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Abstract

Online learning, position bias, and diversified
retrieval are three crucial aspects in designing
ranking systems based on user clicks. One
simple click model which explains the posi-
tion bias is the cascade model. Many online
learning variants of the cascade model have
been proposed, but none so far captures diver-
sity. Similarly, online learning to rank methods
which capture diversity do not handle position
bias. Motivated by these limitations, we pro-
pose a novel click model, and the associated
online learning variant to address both position
bias and diversified retrieval in a unified frame-
work. Despite the objective function not being
a standard submodular set function, we prove
that a greedy-approach is a reasonable approx-
imation. We then propose, CascadeLSB, an al-
gorithm whose goal is to recommend K most
attractive items from a large set of L items with
the attractiveness of items being modeled as a
submodular utility function. We analyze the al-
gorithm and prove a gap-free upper bound on
its n-step regret. We comprehensively evalu-
ate CascadeLSB on synthetic and real datasets,
where it outperforms all the baselines.

1 INTRODUCTION
Learning to rank (offline) is a mature field (Agichtein
et al., 2006; Liu et al., 2009; Ricci et al., 2011) but of late
the focus has shifted to online learning to rank methods
because of their comparatively promising results (Grotov
and de Rijke, 2016). This is not completely unexpected,
because offline methods are inherently limited by past

⇤ Correspondence: gaurush2@illinois.edu. This work was
done when all the authors were at Adobe Research.

† Equal Contribution.

data, which are biased due to being collected by produc-
tion policies. Online methods overcome this bias by se-
quential experimentation with user feedback.

User feedback, such as clicks, has been an invaluable
source of information to train online learning to rank
models (Grotov and de Rijke, 2016). A model that learns
from user feedback should respect two aspects of user
behavior. First, it should handle position bias (Craswell
et al., 2008), which refers to the situation when lower-
ranked items are less likely to be clicked due to higher
ranked items. Second, it should capture diversified re-
trieval (Carbonell and Goldstein, 1998) in order to rec-
ommend a set of non-redundant items that maximizes
coverage of different tastes of the user.

One well-studied click model which stands out due to its
simplicity in explaining the position bias is the Cascade
model (Craswell et al., 2008). Here, the user examines
the recommended list of K items from the first item to
the last, clicks on the first attractive item, and does not
examine the rest. Items before the click are deemed to be
unattractive, because the user examines these items but
does not click on them. The clicked item is attractive to
the user, and the rest of the items are unexamined by the
user. Recently, several online learning to rank variants
in the cascade model have been proposed (Kveton et al.,
2015a; Combes et al., 2015; Zong et al., 2016; Li et al.,
2016). These variants, however, model the attractiveness
of the items in different ways such as a “raw” preference
of the user (Kveton et al., 2015a) or a weighted linear
function of the features (Zong et al., 2016). Unfortu-
nately, none of the approaches capture diversity.

The concept of diversity was introduced in online learn-
ing to rank in ranked bandits (Radlinski et al., 2008) and
later extended in Streeter and Golovin (2009); Streeter
et al. (2009). However, these approaches are feature-
free models and thus do not generalize easily. Practi-
cal diversity-driven online learning frameworks (Yue and
Guestrin, 2011; Raman et al., 2012) formulate the prob-



lem as learning to maximize a submodular function in a
feature-based (contextual) bandit setting. However, these
frameworks assume semi-bandit feedback i.e. feedback
on the entire list of K recommended items, and conse-
quently, do not capture the position bias. Furthermore,
when the user does not examine the full list of recom-
mended items and gets “satisfied” in between the list,
these approaches lead to unnecessary penalization of the
lower-ranked, unexamined items. We show that this is in-
deed the case via our experiments (Section 8, Section 9).

Building on the limitations of online learning to rank in
the above two separate lines of work, this paper makes
the following contributions:

• We propose a novel click model, Cascade-Diverse Click
Model (CDCM) to address both position bias and diver-
sified retrieval in a unified framework (Section 3). Under
this model, the objective is to maximize the probability
that the user finds an attractive item in the recommended
list of K items, where attractiveness of items is mod-
eled as a feature-based gain in submodular utility. Inter-
estingly, the objective function is not a set function as
it depends on the order of the items. However, under
standard assumptions, we prove that a greedy approach
performs reasonably well with an approximation factor,
surprisingly, similar to a submodular set function.

• We propose cascading linear submodular bandits – an
online learning variant of CDCM (Section 4). To the
best of our knowledge, this is the first work that studies
a top-K recommender problem in the bandit setting with
cascading feedback and diversity.

• We propose CascadeLSB, a practical algorithm for
learning to rank in the cascading linear submodular ban-
dit (Section 5). We analyze this algorithm and derive a
O(
p
n) upper bound on its n-step regret (Section 6).

• We comprehensively evaluate CascadeLSB on synthetic
and several real-world problems and show that it consis-
tently outperforms the baselines, even when our model-
ing assumptions are violated (Section 8).

