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Abstract

Medical pathology images are visually eval-
uated by experts for disease diagnosis, but
the connection between image features and
the state of the cells in an image is typi-
cally unknown. To understand this relation-
ship, we develop a multimodal modeling and
inference framework that estimates shared la-
tent structure of joint gene expression levels
and medical image features. Our method is
built around probabilistic canonical correlation
analysis (PCCA), which is fit to image embed-
dings that are learned using convolutional neu-
ral networks and linear embeddings of paired
gene expression data. We train the model
end-to-end so that the PCCA and neural net-
work parameters are estimated simultaneously.
We demonstrate the utility of this method in
constructing image features that are predictive
of gene expression levels on simulated data
and the Genotype-Tissue Expression data. We
demonstrate that the latent variables are inter-
pretable by disentangling the latent subspace
through shared and modality-specific views.

1. INTRODUCTION

Many diseases are diagnosed by pathologists using mor-
phological features in tissue imaging data. But the genes
that capture the internal state of cells and are associ-
ated with a specific tissue morphology are typically un-
known and hard to assay in a particular sample. The
Genotype-Tissue Expression (GTEx) Consortium [Con-
sortium et al., 2017, Carithers et al., 2015] has collected
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Figure 1: In our experiments, a paired GTEx sample consists
of a whole tissue slide (cropped) along with gene expression
levels from the same tissue and donor.

data from over 948 autopsy subjects (donors), including
standardized whole tissue histology slides, giving us im-
ages of each sample, and bulk RNA-sequencing, giving
us gene expression levels for each sample, from approx-
imately 50 different human tissues (Figure 1). These
multi-subject, multi-view data provide an opportunity to
develop computational tools that capture the relationship
between cell state (observable in gene expression data)
and morphological features (observable in histology im-
ages).

Historically, modeling data across two views with
the goal of extracting shared signal has been per-
formed by some version of canonical correlation analy-
sis (CCA) [Hotelling, 1936]. Given two random vectors,
CCA aims to find the linear projections into a shared la-
tent space for which the projected vectors are maximally
correlated. Probabilistic CCA (PCCA) is particularly at-
tractive for medical applications with small sample sizes
but large feature spaces by explicitly modeling uncer-
tainty [Ghahramani, 2015].

In its most general form, PCCA will ignore possibly im-
portant nonlinear structure in data such as images; this
nonlinear structure could be extracted first with com-
puter vision techniques such as convolutional neural net-
works [LeCun et al., 1998] that have achieved excel-



lent performance on medical imaging tasks [Bar et al.,
2015, Shah et al., 2017, Esteva et al., 2017, Geras et al.,
2017, Gulshan et al., 2016]. To this end, two recent stud-
ies trained models in a two-stage approach, first embed-
ding the imaging data using convolutional models and
then fitting CCA to the lower-dimensional embedded
data [Ash et al., 2018, Subramanian et al., 2018]. An-
other two-stage approach computed the principal compo-
nents of single views and then computed cross-view cor-
relations [Barry et al., 2018], while Cooper et al. [2012]
first clustered image features and then looked for ge-
nomic associations. However, two-stage approaches de-
couple the image feature learning from estimating the
shared latent subspace of the data views, leading to im-
age features that capture minimal variation in the shared
subspace, and projections of the two views that are diffi-
cult to interpret. While “interpretability” is a broad con-
cept [Lipton, 2016], here we mean specifically that we
can identify small subsets of correlated features across
modalities, here, gene expression levels representing cell
state that are associated with specific image features.

To address these challenges, we propose a multimodal
modeling and inference framework, deep probabilistic
CCA (DPCCA). DPCCA estimates end-to-end the non-
linear embeddings and shared latent structure of paired
high-dimensional data sets—here, histology images and
paired gene expression data. Our model is probabilis-
tic in that it is generative and models parameter un-
certainty, interpretable in that it uses sparse PCCA to
associate sets of genes with image features, and non-
linear in that it learns convolutional features for high-
dimensional observations. Our training procedure makes
use of automatic differentiation of a single loss function;
this avoids the difficulties of implementing joint infer-
ence over probabilistic models and neural networks via
conjugacy and message passing [Johnson et al., 2016,
Lin et al., 2018].

