of the methods above exploits a set of closely re-
lated statistical effects that increases the accuracy of (and
confidence in) estimates of causal dependence. Each de-
sign implicitly conditions its estimate of causal effect for
the low-level object on the existence of some higher level
object (and the context that object provides for the causal
dependence in its associated lower-level objects).

5 PRIOR WORK

Several categories of prior work relate to object con-
ditioning in various ways. Some existing approaches
would appear to encompass object conditioning, and we
show how each of these approaches fails to fully pre-
dict its effects. Other approaches use shared variables to
make causal inferences in special cases, and we discuss
how these efforts differ substantially from the work dis-
cussed here.

The most common approaches to applied causal analy-
sis in multi-object units fall into three general categories:
grounding; flattening; and using ID variables. None of
these approaches provides a complete and accurate rep-
resentation of the probabilistic implications provided by
object conditioning.

Grounding explicitly uses the semantics of plate mod-
els to produce a ground causal graphical model given
a particular set of object and relationship instances (see
the supplemental material for examples of plate models
and their corresponding ground models). Indeed, the se-
mantics of plate models are generally tied directly to the
ground models resulting from a given combination of
plate model and set of object and relationship instances.

That is, the meaning of a plate model is as a representa-
tion of an infinite set of ground models that it can induce,
given a set of related object classes.

However, a ground model explicitly discards the infor-
mation necessary to express object conditioning in prin-
ciple or apply the technique in practice. For example,
consider the plate model in Figure 1b. Because Z is la-
tent, a ground version of this model would produce only
pairs of variables X and Y , but the information about
which pairs corresponded to which parent object would
be lost. Without that information, we cannot perform ob-
ject conditioning or obtain its benefits.

Flattening is an alternative to grounding that converts
multi-object units into single-object units by importing
variables into the perspective object (e.g., Friedman et
al., 1999). For example, variables of user objects would
be imported into question objects and treated as if they
were sampled independently for each question. This con-
verts a plate model of the type in Figure 1b into a plate
model of the type in Figure 1c.

As with grounding, flattening fails to represent the oppor-
tunities offered by object conditioning. Flattening dis-
cards information about the known equivalence among
values of Z for child objects belonging to the same par-
ent object, implying instead that each instance of Z for
each child is sampled independently. It is possible to
condition on the value of a variable of a parent object,
but flattening loses the information necessary to identify
which sets of units necessarily have identical values of
Z if it is latent. Thus, flattening cannot express the key
properties of object conditioning and must discard all the
potential advantages, including eliminating bias due to
latent variables of parent objects.

Using ID variables is a final approach which flattens
multi-object units, but preserves information about the
identity of parent objects by creating a new variable of
each child object that records the ID of the parent ob-
ject. This approach is a core component of multi-level
models, which can explicitly estimate parameters for the
aggregate effect of individual parent objects on the vari-
ables of the corresponding child objects, and it has also
been applied as part of various techniques in statistical
relational learning (Getoor and Taskar, 2007; Perlich and
Provost, 2006). Earlier work by two of the authors (Rat-
tigan et al., 2011; Rattigan, 2012) proposed ID variables
as an explanation for the probabilistic implications of ob-
ject conditioning.

Unlike the prior approaches, ID variables preserve infor-
mation that enables object conditioning: ID variables can
be conditioned on when estimating causal effects. How-
ever, treating the identity of the parent object as an ordi-



nary variable assumes that conditioning on such a vari-
able will have the same probabilistic implications as con-
ditioning on other variables. As we show in Section 3,
conditioning on objects has different probabilistic impli-
cations than conditioning on variables, and thus ID vari-
ables will lead to incorrect conclusions. At the very least,
ID variables do not share the properties of conventional
random variables, and this implies the need for a new
syntax and semantics of analytic operations such as con-
ditioning on ID variables.

The explanation in Rattigan et al. (2011) attempts to cir-
cumvent this objection by assuming that all variables of a
parent object deterministically depend on ID, and that the
rules of deterministic d-separation (Geiger et al., 1990;
Spirtes et al., 2000) imply the same conditional indepen-
dence implications observed in the simulations. How-
ever, ID variables lack an internally consistent seman-
tics regarding what can cause ID, what ID can cause,
and what intervening on an ID variable means. Fur-
thermore, in the case in which treatment and outcome
jointly cause a variable Z of a parent object, it is unclear
how an ID variable could (simultaneously) completely
determine the value Z (as assumed in that paper). Other
researchers (e.g., Theobald, 2015) have agreed with the
empirical conclusions of the earlier paper while citing
similar doubts about its theoretical explanations. Finally,
and quite aside from these problems with ID variables,
the explanation in Rattigan et al. (2011) contends that
conditioning on ID leads to conditional independence in
cases in which we show that conditional exchangeability
is the only property that holds.

Shared variables are the focus of several approaches to
causal inference. For example, recent work by Wang and
Blei (2018) proposes what they call ”the deconfounder”,
an algorithm that infers a latent variable as a substitute
for unobserved confounders in multiple-cause settings.
This work involves explicit inference of the latent vari-
able, rather than using relational data explicitly for the
purposes of conditioning as we do in the work reported
here. Balke and Pearl (1994) propose ”twin networks”
which posit the existence of background variables that
are shared among separate network instances and serve
as common causes. These networks were primarily em-
ployed as a teaching tool, not a practical tool for analy-
sis. In contrast, we consider the case in which parent ob-
jects can participate in a wider array of structures (forks,
chains, or colliders) and we propose object conditioning
for everyday use in causal inference.

6 CONCLUSIONS

Object conditioning informs a surprisingly diverse set of
topics. First, object conditioning provides a new tool to

address the persistent challenge of detecting and remov-
ing the bias due to latent confounders. If object condi-
tioning substantially reduces or eliminates the observed
dependence between treatment and outcome, then (un-
der the assumptions outlined in Section 3) this implies
the existence of at least one latent confounder on the par-
ent object. Thus, object conditioning both helps detect
the existence of latent confounders on parent objects and
provides a means to remove those effects without the at-
tendant risk of inducing collider bias.

Another implication of this work is that some re-
searchers’ intuitions about the statistical properties of
plate models may be incorrect. For example, when a
plate model contains a variable that lies outside of any
plate, and the value of that variable is unobserved, the
situation is the equivalent of object conditioning. That is,
only a single instance of that extra-plate (parent) variable
exists, along with many potential instances of the intra-
plate (child) variables. In such situations, a latent vari-
able of a parent object that appears to be a confounder
will still leave the variables on child objects exchange-
able, and yet the naive application of d-separation would
deem the variables to be marginally dependent.

Finally, this work highlights the utility of conditional ex-
changeability in causal inference. Object conditioning
makes clear that conditional exchangeability can hold in
cases that conditional independence does not, and that
conditional exchangeability can be an effective tool for
inferring which causal models are consistent with the ob-
served data. In prior work on causal inference that did
not explicitly consider object conditioning, it could be
difficult to identify a clear need for distinguishing be-
tween conditional exchangeability and conditional inde-
pendence. Object conditioning, in contrast, makes the
central role of exchangeability in causal inference much
more obvious and demonstrates how exchangeability and
independence are different yet complementary.
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