• Finally, we discuss a simple extension of CascadeLSB
(Section 9) to the multiple click scenario, which rein-
forces the deficiency of existing diversity driven online
approaches when only partial feedback is available.

Notation: We define [n] = {1, . . . , n} and treat all vec-
tors as column vectors. For any sets A and B, we denote
by A

B the set of all vectors whose entries are indexed by
B and take values from A.

2 BACKGROUND
This section reviews two click models (Chuklin et al.,
2015). A click model is a stochastic model that describes

how the user interacts with a list of items. More formally,
let E = [L] be a ground set of L items, such as the set
of all web pages or movies. Let A = (a1, . . . , aK) 2
⇧K(E) be a list of K  L recommended items, where
ak is the k-th recommended item and ⇧K(E) is the set
of all K-permutations of the set E. Then the click model
outlines how the user examines and clicks on items in A.

2.1 Cascade Model

The cascade model (Craswell et al., 2008) explains a
common bias in recommending multiple items, which is
that lower ranked items are less likely to be clicked than
higher ranked items, as discussed below.

The model is parameterized by L item-dependent attrac-
tion probabilities w̄ 2 [0, 1]L. The user examines a rec-
ommended list A 2 ⇧K(E) from the first item a1 to the
last aK . When the user examines item ak, the item at-
tracts the user with probability w̄(ak), independently of
the other items. If the user is attracted by an item ak, the
user clicks on it and does not examine any of the remain-
ing items. If the user is not attracted by item ak, the user
examines the next item ak+1. The first item is examined
with probability one.

Since each item attracts the user independently, the prob-
ability that item ak is examined is

Qk�1
i=1 (1�w̄(ai)), and

the probability that at least one item in A is attractive is

1�
QK

k=1(1� w̄(ak)) . (1)

Clearly, the above objective function is maximized by
K most attractive items. Notice that these items are not
guaranteed to be diverse, and hence the list may seem
repetitive and unpleasant in practice.

2.2 Diverse Click Model - Yue and Guestrin (2011)

Submodularity is well established in diverse recommen-
dations (Carbonell and Goldstein, 1998). In the model
of Yue and Guestrin (2011), the probability of clicking
on an item depends on the gains in topic coverage by that
item and the interests of the user in the covered topics.

Before we discuss this model, we introduce basic termi-
nology. The topic coverage by items S ✓ E, c(S) 2
[0, 1]d, is a d-dimensional vector whose j-th entry is
the coverage of topic j 2 [d] by items S. Intuitively,
for any two sets S and S

0, if cj(S) > cj(S0), then
items S cover topic j better than items S0. In particular,
c(S) = (c1(S), . . . , cd(S)), where cj(S) is a monotone
and submodular function in S for all j 2 [d]. That is,

8S ✓ S
0 ✓ E, e 2 E : cj(S [ {e}) � cj(S) and

cj(S [ {e})� cj(S) � cj(S
0 [ {e})� cj(S

0) .



The gain in topic coverage by item e over items S is
defined as

�(e | S) = c(S [ {e})� c(S) . (2)

Since cj(S) 2 [0, 1] and cj(S) is monotone in S, �(e |
S) 2 [0, 1]d. The preferences of the user are a distri-
bution over d topics, which is represented by a vector
✓
⇤ = (✓⇤1 , . . . , ✓

⇤
d).

In this model, the user examines all items in the recom-
mended list A and is attracted by item ak with probability

h�(ak | {a1, . . . , ak�1}), ✓⇤i , (3)

where h·, ·i is the dot product of two vectors. The quan-
tity in (3) is the gain in topic coverage after item ak is
added to the first k � 1 items weighted by the prefer-
ences of the user ✓⇤ over the topics. Roughly speaking,
if item ak is diverse over higher-ranked items in a topic
of user’s interest, then that item is likely to be clicked.
If the user is attracted by item ak, the user clicks on it.
It follows that the expected number of clicks on list A is
hc(A), ✓⇤i, where

hc(A), ✓i =
KX

k=1

h�(ak | {a1, . . . , ak�1}), ✓i (4)

for any list A, preferences ✓, and topic coverage c. Yue
and Guestrin (2011) optimize this set function of A (4).

This model, however, does not explain the position bias,
that lower ranked items are less likely to be clicked. We
illustrate this in the following example. Suppose that
item 1 completely covers topic 1, c({1}) = (1, 0), and
that all other items completely cover topic 2, c({e}) =
(0, 1) for all e 2 E \ {1}. Let c(S) = maxe2S c({e}),
where the maximum is taken entry-wise, and ✓

⇤ =
(0.5, 0.5). Then, item 1 is clicked with probability 0.5
in any list A that contains it, irrespective of its position.
This means that the position bias is not modeled well.