The impact of solving these challenges is twofold. First,
our DPCCA model will include latent factors capturing
shared variation across the paired data modalities but
also latent factors that capture modality-specific varia-
tion; our end-to-end inference will substantially increase
the shared variation captured in the latent space by iden-
tifying embeddings for each data view that maximize the
shared variation. Second, this generative framework al-
lows cross-mode imputation: given a fitted model, we
can guess at the values of gene expression data for a
held-out histology image, for example. This is partic-
ularly important given a discrepancy in cost between the
two data modalities—it is much more expensive to as-
say gene expression in a tissue sample than to stain and
image that sample.

We illustrate the behavior of our method for simulta-
neous embedding and latent space modeling of multi-
ple data modalities on both the MNIST data [LeCun
et al., 2010], where we paired Gaussian-distributed vec-
tors with specific digits, and on the GTEx v6 data. We
compare the results from our approach against results
from related multimodal approaches in order to illus-
trate the additional gains in the variation captured in the
shared latent space and also the interpretability of the
end-to-end inference of embeddings and shared space.
We validate these results in the GTEx v6 data using ad-
ditional held out biological data that correlate with signal
identified in the inferred latent space. We conclude with
thoughts on further improvements to our model.

1.1 CONTRIBUTIONS

The fundamental contributions of DPCCA to the field
of simultaneous embedding and joint modeling of high-
dimensional multimodal data include addressing three
main methodological and domain-specific challenges:

• In our end-to-end training procedure, the shared la-
tent subspace drives the convolutional image em-
beddings. Compared with a standard autoencoder
that learns embeddings that minimize a reconstruc-
tion loss, the PCCA backend encourages image em-
beddings that maximally explain variation in the
other data modalities.

• The shared and modality-specific latent variables
provide three views into variation that can be mined
for domain-specific patterns of interest, making our
model interpretable with respect to the data domain.

• The shared latent variables represent a compos-
ite phenotype between tissue morphology and gene
expression—sets of genes representing cell state
and image features that covary together. These
composite phenotypes can be used for many down-
stream tasks, including identifying paired pheno-
typic differences between sick and healthy patients
and testing for associations with other modalities,
such as genotype.

2. RELATED WORK

The original realization of CCA was more recently re-
framed as a probabilistic model. This model is known
as inter-battery factor analysis in the statistics commu-
nity [Browne, 1979] and was rederived as probabilis-
tic CCA [Bach and Jordan, 2005, Murphy, 2012] in the
machine learning community. An important feature of
PCCA is the allowance for view-specific noise. If PCCA



assumed independent noise, that would mean that any
view-specific variation in the data would have to be mod-
eled as shared variation. The model would have no other
way of explaining that variance given that it assumes
noise is independent.

CCA has also been extended to nonlinear settings us-
ing kernel methods [Akaho, 2006, Hardoon et al., 2004].
Variants of combining CCA with neural networks also
exist. Deep CCA (DCCA) estimates linear projections
on the outputs of neural networks [Andrew et al., 2013].
Deep variational CCA (DVCCA) is a variational approx-
imation of CCA using a single encoder, while we learn
pairs of embeddings with view-specific encoders [Wang
et al., 2016]. While DCCA learns embeddings that cap-
ture shared structure, it does not explicitly model view-
specific noise as in PCCA. We demonstrate that this is
an important benefit of our model in Section 4. Further-
more, learning linear maps as in CCA and PCCA is key
to the interpretation of covarying data features from a
given latent variable.

Deep multimodal learning without the notion of cor-
relation maximization is another related body of work
[Ngiam et al., 2011]. However, a multimodal autoen-
coder that learns a shared lower-dimensional representa-
tion explicitly optimizes a reconstruction loss, but it does
not disentangle the latent space across views, which is
an essential component of our model. Another related
model worth mentioning is oi-VAE [Ainsworth et al.,
2018], which uses multiple decoders over the same latent
variables, with the goal of having interpretable factors of
the same data view, not accounting for multiple views.

