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Abstract

Statistical inference in Markov random fields
(MRFs) is NP-hard in all but the simplest cases.
As a result, many algorithms, particularly in the
case of discrete random variables, have been
developed to perform approximate inference.
However, most of these methods scale poorly,
cannot be applied to continuous random vari-
ables, or are too slow to be used in situations
that call for repeated statistical inference on the
same model. In this work, we propose a novel
variational inference strategy that is efficient for
repeated inference tasks, flexible enough to han-
dle both continuous and discrete random vari-
ables, and scalable enough, via modern GPUs,
to be practical on MRFs with hundreds of thou-
sands of random variables. We prove that our
approach overcomes weaknesses of existing
ones and demonstrate its efficacy on both syn-
thetic models and real-world applications.

1 INTRODUCTION

Markov random fields (MRFs) and their conditional vari-
ants provide a general approach to probabilistic inference
and learning tasks in such diverse domains as artificial in-
telligence, bioinformatics, and signal and image process-
ing (Koller and Friedman, 2009; Wainwright and Jordan,
2008). MRFs encode local relationships among a collec-
tion of random variables, which can then be exploited
for fast approximate inference. Given an MRF that has
either been specified in advance or learned from data, we
will be interested in performing statistical inference, e.g.,
computing the mode, marginals, or some combination
of these, often in the presence of evidence. In typical
AI applications these kinds of statistical queries may be
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performed many times, perhaps conditioned on different
evidence each time.

Unfortunately, MRFs have significant practical limita-
tions that have hindered their application on the types of
large-scale prediction tasks for which deep neural net-
works are the current state-of-the-art. First, while neural
networks operate over real variables, many of the approx-
imate inference algorithms for MRFs operate only on
discrete models. Until recently, this has meant that in
order to handle prediction tasks with continuous random
variables (or both discrete and continuous random vari-
ables) either the state space was discretized, which can
be expensive both in terms of space and time complexity,
or the set of allowable potential functions was severely
restricted. The situation has improved in recent years, and
a variety of new approximate inference techniques have
been developed for continuous/hybrid MRFs including
marginal inference (Minka, 2001; Sudderth et al., 2003;
Ihler and McAllester, 2009; Noorshams and Wainwright,
2013; Lienart et al., 2015; Ruozzi, 2017; Wang et al.,
2018; Guo et al., 2019), MAP inference (Wang et al.,
2014; Pacheco and Sudderth, 2015; Ruozzi, 2015), and
joint inference/learning (Song et al., 2011).

However, significant work remains to be done in order to
make most of the above algorithms accurate enough to be
competitive in practice while also being fast enough to be
applicable at the scale of modern neural networks. First,
while prediction is typically fast in deep neural networks,
prediction in MRFs is often slow and can require solv-
ing a new, expensive inference problem every time new
evidence is presented. This is especially time consum-
ing for structured prediction, marginal MAP, or general
inference on models with latent variables. As a result,
the types of applications for which MRFs are a practical
tool is somewhat limited. Second, inference using belief
propagation style message-passing in continuous models
can lead to divergent behavior if the approximation is
unbounded, which can happen even in Gaussian graphical
models when the precision matrix is not walk-summable



(Malioutov et al., 2006; Ruozzi and Tatikonda, 2013a).
This limits the applicability of these methods to specific
subsets of continuous graphical models.

In this work, we show that a simple variational approach,
based on the same approximations as many of the above
message-passing schemes, yields a scalable approximate
inference procedure for MAP, marginal, and marginal
MAP inference in continuous graphical models with a
number of attractive features:

• Our approach is flexible enough to handle models with
both discrete and continuous random variables. We
provide theoretical results and detailed experiments
to show that our approach does not suffer from the
convergence and boundedness issues that arise with
message-passing strategies in continuous models.

• After an initial inference pass, new MAP/marginal in-
ference queries can be approximated in linear time. For
applications in which many distinct queries need to be
computed, we show experimentally, that one round of
inference via our approach is significantly faster than
the competing methods and yields comparable or, in
many cases, higher accuracy than the state-of-the-art
methods run for each individual query.