3 CASCADE-DIVERSE CLICK MODEL

Our work is motivated by the observation that none of
the models in Section 2 capture both position bias and
diversity together. Therefore, we propose a new click
model, Cascade-Diverse Click Model (CDCM), which
addresses both these phenomena. Similar to model
in Section 2.2, the diversity in CDCM is over d topics,
such as movie genres or restaurant types. The prefer-
ences of the user are a distribution over these topics rep-
resented by a vector ✓⇤ = (✓⇤1 , . . . , ✓

⇤
d).

The user interacts in this model as follows. The user
scans a list of K items A = (a1, . . . , aK) 2 ⇧K(E)

from the first item a1 to the last aK , as described in Sec-
tion 2.1. If the user examines item ak, the user is at-
tracted by it proportionally to its gains in topic coverage
over the first k � 1 items weighted by the preferences
of the user ✓⇤ over the topics. The attraction probabil-
ity of item ak is defined in (3). As mentioned in Sec-
tion 2.2, roughly speaking, if item ak is diverse over
higher-ranked items in a topic of user’s interest, then that
item is likely to attract the user. If the user is attracted by
item ak, the user clicks on it and does not examine any of
the remaining items. If the user is not attracted by item
ak, then the user examines the next item ak+1. The first
item in the list is examined with probability one.

We assume that each item attracts the user independently,
as in the cascade model (Section 2.1). Under this as-
sumption, the probability that at least one item in A is
attractive is f(A, ✓

⇤), where

f(A, ✓) = 1�
KY

k=1

(1� h�(ak | {a1, . . . , ak�1}), ✓i)

(5)

for any list A, preferences ✓, and topic coverage c.

3.1 Optimal List

To the best of our knowledge, the list that maximizes (5)
under user preferences ✓⇤,

A
⇤ = argmaxA2⇧K(E) f(A, ✓

⇤) , (6)

cannot be computed efficiently. Therefore, we propose
a greedy algorithm that maximizes f(A, ✓

⇤) approxi-
mately. The algorithm chooses K items sequentially.
The k-th item ak is chosen such that it maximizes its gain
over previously chosen items a1, . . . , ak�1. In particular,
for any k 2 [K],

ak = argmax
e2E\{a1,...,ak�1}

h�(e | {a1, . . . , ak�1}), ✓⇤i (7)

We would like to comment on the quality of the above
approximation. Although the value of adding any item e

diminishes with more previously added items, f(A, ✓⇤)
is not a set function of A because its value depends on
the order of the items in A. Thus, we cannot leverage ex-
isting approximation guarantees available for monotonic,
submodular set functions. From that standpoint, the fol-
lowing theorem is the first main result of this paper.

Theorem 1 For any topic coverage c and user prefer-
ences ✓

⇤, let A
greedy be the solution computed by the

greedy algorithm in (7). Then

f(Agreedy
, ✓

⇤) � �f(A⇤
, ✓

⇤) , (8)



where � = (1 � 1/e)max
�

1
K , 1� K�1

2 cmax

 
with

cmax = maxe2Ehc({e}), ✓⇤i, denoting the maximum
click probability. In other words, the approximation ratio
of the greedy algorithm is �.

Note that when cmax in Theorem 1 is small, the approx-
imation ratio is close to 1 � 1/e. This is common in
ranking problems where the maximum click probability
cmax tends to be small. In Section 8.1, we observe that
our approximation ratio is close to one in practice, which
is significantly better than suggested in Theorem 1.

4 Cascading Linear Submodular Bandit
In this section, we present an online learning variant of
CDCM (Section 3), which we call a cascading linear
submodular bandit. An instance of this problem is a tu-
ple (E, c, ✓

⇤
,K), where E = [L] represents a ground set

of L items, c is the topic coverage function in Section 2.2,
✓
⇤ are user preferences in Section 3, and K  L is the

number of recommended items. The preferences ✓
⇤ are

unknown to the learning agent.

Our learning agent interacts with the user as follows.
At time t, the agent recommends a list of K items
At = (at1, . . . , a

t
K) 2 ⇧K(E). The attractiveness of

item ak at time t, wt(atk), is a realization of an inde-
pendent Bernoulli random variable with mean h�(atk |
{at1, . . . , atk�1}), ✓⇤i. The user examines the list from
the first item a

t
1 to the last atK and clicks on the first

attractive item. The feedback is the index of the click,
Ct = min {k 2 [K] : wt(atk) = 1}, where we assume
that min ; = 1. That is, if the user clicks on an item,
then Ct  K; and if the user does not click on any item,
then Ct = 1. We say that item e is examined at time
t if e = a

t
k for some k 2 [min {Ct,K}]. Note that

the attractiveness of all examined items at time t can be
computed from Ct. In particular, wt(atk) = 1{Ct = k}
for any k 2 [min {Ct,K}]. The reward is defined as
rt = 1{Ct  K}. That is, the reward is one if the user
is attracted by at least one item in At; and zero otherwise.