We note that our domain-specific problem is related to
other domains such as image captioning in computer vi-
sion and neural machine translation in natural language
processing. A major distinction in language-based mod-
eling is that they cannot make the same Gaussian as-
sumptions about their data.

3. DEEP PROBABILISTIC CCA

3.1 PROBLEM SETUP

We index n paired samples using i ∈ {1, 2, . . . , n}, and
we index two data views a and b using j ∈ {a, b}. The
ith paired sample is a tuple (xa

i ,x
b
i ). Here, an image

xa
i is a multidimensional array with dimensions for the

number of channels, image height, and image width; for
ease of notation we can flatten this multidimensional ar-
ray into a vector with dimensionality Rqa . A gene ex-
pression sample xb

i is a vector Rqb for qb genes. We
embed each data view before performing PCCA, and we
refer to these view-specific embeddings as pa- and pb-

TISSUE COUNT TISSUE COUNT
Adipose Tissue 5 Nerve 9
Adrenal Gland 134 Ovary 88
Bladder 4 Pancreas 166
Blood Vessel 47 Pituitary 51
Brain 172 Prostate 53
Breast 5 Salivary Gland 10
Cervix Uteri 7 Skin 28
Colon 81 Small Intestine 59
Esophagus 134 Spleen 103
Fallopian Tube 4 Stomach 106
Heart 188 Testis 44
Kidney 12 Thyroid 65
Liver 115 Uterus 69
Lung 76 Vagina 17
Muscle 369 TOTAL 2221

Table 1: We preprocessed the GTEx v6 data to only include
samples from which 1000 × 1000 pixels crops could be taken
and that had both tissue slides and gene expression levels. After
preprocessing, we obtained 2221 paired samples from 29 tissue
types. The data are both small and class-imbalanced.

dimensional vectors ya and yb. Here we use a convo-
lutional autoencoder for the image vector and a linear
embedding for the gene expression vector. Each paired
sample comes from a single donor and one of 29 human
tissues after preprocessing (Table 1). The sample tissue
labels are held out to be used as biological signal to vali-
date the model, which we explore in Section 4.

3.2 CANONICAL CORRELATION ANALYSIS

Consider two paired data views, Ya ∈ Rn×pa

and Yb ∈
Rn×pb

. We assume the data are mean-centered. The ob-
jective of CCA is to learn two linear maps Ha ∈ Rpa×k

and Hb ∈ Rpb×k such that the ith pair of canonical vari-
ables, zai = Yaha

i and zbi = Ybhb
i , are maximally corre-

lated. These canonical variables are further constrained
to have unit length (‖zai ‖ = ‖zbi‖ = 1) and to be or-
thogonal (〈zai , zak〉 = 〈zbi , zbk〉 = 0 for all i 6= k pairs).
The solution to this optimization problem can be found
analytically by solving the standard eigenvalue problem
[Hotelling, 1936, Hardoon et al., 2004]. The geometric
interpretation is that we estimate two linear maps that
project both views into a shared subspace.

3.3 PROBABILISTIC CCA

A probabilistic interpetation of CCA (PCCA) extends
these ideas to a model that shares properties with fac-
tor analysis [Browne, 1979, Bach and Jordan, 2005]. In



Figure 2: The input is a paired set of histology images and gene expression levels. The model is trained by fitting PCCA to
embeddings from convolutional (images) and linear (gene expression) autoencoders (gray). Then we sample from the PCCA model
using the reparameterization trick (ε ∼ p(ε) is in yellow), and then we backpropagate through the model using the reconstruction
loss. The model learns shared and modality-specific latent variables (blue). Sparsity is induced on the PCCA parameters for the
gene expression levels (red box).

particular, PCCA can be written as

zc ∼ N (0k; Ik)

za, zb ∼ N (0k; Ik)

ya ∼ N (Λazc + Baza; Ψa)

yb ∼ N (Λbzc + Bbzb; Ψb),

(1)

where Λj ∈ Rpj×k, Bj ∈ Rpj×k, and Ψj ∈ Rpj×pj

.
Note that the view-specific latent variables za and zb ac-
count for view-specific variation, while the shared latent
variable zc captures shared variation (covariation) across
the two views.