• Like deep neural networks, our approach is capable of
taking advantage of modern GPUs to speed up infer-
ence. We show via experiments on depth estimation
and optical flow problems that our method is capable
of scaling to model sizes for which existing state-of-
the-art methods are impractical.

In a variety of experiments, from small synthetic experi-
ments to large scale computer vision tasks with both dis-
crete and continuous random variables, we demonstrate
that our approach yields fast, competitive approximate
inference when compared to existing methods on MAP
and marginal MAP inference tasks.

2 MARKOV RANDOM FIELDS

A Markov random field (MRF) is a graph together with a
collection of nonnegative potential functions defined over
its cliques. In this work, we focus on pairwise MRFs but
note that our method can be extended to larger potential
functions with minor modification. Given an undirected
graph G = (V, E) with vertex set V and edge set E , such
that each node i ∈ V corresponds to a random variable
xi ∈ Xi, a pairwise MRF defines a joint distribution

p(xV) =
1

Z
∏
i∈V

φi(xi)
∏

(i,j)∈E

ψij(xi, xj), (1)

where φi : Xi → R≥0 is a potential function defined over
node i and ψij : Xi × Xj → R≥0 is the edge potential
defined over the edge (i, j). The partition function, Z , is
a normalizing constant that ensures p(x) sums/integrates
to one. In this work, we will allow models that contain
both continuous and discrete random variables, that is Xi
need not be a finite set. In all cases, we assume that the
corresponding integrals/sums exist.

The aim of marginal inference, a typical inference task,
is to calculate the partition function Z , and/or marginal
distributions of the form p(xA) where A ⊆ V . More
useful for classification tasks is maximum a posteriori
(MAP) inference, which seeks to find an assignment to
the set of (non-evidence) variables xA that maximizes
the probability p(xA|xV\A) for p(xV\A) > 0. More
generally, given two disjoint sets A,B ⊆ V the marginal
MAP task involves maximizing a conditional marginal
distribution, arg maxxA

p(xA|xB).

As all of the above inference tasks are NP-hard in gen-
eral (Koller and Friedman, 2009), approximate inference
routines are often necessary in practice. Many of these
approximate inference schemes are modeled after the
belief propagation (BP) algorithm (Pearl, 1982). BP is
a message-passing procedure for marginal inference in
MRFs. While the algorithm is exact on tree-structured
graphs, it can also perform well on loopy graphs (Taga
and Mase, 2006). BP iteratively computes a series of mes-
sages sent between neighboring nodes of the MRF. Upon
convergence, the messages are used to construct beliefs,
which are proportional to the true marginal distributions
of the models in the case of tree-structured MRFs.

Marginal inference with BP becomes significantly more
challenging with continuous variables as the message up-
dates involve computing integrals instead of sums. The
integrals generally cannot be computed in closed-form
outside of special cases, e.g., Gaussian graphical models
(Bickson, 2008), and require approximations. Sudderth
et al. (2003) proposed approximating the messages as
mixtures of Gaussians, but this approach is too expensive
in practice. Ihler and McAllester (2009) and Lienart et al.
(2015) proposed approximating the continuous messages
with a finite number of appropriately chosen particles. At
each iteration, the current set of particles for each node
is resampled. While, theoretically, such an approach can
be made arbitrarily accurate, in practice, a large number
of particles may be needed for accurate inference, and
selecting an efficient proposal distribution for the parti-
cle updates can be challenging. Noorshams and Wain-
wright (2013) proposed representing the messages using
the topM terms of an orthogonal series expansion. Minka
(2001) proposed the expectation propagation algorithm
which represents the messages using a tractable family



and approximates the message updates using a moment
matching procedure. Song et al. (2011) proposed a joint
learning and inference strategy based on kernel methods
to perform the message updates, though this approach can
yield beliefs with negative values and performing MAP
inference using the converged beliefs is non-trivial.