The goal of the learning agent is to maximize its expected
cumulative reward. This is equivalent to minimizing the
expected cumulative regret with respect to the optimal
list in (6). The regret is formally defined in Section 6.

5 ALGORITHM CascadeLSB

We present CascadeLSB (Algorithm 1) for solving cas-
cading linear submodular bandit. The algorithm knows
the gains in topic coverage �(e | S) in (2), for any item
e 2 E and set S ✓ E. It does not know the user pref-
erences ✓⇤ and estimates them through repeated interac-
tions with the user. It also has two tunable parameters

Algorithm 1 CascadeLSB

1: Inputs: Parameters � > 0 and ↵ > 0 (Section 6)
2: M0  Id, B0  0 . Initialization
3: for t = 1, . . . , n do
4: ✓̄t�1  �

�2
M

�1
t�1Bt�1 . Regression estimate

5: S  ; . Recommend list and receive feedback
6: for k = 1, . . . ,K do
7: for all e 2 E \ S do
8: xe  �(e | S)
9: end for

10: a
t
k  argmax

e2E\S


x

T
e✓̄t�1 + ↵

q
xT
eM

�1
t�1xe

�

11: S  S [ {atk}
12: end for
13: Recommend list At  (at1, . . . , a

t
K)

14: Observe click Ct 2 {1, . . . ,K,1}
15: Mt  Mt�1, Bt  Bt�1 . Update statistics
16: for k = 1, . . . ,min {Ct,K} do
17: xe  �

�
a
t
k

�� �at1, . . . , atk�1

 �

18: Mt  Mt + �
�2

xex
T
e

19: Bt  Bt + xe1{Ct = k}
20: end for
21: end for

�,↵ > 0, where � controls the growth rate of the Gram
matrix (line 18) and ↵ controls the degree of optimism
(line 10). At each time t, CascadeLSB has three stages.

In the first stage (line 4), we estimate ✓⇤ as ✓̄t�1 by solv-
ing a least-squares problem. Specifically, we take Mt�1

and Bt�1, which summarize all observed topic gains and
responses up to time t respectively, and then estimate
✓̄t�1 that fits these responses the best.

In the second stage (lines 5–14), we recommend the best
list of items under ✓̄t�1 and Mt�1. This list is gener-
ated by the greedy algorithm from Section 3.1, where
the attraction probability of item e is overestimated as
x

T
e✓̄t�1+↵

q
xT
eM

�1
t�1xe and xe is defined in line 8. This

optimistic overestimate is known as the upper confidence
bound (UCB) Auer et al. (2002).

In the last stage (lines 15–20), we update the Gram ma-
trix Mt by the outer product of the observed topic gains,
and the response matrix Bt by the observed topic gains
weighted by their clicks.

The per-step time complexity of CascadeLSB is
O(KLd

2). In practice, we update M
�1
t instead of Mt,

which takes O(d2) time. The greedy maximization re-
quires O(KLd

2) time, because we select K items out of
L based on their UCBs, each of which takes O(d2) time.
Lastly, O(Kd

2) time is required to update the statistics.



6 ANALYSIS

Let � = (1 � 1/e)max
�

1
K , 1� K�1

2 cmax

 
and A

⇤ be
the optimal solution described in (6). Then based on The-
orem 1, At (line 13 of Algorithm 1) is a �-approximation
at any time t. Similarly to Chen et al. (2016); Wen et al.
(2017), we define the �-scaled n-step regret as

R
�(n) =

nX

t=1

E [f(A⇤
, ✓

⇤)� f(At, ✓
⇤)/�] , (9)

where the scaling factor 1/� accounts for the fact that At

is a �-approximation at any time t. This is a natural per-
formance metric in our setting, because even the offline
variant of our problem in (6) cannot be solved optimally,
efficiently. Therefore, it is unreasonable to assume that
an online algorithm could compete with A

⇤. Under the
scaled regret, CascadeLSB competes with comparable
computationally-efficient offline approximations. This is
summarized in our second main result below.

Theorem 2 Under CDCM, for any � > 0 and any

↵ � 1

�

s

d log

✓
1 +

nK

d�2

◆
+ 2 log (n) + k✓⇤k2 (10)

in Algorithm 1, where k✓⇤k2  k✓⇤k1  1, we have

R
�(n)  2↵K

�

s
dn log

⇥
1 + nK

d�2

⇤

log
�
1 + 1

�2

� + 1. (11)

Theorem 2 states that for any � > 0 and a sufficiently
optimistic ↵ for that �, the regret bound in (11) holds.
Specifically, if we choose � = 1 and

↵ =

s

d log

✓
1 +

nK

d

◆
+ 2 log (n) + ⌘

for some ⌘ � k✓⇤k2, then R
�(n) = Õ (dK

p
n/�),

where the Õ notation hides logarithmic factors. We now
briefly discuss the tightness of this bound. The Õ (

p
n)-

dependence on the time horizon n is considered near-
optimal in gap-free regret bounds. The Õ(d)-dependence
on the number of features d is standard in linear ban-
dits (Abbasi-Yadkori et al., 2011). The O(1/�) factor is
due to the fact that At is a �-approximation. The Õ(K)-
dependence on the number of recommended items K is
because the agent recommends K items. We believe that
this dependence can be reduced to Õ(

p
K) by a better

analysis. We leave this for future work.