Note that PCCA can be viewed as factor analysis with
appropriately tiled data and parameters,

y =

[
ya

yb

]
z =

zc

za

zb


Λ =

[
Λa Ba 0

Λb 0 Bb

]
Ψ =

[
Ψa 0

0 Ψb

]
, (2)

where 0 denotes appropriately sized matrices of all zeros.
This immediately suggests expectation-maximization
(EM) for inference in PCCA, drawing from the EM
parameter updates for factor analysis given this tiling
[Ghahramani et al., 1996]:

Λ? =
∑
i

(
yiEz|yi

[
z | yi

]>)(Ez|yi

[
zz> | yi

])−1
Ψ? =

∑
i

1

n
diag

(
yiy
>
i −Λ?Ez|yi

[
z | yi

]
y>i

)
. (3)

In this framing, y ∈ Rp where p = pa + pb and z ∈ Rk

where k = kc+ka+kb, the dimensions of zc, za, and zb

respectively. Thus, y ∈ Rp, Λ ∈ Rp×k, and Ψ ∈ Rp×p.
In contrast to CCA, PCCA does not constrain the latent
variables to be orthonormal.

Algorithm 1 End-to-end training of DPCCA

1: Initialize PCCA parameters, image encoder and de-
coder parameters, and gene encoder and decoder pa-
rameters (Λ, Ψ, Wa

e , Wa
d , Wb

e, Wb
d, respectively).

2: while epoch < # epochs do
3: For m paired samples, B = {(xa,xb)i}mi=1.
4: for (xa,xb)i ∈ B do
5: Encode the jth view as Ej(xj)→ yj .
6: Compute Λ? and Ψ? using Equation 3.
7: Sample ŷj ∼ N (Λj?zc+Bj?zj ; Ψ?

j ) using the
reparameterization trick.

8: Decode the jth view as Dj(ŷj)→ x̂j .
9: end for

10: Compute reconstruction loss (Equation 4) and
backpropagate to compute∇LΘ.

11: end while

3.4 END-TO-END TRAINING OF DPCCA

DPCCA is a deep generative model that fits PCCA to
the embeddings of two autoencoders. Additionally, the
model has an `1 penalty on the PCCA gene weights (Λb

and Bb) to encourage sparsity in the factors for the gene
expression levels. The DPCCA model is trained end-
to-end with backpropogation through the reconstruction
loss (Figure 2).

In detail, given a paired sample (xa
i ,x

b
i ), each encoder

Ej(·) with parameters Wj
e embeds its respective views

into a vector, yi ∈ Rpi

. Each embedding is view-
specific: here we use a convolutional encoder for the
images and a linear projection for the genes. The em-
bedded vectors ya and yb are then fit by PCCA using the
parameter updates in Equation 3 with a sparsity-inducing
prior on the b-specific parameters. This results in shared
and view-specific latent variables z =

[
zc za zb

]>
.



Embedding samples ŷj are obtained from the generative
process of the model through sampling from the low-
dimensional PCCA representation ŷj ∼ N (Λj?zc +

Bj?zj ; Ψj?) using the reparameterization trick similar
to Kingma and Welling [2013]. This reparameterization
is needed so that the Monte Carlo estimate of the ex-
pectation is differentiable with respect to the encoders’
parameters.

Each sampled PCCA embedding ŷa and ŷb is then de-
coded into reconstructions x̂a and x̂b using view-specific
decoders with parameters Wj

d (Figure 2). Finally, let L
be the reconstruction loss and Θ be both the PCCA and
neural network parameters, or

Θ = {Λ,Ψ} ∪ {Wj
e,W

j
d}j∈{a,b}.