For the MAP task, the sums in the BP message-passing up-
dates can be replaced with max’s to yield the max-product
message-passing algorithm. This algorithm can have con-
vergence issues in practice, and many different alternative
schemes with improved performance have been proposed
(Kolmogorov and Wainwright, 2005; Kolmogorov and
Rother, 2007; Globerson and Jaakkola, 2007; Werner,
2007; Ruozzi and Tatikonda, 2013b). For continuous
MRFs, max-product versions of the particle methods have
also been proposed (Pacheco and Sudderth, 2015).

For the discrete marginal MAP task, several approaches
based on AND/OR search and NP oracles have recently
been proposed (Marinescu et al., 2014, 2017; Xue et al.,
2016), none of which, however, has been extended to the
continuous case yet. The mixed-product algorithm (Liu
and Ihler, 2013) is a hybrid message-passing algorithm
corresponding to a variational approximation, which can
be used to design convergent methods. In principle, mixed
product could be extended to the continuous case using
the same ideas as the particle methods above, but it’s un-
clear how efficient such a procedure would be in practice.

2.1 BETHE FREE ENERGY

The converged messages in BP correspond to local optima
of the Bethe free energy (BFE) optimized over the set of
beliefs, which when appropriately normalized satisfy a
collection of local consistency constraints (Yedidia et al.,
2005). The valid beliefs in the local marginal polytopeM
are required to be nonnegative functions that marginalize
to each other, i.e.,∫

xi

bi(xi) = 1,∀i ∈ V (2)∫
xj

bij(xi, xj) = bi(xi),∀(i, j) ∈ E , (3)

and the BFE is defined as

F(b) =−
∑
i∈V

Ebi [log φi]−
∑

(i,j)∈E

Ebij [logψij ]

+
∑
i∈V

Ebi log[bi] +
∑

(i,j)∈E

Ebij
[
log

bij
bibj

]
. (4)

The log-partition function, logZ , can be approximated
by minimizing (4) over beliefs in the local marginal poly-
tope, i.e., logZ ≈ −minb∈M F(b). The optimum of the

Bethe free energy yields the true log-partition function
and node/edge marginals whenever the graph is a tree
but only yields an approximation more generally. Con-
vergent alternatives to message-passing algorithms have
been designed using gradient descent on the BFE (Welling
and Teh, 2001), and this is the approach we adopt here.
Note, however, that (4) is not a convex function over
general graphs and even computing the integrals in the
general case could be nontrivial. Different “reweighted”
entropy approximations other than the one used in (4)
have also been considered in practice (Wainwright et al.,
2003; Meltzer et al., 2009; London et al., 2015) and can
easily be incorporated into our approach if desired.

3 ONE-SHOT INFERENCE

Our aim in this work is to show that a simple variational
method can be used as an alternative to the above message-
passing schemes to find local optima of the BFE in the
hybrid case. To accomplish this, we restrict the beliefs to
be mixtures of fully factorized distributions. Specifically,

bi(xi; η) =

K∑
k=1

wkb
k
i (xi; η

k
i ) (5)

bij(xi, xj ; η) =

K∑
k=1

wkb
k
i (xi; η

k
i )bkj (xj ; η

k
j ), (6)

where K is the number of mixture components, the wk
are the mixture probabilities (which are shared across all
marginals), and η is a vector of parameters used to con-
struct each of the univariate distributions. For example, if
bi(xi) is chosen to be a mixture of normal distributions,
then ηki would be a vector whose components are the
mean and variance of the corresponding normal distribu-
tion. Under an appropriate choice of distribution, these
mixtures can be made arbitrarily expressive. With these
definitions, the local marginalization constraints (2)-(3)
are trivially satisfied, and the BFE optimization problem
is reduced to an optimization over the η and w parameters.