Finally, note that the list At in CascadeLSB is con-
structed greedily. However, our regret bound in Theo-
rem 2 does not make any assumption on how the list is
constructed. Therefore, the bound holds for any algo-
rithm where At is a �-approximation at any time t, for
potentially different values of � than in our paper.

7 RELATED WORK

The literature on offline learning to rank models
which either incorporate diversity or position bias or
both (Chapelle et al., 2011) is too wide to survey here.
We recommend reading Liu et al. (2009); Aggarwal et al.
(2016) for more information. We only mention online
studies (Grotov and de Rijke, 2016) to which our paper
is closely related i.e. online learning to rank in the cas-
cade model and with diversity.

Cascading bandits (Kveton et al., 2015a; Combes et al.,
2015) are an online learning to rank framework in the
cascade model. Kveton et al. (2015a) proposed a near-
optimal algorithm for this problem, CascadeKL-UCB,
that learns the attraction probability of each item inde-
pendently. This algorithm is expected to perform poorly
when the number of items is large. Also, it does not
model diversity. Several studies (Kveton et al., 2015b;
Katariya et al., 2016; Zong et al., 2016; Li et al., 2016)
have extended cascading bandits. The most related to
our work are linear cascading bandits of Zong et al.
(2016), who proposed CascadeLinUCB – an algorithm
with a linear generalization across items (Wen et al.,
2015; Abbasi-Yadkori et al., 2011). CascadeLinUCB as-
sumes that the attraction probabilities of items are a lin-
ear function of the features of items, which are known;
and an unknown parameter vector, which is learned. This
work does not capture diversity. We compare to both
CascadeKL-UCB and CascadeLinUCB in Section 8.

On the diversity front, Ranked bandits are a popular ap-
proach to online learning to rank (Radlinski et al., 2008;
Slivkins et al., 2013). Here, the optimal list is diverse in
the sense that each item in this list is clicked by many
users that do not click on higher-ranked items. This
notion of diversity is different from ours, because we
learn a list of diverse items over topics for a single user.
Learning algorithms for ranked bandits perform poorly
in cascade-like models (Kveton et al., 2015a; Katariya
et al., 2016; Magureanu et al., 2017) because they learn
from clicks at all positions. We expect similar perfor-
mance of other learning algorithms that make similar as-
sumptions (Kohli et al., 2013). Raman et al. (2012) uti-
lize preferences over pairs of diverse rankings only af-
ter assuming feedback on the entire recommended list.
Thus, it does not capture position bias, and it is unclear
how to incorporate the partial feedback model into their
preference based setting. Yue and Guestrin (2011) stud-
ied the problem of online learning to rank with diver-
sity, where each item covers a set of topics. They also
proposed an efficient algorithm, LSBGreedy, for solving
their problem. However, LSBGreedy assumes that if the
item is not clicked, then the item is not attractive and pe-
nalizes the topics of this item. LSBGreedy differs from



CascadeLSB by assuming feedback at all positions. We
compare to LSBGreedy in Section 8, and show that its
regret can be linear when clicks on lower-ranked items
are biased due to clicks on higher-ranked items.

8 EXPERIMENTS

This section is organized as follows. In Section 8.1, we
validate the approximation ratio of the greedy algorithm
from Section 3.1. In Section 8.2, we discuss our exper-
imental choices. A synthetic experiment, which high-
lights the advantages of our method, is presented in Sec-
tion 8.3. We describe our experimental setting for the
real-world datasets in Section 8.4 and evaluate our algo-
rithm on these datasets in the rest of the sections.

8.1 Approximation Ratio

In Section 3.1, we showed that a near-optimal list can
be computed greedily. The approximation ratio of the
greedy algorithm is close to 1� 1/e when the maximum
click probability is small. Now, we demonstrate empir-
ically that the approximation ratio is close to one in a
domain of our interest.

We experiment with MovieLens 1M dataset from Sec-
tion 8.5 (described later). The topic coverage and user
preferences are set as in Section 8.2 and Section 8.4 (de-
scribed later), respectively. We choose 100 random users
and items and vary the number of recommended items
K from 1 to 4. For each user and K, we compute the
optimal list A⇤ in (6) by exhaustive search. Let the cor-
responding greedy list, which is computed as in (7), be
A

greedy. Then f(Agreedy
, ✓

⇤)/f(A⇤
, ✓

⇤) is the approxima-
tion ratio under user preferences ✓⇤.