To estimate the parameters Θ, we perform stochastic
gradient descent, where the gradient at each step is∇ΘL
with

L =
1

n

n∑
i=1

(
‖x̂a

i − xa
i ‖22 + ‖x̂b

i − xb
i‖22
)

+ γ
(
‖Λb‖1 + ‖Λbc‖1

)
. (4)

The hyperparameter γ is the `1 coefficient. This proce-
dure is summarized in Algorithm 1.

4. EXPERIMENTS

In this section, we explore the strengths of our model in
two settings: an expanded version of the MNIST hand-
written digit data [LeCun et al., 2010], and the GTEx v6
data [Consortium et al., 2017, Carithers et al., 2015] that
includes publicly available paired histology images and
gene expression data. We implemented our model in Py-
Torch [Paszke et al., 2017] and used the Adam optimizer
for all experiments [Kingma and Ba, 2014]. Our code is
available online1 to encourage more work in this impor-
tant area.

4.1 BASELINES AND MULTIMODAL MNIST

We first wanted to study the performance of our model,
and compare our results with results from related work
using a simple data set. To do this, we built a mul-
timodal MNIST data set using the MNIST handwritten
digits. MNIST consists of 60,000 training and 10,000
testing images, each with 28×28 pixels with values rang-
ing between 0 (black) and 255 (white). The images are
handwritten digits between 0 and 9 and have correspond-
ing class labels yi ∈ {0, 1, . . . 9}.
1https://github.com/gwgundersen/dpcca

Figure 3: Multimodal MNIST: Each image from one of three
classes (0, 1, 2) is paired with a continuous random variable
(pseudogene) drawn from one of two multivariate normal distri-
butions with separate means and separate diagonal covariance
matrices. Digits of 0s and 1s are paired with samples from the
first distribution. Digits of 2s are paired with samples from the
second distribution.

We augmented MNIST in the following way2. First, we
removed all images with labels not in [0 − 2]. For each
remaining image, we created an associated pseudogene
expression vector by sampling from one of two multi-
variate normal distributions, depending on the image la-
bel. The distributions had separate means and separate
diagonal covariance matrices. If the image was a 0 or 1,
we sampled from the first distribution. If the image was
a 2, we sampled from the second distribution (Figure 3).

Our model should ideally be able to reconstruct both
modalities using the latent variables, including the
modality-specific variation and the shared variation. We
can also examine z to ensure that it captures the shared
information we encoded in the data: namely, the rela-
tionship between the (0,1) images and the 2 images with
their respective multivariate normal distributions rather
than image digit label, which, for (0,1), are not distin-
guished by pseudogenes.

As baselines, we fit a single-view autoenoder (AE) on
just images, a multimodal autoencoder (MAE) on both
data views, and standard PCCA to both data views. We
found that DPCCA can reconstruct both modalities well
relative to these baselines (Table 2). The AE and MAE

2See data/mnist/generate.py in the repository.

Image MSE Pseudogene MSE
Image AE 0.0196 (0.0019) NA

MAE 0.0435 (0.0015) 2.287 (0.0117)
PCCA 0.1207 (0.0032) 33.749 (0.648)

DPCCA 0.0518 (0.0121) 2.3098 (0.0137)

Table 2: Baseline experiments comparing an image-only au-
toencoder (AE), a multimodal autoencoder (MAE), PCCA, and
DPCCA on image and pseudogene reconstructions of multi-
modal MNIST. Each error is an average of five independent tri-
als; standard deviations are shown parenthetically. Our method
performs comparably to an MAE and outperforms PCCA at re-
constructing both views.



Figure 4: Two-dimensional embeddings from models trained on multimodal MNIST. Top row. Embeddings from an autoen-
coder (left) and multimodal autoencoder (right). Bottom row. The shared (left), image-specific (center), and gene-specific (right)
embeddings from DPCCA.

are better than DPCCA at reconstruction, which is ex-
pected since our method also must optimize PCCA in
an inner loop. Standard PCCA performs worse in re-
constructing both views. However, neither the MAE nor
the AE incorporate both shared and view-specific latent
variables, which is crucial to the interpretability of our
framework.