Our proposed strategy is to optimize the BFE over mix-
tures of the above form using standard gradient descent,
similar in spirit to other variational approaches employing
mean-field mixtures as approximate distributions but with
a different entropy approximation: Jaakkola and Jordan
(1999) use local variational approximation and introduce
additional variational parameters to lower-bound the mix-
ture entropy; their optimization procedure involves iter-
ating interdependent consistency equations, which can
be hard to parallelize to take advantage of GPUs; Ger-
shman et al. (2012) consider Gaussian mixtures with a
diagonal covariances and employ Jensen’s inequality to
approximate the mixture entropy. It can be hard to tell



in practice which entropy approximation (Jensen’fs in-
equality, Bethe, etc.) works better. However, our method
can exploit the model structure (due to the tree-based
Bethe approximation), and has the following guarantee
in tree-structured MRFs: (1) the negative BFE always
lower bounds the log-partition function assuming exact
integration and (2) the gap between − logZ and the opti-
mum of the BFE becomes arbitrarily small as the number
of mixture components goes to infinity. Because of this,
our method should be preferred in tree-structured models;
in other models, we dont have such guarantee (e.g., the
BFE could be larger or smaller than − logZ), and itll be
harder to compare the variational approximations.

Full details of the gradient computations can be found in
Appendix B. Note that, technically, the mixture weights
are constrained to be nonnegative and sum to one. This
can either be handled by projected gradient method or
by introducing a change of variables that represent the
mixture weights as a softmax of unconstrained variables.
Computing the gradient of the BFE requires computing
expectations with respect to beliefs in (5), (6). For discrete
random variables these sums can be computed exactly, but
for continuous random variables, the integrals, which can
be expressed as expectations with respect to the beliefs,
will need to be approximated.

Any of a variety of methods can be used to compute the
expectations in the BFE, e.g., sampling methods, quadra-
ture methods (Golub and Welsch, 1969), Stein variational
gradient methods (Liu et al., 2016; Wang et al., 2018).
The preferred method may depend on the specific applica-
tion. The complexity of gradient descent optimization on
the BFE scales roughly as O(|E|K2) times the cost of ap-
proximate integration per iteration (an additionalO(L2) if
Gauss-Hermite quadrature with L points is used), though
parallelization and stochastic methods can be used to sig-
nificantly reduce the per iteration complexity in practice.
Additionally, the gradient computation can be easily for-
mulated in such a way as to take advantage of modern
GPU hardware (we explore this in more detail in the exper-
imental section). We have observed that while increasing
K generally yields more accurate solutions, it may in-
crease the number of iterations required for convergence.

After performing one round of inference that yields a K
component mixture model with partition function Z , each
of the typical inference tasks can be approximated directly
from the mixture without needing to perform additional
rounds of gradient descent on the BFE (though this can
also be done if desired). For many inference tasks, this
significantly reduces the computational overhead needed
to perform inference after the initial mixture distribution
is computed. For applications in which repeated inference
on the same model is desired, this can lead to significant

practical performance gains.

Marginal Inference: The marginal distribution over
A ⊆ V can be approximated directly from the mixture,
pA(xA) =

∑K
k=1 wk

∏
i∈A b

k
i (xi). Also note that the

energy of this distribution can be approximated as
Z · pA(xA).
MAP Inference: The mode of the distribution is found
by computing arg maxx

∑K
k=1 wk

∏
i∈V b

k
i (xi). This

can be done exactly if the number of MAP variables is
small. Alternatively, we can approximate the MAP prob-
lem in one of two ways. First, under the assumption that
univariate distributions are easy to sample from, we could
approximate the MAP assignment via sampling, though
this approach only works well if the MAP assignment
occurs with relatively high probability. Alternatively,
we could approximate the MAP assignment using a
coordinate/gradient ascent method starting from each of
the K modes of the separate mixture components. The
latter approach seems to perform quite well in practice,
at least in the case of isotropic Gaussian mixtures, and
yields a practical method for finding all local maxima of
univariate Gaussians distributions (Carreira-Perpinan,
2000). Our experimental results suggest that this also
works well for other types of mixtures.
Marginal MAP Inference: A combination of
the previous two inference tasks for A ⊆ V ,
arg maxxA

∑K
k=1 wk

∏
i∈A b

k
i (xi). The max can

be approximated using the strategies discussed above.
Conditional Marginals: The conditional distribution of
xA given xO for disjoint subsets A,O ⊆ V is given by

pA(xA|xO) =

∑K
k=1 wk

∏
i∈A∪O b

k
i (xi)∑K

k=1 wk
∏
i∈O b

k
i (xi)

.