We found that for K = 1, 2, 3, and 4, the average approx-
imation ratios over users was 1.000, 0.9926, 0.9997, and
0.9986, respectively. The average approximation ratio
is always more than 0.99, which means that the greedy
maximization in (7) is near optimal. We believe that this
is due to the diminishing character of our objective (Sec-
tion 3.1). The average approximation ratio is 1 when
K = 1. This is expected since the optimal list of length 1
is the most attractive item under ✓⇤, which is always cho-
sen in the first step of the greedy maximization in (7).

8.2 Experimental Choices

We compare CascadeLSB to CascadeKL-UCB (Kveton
et al., 2015a), CascadeLinUCB (Zong et al., 2016), and
LSBGreedy (Yue and Guestrin, 2011) in the experiments.
To make CascadeLinUCB comparable to CascadeLSB,
we set the features of item e as xe = �(e | ;). This
guarantees that CascadeLinUCB operates in the same

feature space as CascadeLSB; except that it does not
model interactions due to higher ranked items, which
lead to diversity. All compared algorithms are evaluated
by the n-step regret R�(n) with � = 1, as defined in (9).
We approximate the optimal solution A

⇤ by the greedy
algorithm in (7). The learning rate � in CascadeLSB
and the corresponding parameters in LSBGreedy and
CascadeLinUCB are set to 0.1. The other parameter ↵
in CascadeLSB is set to the lowest permissible value, ac-
cording to (10). All remaining parameters in other algo-
rithms are set as suggested by their theoretical analyses.
CascadeKL-UCB does not have any tunable parameter.

The topic coverage in Section 2.2 can be defined in many
ways. In this work, we adopt the probabilistic coverage
function proposed in (El-Arini et al., 2009),

cj(S) = 1�
Y

e2S

(1� w̄(e, j)) 8 j 2 [d], (12)

where w̄(e, j) 2 [0, 1] is the attractiveness of item e 2 E

in topic j 2 [d] and cj(S) is the j-th entry of c(S). Un-
der the assumption that items cover topics independently,
the j-th entry of c(S) is the probability that at least one
item in S covers topic j. Clearly, the function in (12) is
monotone and submodular in each entry of c(S).

8.3 Synthetic Experiment

This experiment exhibits the need for modeling both di-
versity and position bias. We simulate a problem with
L = 53 items, d = 3 topics, list size K = 2, and a single
user whose preferences are ✓

⇤ = (0.6, 0.4, 0.0). The at-
tractiveness of items 1 and 2 in topic 1 is 0.5, and 0 in all
other topics. The attractiveness of item 3 in topic 2 is 0.5,
and 0 in all other topics. The attractiveness of remaining
50 items in topic 3 is 1, and 0 in all other topics. These
items are added to make the learning problem harder and
to simulate a real-world scenario where most items are
likely to be unattractive to any given user.

The optimal recommended list is A⇤ = (1, 3). This ex-
ample is constructed so that the optimal list contains only
one item from the most preferred topic, either item 1 or
2. The n-step regret of all the algorithms is shown in
Figure 1. We observe several trends.

First, the regret of CascadeLSB flattens and does not
increase with the number of steps n. This means that
CascadeLSB learns the optimal solution.

Second, the regret of LSBGreedy grows linearly with the
number of steps n, which means it does not learn the op-
timal solution. This can be explained as follows. When
LSBGreedy recommends A⇤ = (1, 3), it severely under-
estimates the preference for topic 2 of item 3, because
it assumes feedback at the second position even if the



Figure 1: Regret on synthetic problem; lower values are better.
Please see text (Section 8.3) for more insights.

first position is clicked. Because of this, LSBGreedy
switches to recommending item 2 at the second position
at some point in time. This is suboptimal. After some
time, LSBGreedy switches back to recommending item
3, and then oscillates between items 2 and 3. Therefore,
LSBGreedy has a linear regret and performs poorly.

Third, the regret of CascadeLinUCB is linear because it
converges to list (1, 2). The items in this list belong to
a single topic, and therefore are redundant in the sense
that a higher click probability can be achieved by recom-
mending a more diverse list A⇤ = (1, 3).

Finally, the regret of CascadeKL-UCB also flattens, which
means that the algorithm learns the optimal solution.
However, because CascadeKL-UCB does not generalize
across items, it learns A

⇤ with an order of magnitude
higher regret than CascadeLSB.

8.4 Real-World Datasets

Now, we assess CascadeLSB on real-world datasets.
One approach to evaluating bandit policies without a live
experiment is off-policy evaluation (Li et al., 2011). Un-
fortunately, off-policy evaluation is unsuitable for our
problem because the number of actions, all possible lists,
is exponential in K. Thus, we evaluate our policies by
building an interaction model of users from past data, an
approach adopted by most papers discussed in Section 7.