Second, we found that the shared and view-specific la-
tent variables contained appropriate shared and view-
specific information. To illustrate this, we compared the
latent space of DPCCA to the embeddings of the single-
view AE and an MAE (Figure 4, top). In this experi-
ment, we set k, the dimensionality of the embeddings, to
2 because we have empirically found that the AE with
two-dimensional embeddings can reconstruct MNIST
well. Recall that, in our model, z =

[
zc za zb

]>
.

DPCCA’s shared latent variables zc primarily capture the
relationship between the two views rather than distin-
guishing between digits (Figure 4, bottom left). For com-
parison, the AE trained on images alone distinguishes
digit label, while the MAE captures the shared view
without distinguishing 0s and 1s (Figure 4, top).

We compared the shared and view-specific latent vari-
ables of our model to understand the signal captured by
each set. The shared latent variables do not distinguish
digits 0 and 1 but instead distinguish 0s and 1s versus 2s
(Figure 4, top right). The image-specific latent variables
capture information that distinguishes the three digits;
this makes sense since the MNIST images are digits (Fig-

ure 4, bottom center). This view is similar to the image-
only AE. The pseudogene-specific latent variables, like
the shared latent variables, do not distinguish 0s and 1s
because the pseudogene variables corresponding to both
0s and 1s are drawn from the same distribution (Figure 4,
bottom right). These results suggest that DPCCA can
estimate embeddings that maximize the correlation of
the two views, and that together these shared and view-
specific embeddings capture meaningful signals and in-
formation contained in held-out class labels better than
autoencoders alone.

4.2 GTEX PAIRED DATA

In experiments on the GTEx data [Consortium et al.,
2017, Carithers et al., 2015], we wanted to show that our
model can be applied to these data, that it captures in-
teresting held-out biological information such as tissue
type, and that the shared latent variables model variation
in both images and gene expression levels. To show this,
we analyzed the latent factors of our model—a “factor”
being a row vector of Z ∈ Rk′×n where k′ may be k,
kc, ka, or kb depending on context—and found tissue-
specific information and variation in images that covaries
with changes in factor value. We used held-out geno-
types known to be associated with specific genes to iden-
tify genotypes associated with tissue morphology using
the shared factors. While these results are preliminary
from a biological perspective, they are evidence that our
model may be a useful tool for joint analysis of paired



Figure 5: Top. Examples of original data (top row) and recon-
structions (bottom row) of gene expression covariance matrices
(left) and histology slides (right). For clarity, we show the top
10 columns with the highest variance in the original data. Bot-
tom. (Top) View-specific test error over training on the test
data from the GTEx data. (Bottom) Negative log likelihood
(Test NLL) of DPCCA over training on the test data from the
GTEx data.

data.

To this end, we trained our model on 2221 samples from
the GTEx v6 study. Each whole tissue slide was sub-
sampled once down to a 1000×1000 pixel RGB image.
The crops were chosen as follows. A slide was scanned
for tiles in which the mean gray values of the tile and its
neighboring tiles were darker than 180 out of 255. The
final crop was chosen uniformly at random from suitable
tiles. To augment the data, the model was trained on
128×128 pixel crops with random rotations and reflec-
tions. The image autoencoder is based on the DCGAN
architecture [Radford et al., 2015], and the gene autoen-
coder is two linear layers. The gene expression mea-
surements are approximately 18,000-dimensional real-
valued vectors [Hubbard et al., 2002]. For the num-
ber of latent variables for each of the three latent vari-
ables types, we swept over k ∈ {2, 10, 20, 50, 100, 500}
and used the smallest number, 10, that resulted in high-
quality image and gene reconstructions. Thus, kc =
ka = kb = 10 and k = 30.

Before using our model for biomedical data analysis,
we wanted to verify two important properties. First, we
wanted to show that our model could reconstruct both
data modalities from a shared latent variable. To show
this, we saved reconstructions of the images and recon-
structions of the gene covariance matrices during train-
ing. We found that our model was able to reconstruct
both modalities (Figure 5, top) and that the test error for
both views decreases throughout training (Figure 5, bot-

Figure 6: Analyzing a latent factor. Top. Given a single n-
dimensional latent factor (left), we sort the samples or columns
by tissue type (middle) and then plot the value of the factor for
each sample. Bottom. Given a single n-dimensional latent fac-
tor (left), we sort the samples based on the factor’s value (mid-
dle). Then we visualize each sample by its associated histology
slide in the same order as the sorted factors.

tom). This suggests that the shared latent variables carry
sufficient information to recapitulate both views.

Second, we wanted to verify our end-to-end training pro-
cedure. With a model composed of both neural networks
and PCCA, we might ask whether one of the sub-models
is ignored due to an imbalance in the numbers of param-
eters. To test this, we computed the expected complete
negative log-likelihood of held-out test data and found
that it decreased over training (Figure 5, bottom). Taken
together, these results suggest that the neural networks
and PCCA are jointly learning parameters for embed-
ding and reconstructing data from nonlinear observations
while minimizing the negative log-likelihood of the gen-
erative model.

4.3 TISSUE-SPECIFIC ASSOCIATIONS

Next, we wanted to see if our latent factors captured
meaningful, held-out biological information: the tissue
type of the sample. We did this by sorting the samples
(latent variables) by tissue type and plotting the value of
a latent factor for each sample (Figure 6, top). We found
that the model’s latent factor capture tissue-specific in-
formation, and quantified this using a one-sample two-
sided t-test (Figure 7, top). This measures the extent to
which the different subsets of the latent variable’s factors
pull out tissue-specific information.

Our analysis demonstrates that tissue-specific structure
is shared across images and genes, and is captured both
in the shared factors and also in the gene-specific factors,
but less so in the image specific factors. We hypothesize
that the tissue-specific signal in images is captured in the
shared latent space, which is why no tissue-specific sig-
nal is observed in the image-specific latent space.



Figure 7: Top. Analysis of shared (top row), image-specific (middle row), and gene-specific (bottom row) latent factors. The x-axis
(samples) is sorted by tissue type and the y-axis is factor value. We performed a one-sample two-sided t-test on the latent factor
values for all samples of the same tissue type. We applied Bonferroni correction to a p-value threshold of 0.05. Tissue samples
that reject the null hypothesis are marked with diamonds. We ranked the significant p-values and then uniformly partitioned them
from most (3 diamonds) to least (1 diamond) significant. Bottom. Visualization of the variation in the latent factors. The x-axis
(samples) is sorted by factor value, and the images associated with the five most extreme positive and negative values are shown for
three tissues.

4.4 IMAGE-SPECIFIC VARIATION

Next, we wanted to see if DPCCA captures interpretable
morphological information about the images. We did this
by visualizing the image associated with each sample af-
ter sorting by a single latent factor (Figure 6, bottom).
We found that our model’s latent factors capture varia-
tions in images that are visible to the human eye (Fig-
ure 7, bottom). In some cases, this variation is a feature
of the image itself. For example, cropped images with

black chunks are toward one end of the spectrum. But in
other cases, this variation is related to tissue morphology.
For example, more striated muscle tissue and cerebellar
granule cells are both captured by the factor value.