All of our real-world problems are associated with a set
of users U , a set of items E, and a set of topics [d]. The
relations between the users and items are captured by
feedback matrix F 2 {0, 1}|U |⇥|E|, where row u cor-
responds to user u 2 U , column i corresponds to item
i 2 E, and F (u, i) indicates if user u was attracted to
item i in the past. The relations between items and top-
ics are captured by matrix G 2 {0, 1}|E|⇥d, where row
i corresponds to item i 2 E, column j corresponds to
topic j 2 [d], and G(i, j) indicates if item i belongs to
topic j. Next, we describe the interaction model.

The attraction probability of item i in topic j is defined
as the number of users who are attracted to item i over

all users who are attracted to at least one item in topic j:

w̄(i, j) =

P
u2U

F (u, i)G(i, j)

P
u2U

1{9i0 2 E : F (u, i0)G(i0, j) > 0} .

(13)

Therefore, the attraction probability represents a relative
worth of item i in topic j. The preference of a user u

for topic j is the number of items in topic j that attracted
user u over the total number of topics of all items that
attracted user u, i.e.,

✓
⇤
j =

P
i2E

F (u, i)G(i, j)

P
j02[d]

P
i2E

F (u, i)G(i, j0)
. (14)

Note that
Pd

j=1 ✓
⇤
j = 1. Therefore, ✓⇤ = (✓⇤1 , . . . , ✓

⇤
d) is

a probability distribution over topics for user u.

We divide users randomly into two halves to form train-
ing and test sets. This means that the feedback matrix F

is divided into two matrices, Ftrain and Ftest. The param-
eters that define our click model, which are computed
from w̄(i, j) in (12) and ✓

⇤ in (14), are estimated from
Ftest and G. The topic coverage features in CascadeLSB,
which are computed from w̄(i, j) in (12), are estimated
from Ftrain and G. This split ensures that the learning al-
gorithm does not have access to the optimal features for
estimating user preferences, which is likely to happen in
practice. In all experiments, our goal is to maximize the
probability of recommending at least one attractive item.
The experiments are conducted for n = 20k steps and
averaged over 100 random problem instances, each of
which corresponds to a randomly chosen user.

8.5 Movie Recommendation

Our first real-world experiment is with MovieLens 1M
dataset (Harper and Konstan, 2016). The dataset contains
1M ratings on a 5-star scale of 4k movies by 6k users.
For simplicity, we extract |E| = 1000 most rated movies
and |U | = 1000 most rating users. These active users
and items are extracted just to have confident estimates
of w̄(.) (13) and ✓

⇤ (14) for the experiments.

We treat movies and their genres as items and topics,
respectively. We assume that a user u is attracted to a
movie i if the user had rated that movie with 5 stars i.e.
F (u, i) = 1{user u rated movie i with 5 stars}. Based
on this definition, about 8% of user-item pairs in our
dataset are attractive. We assume that a movie belongs
to a genre if it is tagged with it. We experiment with
d = 5, 10 and 18 (maximum genres in the data), and
vary the number of recommended items K from 4 to 12.
While varying topics, we choose the most popular ones.
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Figure 2: Regret on the MovieLens dataset; lower values are better and sublinear curve represents learning the optimal list.
CascadeLSB is robust to both number of topics d (varies with rows) and size of the recommended list K (varies with columns).

0 5000 10000 15000 20000

6teS n

0

100

200

300

400

500

600

700

800

5e
gU
et

|E|   1000, K   8, G   10

CascaGeL6B

CascaGeLLn8CB

L6BGUeeGy

CascaGeKL8CB

0 5000 10000 15000 20000

6teS n

0

100

200

300

400

500

600

700

800
|E|   1000, K   8, G   20

0 5000 10000 15000 20000

6teS n

0

100

200

300

400

500

600

700

800
|E|   1000, K   8, G   40

Figure 3: Regret on the Million Song for K = 8 and for d = 10, 20, 40; lower values and sublinear curve are better.

Our results are reported in Figure 2. We observe
that CascadeLSB has the lowest regret among all com-
pared algorithms for all d and K. This suggests that
CascadeLSB is robust to the choice of both parame-
ters d and K. For d = 18, CascadeLSB achieves al-
most 20% lower regret than the best performing base-
line, LSBGreedy. LSBGreedy has a higher regret than
CascadeLSB because it learns from unexamined items.
CascadeKL-UCB performs the worst because it learns one
attraction weight per item. This is impractical when the
number of items is large, as in this experiment. The re-
gret of CascadeLinUCB is linear, which means that it
does not learn the optimal solution. This shows that lin-
ear generalization in the cascade model is not sufficient
to capture diversity. Lastly, as expected, with an increase
in the number of topics, CascadeLSB’s regret increases.

8.6 Million Song Recommendation

We next experiment with Million Song dataset (McFee
et al., 2012). Again, we extract |E| = 1000 most popular

songs and |U | = 1000 most active users, according to the
number of song-listening events. We treat songs and their
genres as items and topics, respectively. We assume that
a user u is attracted to a song i, i.e. F (u, i) = 1, when
user u had listened to the song i at least 5 times. By this
definition, 3% of user-item pairs in the data are attractive.
We assume that a song belongs to a genre if it is tagged
with it. Here, we fix K = 8 and vary d from 10 to 40.