4.5 DOWNSTREAM ANALYSIS: IMAGE QTLS

The shared latent variables from our method can be
integrated into established genomics pipelines such as
quantitative trait loci (QTL) mapping. A cornerstone of



TISSUE SNP P-VALUE FDR
Adrenal Gland chr10 5330574 G T b38 3.49E-10 2.40E-3
Adrenal Gland chr13 33247934 C T b38 7.56E-10 3.81E-3
Adrenal Gland chr9 18386575 C G b38 1.65E-9 9.57E-3

Brain Cerebellum chr1 14376802 A G b38 1.82E-10 1.83E-3
Brain Cerebellum chr9 133727220 C A b38 4.43E-10 2.57E-3

Colon Sigmoid chr10 49206009 T G b38 2.02E-10 1.37E-3
Colon Sigmoid chr12 82520469 A G b38 2.29E-9 5.30E-3

Esophagus Mucosa chr13 68558539 A T b38 3.45E-10 4.51E-5
Muscle Skeletal chr6 150866897 G A b38 6.14E-11 5.62E-4

Uterus chr11 6991683 G A b38 1.89E-9 6.20E-3

Table 3: Top genotypes hypothesized to affect the composite
phenotype capturing gene expression and morphology across
different tissues.

quantitative genomic analysis [Consortium et al., 2017],
this method aims to identify associations between ge-
netic variants (genotypes) and quantitative human traits
such as height, weight, or gene expression levels (pheno-
types), using false discovery rate (FDR)-corrected linear
regression within each tissue. The shared latent factors
estimated using DPCCA constitute a phenotype describ-
ing how the morphology of cells in a tissue (how cells
appear) covaries with gene expression levels (character-
izing cellular state). These resulting composite pheno-
types allow researchers to study the close relationship
between a cell’s appearance and a cell’s state at a macro-
scopic scale, with the goal of using a cell’s appearance
to infer its state at a high resolution. QTL analysis takes
these ideas one step further to query whether population
variation, in the form of differences in genotypes at a
particular genetic locus, leads to differences in cellular
morphology or cellular state.

To do this, we performed QTL analysis using lin-
ear regression (MatrixEQTL [Shabalin, 2012]) with a
Benjamini-Hochberg corrrected FDR threshold of 0.05
between the 30 composite phenotypes and over 400, 000
genomic loci per tissue across 635 individuals. We found
over 20, 000 associations (Table 3). While validating
these associations and elucidating the biological mech-
anisms behind them is beyond the scope of this work,
we note that some of these associations are recurrent in
the biological literature. For example, the genotype on
chromosome 1 at position 14376802 appears to regulate
expression levels of the gene KAZN or Kazrin in cerebel-
lum in the brain. This gene has previously been found to
affect changes in cell shape across various species [Cho
et al., 2011].

5. DISCUSSION AND FUTURE WORK

In this paper, we developed a model and associated
end-to-end inference method for learning shared struc-
ture in paired samples, specifically, histology images and
gene expression levels. While our framework combines
the power of neural networks for nonlinear embeddings

with probabilistic models for interpretable dimension re-
duction, inference is gradient-based and can be imple-
mented using frameworks leveraging automatic differen-
tiation such as PyTorch [Paszke et al., 2017] and Tensor-
Flow [Abadi et al., 2016].

We demonstrated that the latent factors estimated by
DPCCA revealed tissue-specific structure, despite with-
holding tissue labels from the model, as well as view-
specific structure such as color and tissue attenuation for
the images. We further validated our results using QTL
analysis.

Future work will address a unique modeling opportunity
arising from the availability of single cell data, namely
the challenge of annotating images of cells with pre-
dicted gene expression levels at pixel-level resolution. In
the GTEx v6 data, the gene expression levels are assayed
in bulk, meaning that gene expression levels are assayed
across the thousands of cells in the sample that are cap-
tured in a histological image. In this case, we hypoth-
esize that our fitted model could estimate the shared la-
tent variables from a single region of the image and out-
put predicted gene expression labels. This would allow
a dense labeling or annotation of test images, in which
each region of an image were overlaid with the predicted
expression values for a gene of interest. But validation
of these densely labeled images requires single cell tech-
nologies. As single cell data sets are expanding under the
auspice of cell atlas projects [Regev et al., 2017], multi-
view biomedical data sets in which images of expression
levels in single cells are paired with cell-specific gene
expression measurements will be increasingly available.
Other than their use in validation, exciting multi-view
models can be adapted for use in single cell data sets.
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