Our results are reported in Figure 3. Again, we ob-
serve that CascadeLSB has the lowest regret among all
compared algorithms. This happens for all d show-
ing that CascadeLSB is robust to the choice of d. At
d = 40, CascadeLSB has about 15% lower regret
than the best performing baseline, LSBGreedy. Again,
CascadeKL-UCB performs the worst for all d.

8.7 Restaurant Recommendation

Lastly, we experiment with Yelp Challenge dataset
(Huang et al., 2014). The dataset contains 4.1M re-
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Figure 4: Regret on the Yelp dataset for d = 10 and for K = 4, 8, 12; lower values are better and sublinear curve represents
learning the optimal list. All the algorithms except CascadeKL-UCB perform similar due to small attraction probabilities of items.
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Figure 5: Regret on Movielens in the (special) DCM model.

views by 1M users for 48k restaurants in 600 cate-
gories. Similarly to the above experiments, we extract
|U | = 1000 most reviewed restaurants and |E| = 1000
most reviewing users. We treat restaurants and their cat-
egories as items and topics, respectively. We assume
that a user u is attracted to a restaurant i if the user had
rated that restaurant with at least 4 stars, i.e., F (u, i) =
1{user u had rated restaurant i with at least 4 stars}. By
this definition, about 3% of user-item pairs in our dataset
are attractive. We assume that a restaurant belongs to a
category if it is tagged with it. In this experiment, we fix
d = 10 and vary K from 4 to 12.

Our results are reported in Figure 4. Unlike in the previ-
ous experiments, we observe that CascadeLinUCB per-
forms comparably to CascadeLSB and LSBGreedy. We
investigated this trend and discovered that this is because
the attraction probabilities of items, as defined in (13),
are often very small, such as on the order of 10�2. This
means that the items do not cover any topic properly. In
this setting, the gain in topic coverage due to any item e

over higher ranked items S, �(e | S), is comparable to
�(e | ;) when |S| is small. This follows from the defini-
tion in (12). Now note that the former are the features in
CascadeLSB and LSBGreedy, and the latter are the fea-
tures in CascadeLinUCB. Since the features are similar,
solutions from all the algorithms are similar.

9 DISCUSSION
We assume that the user clicks on at most one recom-
mended item. We would like to stress that this assump-
tion is only for simplicity of exposition. In particular,
CascadeLSB can be easily extended to a multiple click
scenario such as the dependent click model (DCM) (Guo

et al., 2009; Katariya et al., 2016). As a glimpse of our
future work, we show an extension of CascadeLSB for a
special case of DCM (see Appendix C for details).

In DCM, the user examines the list of items, from the first
item to the last, and clicks on all attractive items until the
user is “satisfied”. It turns out that the probability with
which the user finds at least one satisfactory item is:

fDCM (A, v̄, w̄) = 1�
QK

k=1(1� v̄(k)w̄(ak)), (15)

where v̄(k) is the termination probability for position
k. Here, the attraction probability w̄(ak) can be mod-
eled as in (3). For simplicity, assume that v̄(k) = ⇣ 2
(0, 1) 8 k 2 [K] i.e. the user terminates the search with
probability ⇣ for all positions. In an online learning
framework, clearly, the user is satisfied when both re-
alizations wt(atk) and vt(k) are 1. We propose algorithm
dcmLSB (Algorithm 2 in Appendix C.3) which tries to
learn the user preference ✓

⇤. dcmLSB is almost same
as CascadeLSB, except that after each click it assumes
that the user is satisfied (or terminates scanning the list)
with probability ⇣ instead of probability one. In this
way, dcmLSB takes feedback from multiple clicks. The
�DCM -scaled regret (29) is computed analogously to (9)
as when the user not just clicks but is satisfied. We com-
pare dcmLSB with LSBGreedy, which assumes feedback
on the entire list, on the Movielens dataset (Section 8.5)
for d = 10,K = 8 and ⇣ = 0.8. In Figure 5, we see that
the regret of dcmLSB with �DCM = 1 is sublinear and
much lower than LSBGreedy. This shows that the cur-
rent diversity driven online learning to rank approaches
are insufficient to handle cases with partial feedback al-
beit in the form of multiple clicks. More insights are
discussed via a simulated study in Appendix C. In the fu-
ture, we would like to extend CascadeLSB for the DCM
and rigorously derive the value of �DCM .

10 CONCLUSIONS
In this paper, we model both position bias and diversified
retrieval in a unified online learning to rank framework.
We propose an efficient online algorithm to rank diverse
items in the cascade model and derive a gap-free upper
bound on its scaled n-step regret. The algorithm is shown
to be competitive over a range of baselines.
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