Sampling: New samples can easily be generated from the
mixture assuming that each univariate distribution is easy
to sample from, without the need for MCMC methods.

As all of the above inference tasks can be efficiently es-
timated, the primary question, then, is whether or not a
single round of inference is good enough to yield accurate
and fast predictions in practice. In Section 4, we show
that this is indeed the case in a variety of applications.

3.1 BOUNDEDNESS OF THE BFE

A significant limitation of the belief propagation based
approaches is that, like BP, many of them may fail to con-
verge, even on simple models. For example, for Gaussian
graphical models, the BFE optimization problem (4) is
unbounded from below whenever the precision matrix is
not walk-summable, and BP can fail to converge for these
models (Malioutov et al., 2006; Cseke and Heskes, 2011;
Ruozzi and Tatikonda, 2013a).



Here, we show that the unboundedness of the BFE ap-
proximation in the Gaussian case occurs only over the
local marginal polytope - not the marginal polytope. In
particular, as all of the beliefs produced by our approach
must be realized as the marginals of some joint distribu-
tion, the BFE optimization problem over the set of beliefs
that are Gaussian mixtures of the form (5)-(6) is bounded
from below, and consequently, gradient descent on the
BFE is guaranteed to converge (given proper step sizes).
Theorem 1. The BFE optmization problem (4) is
bounded below whenever p is a Gaussian distribution
and the optimization is performed over beliefs that arise
from any joint distribution q with finite first and second
moments (for example, when q is a mixture of Gaussians).

Proof. Given a Gaussian distribution over n variables
p(x) = p̃(x)/Z , with p̃(x) = exp(− 1

2x
TJx + hTx), J

positive definite, suppose we approximate it by a contin-
uous distribution q, such that Eq[X] = µ,Vq[X] = Σ
(which are assumed to exist). Denote mutual information
by I, entropy by H, and the set of edges in the Gaussian
MRF by E . By simple algebra, the BFE is then

F(q) = Eq[
1

2
xTJx− hTx] +

∑
(i,j)∈E

I[qij ]−
∑
i

H[qi]

≥ Eq[
1

2
xTJx− hTx]−

∑
i

H[qi]

=
1

2
Tr[JΣ] +

1

2
µTJµ− hTµ−

∑
i

H[qi],

where the inequality follows from the fact that mutual
information is always nonnegative. Since J is positive
definite, the quadratic form 1

2µ
TJµ − hTµ is bounded

from below. So it’s sufficient to show that g(q) ,
1
2Tr[JΣ]−

∑
iH[qi] is bounded from below.

Lemma 2. Let A,B be two n× n real symmetric matri-
ces, with B positive definite; let λn(A) be the smallest
eigenvalue of A. Then Tr[AB] ≥ λn(A)Tr[B].

The proof of Lemma 2 can be found in Appendix C. As a
result, we have

g(q) ≥ λn(J)

2
Tr[Σ]−

∑
i

H[qi]

≥ λn(J)

2

∑
i

Σii −
1

2

∑
i

log(2πeΣii),

where the first inequality follows from Lemma 2 and
the second inequality is a consequence of the fact that
differential entropy of a distribution with variance σ
is maximized by a Gaussian distribution with variance
σ. Finally, as λn(J),Σ11, . . . ,Σnn > 0, we have that
(λn(J)Σii − log Σii) is bounded below for all i.

4 EXPERIMENTS

We apply our one-shot inference method (OSI) to a vari-
ety of MAP and marginal MAP (MMAP) tasks. In each
setting, we compare against appropriate baselines that
optimize the same objective: max-product/D-PMP for
discrete/continuous MAP problems and mixed-product
BP (MPBP) for discrete marginal MAP problems. All
methods were implemented in MATLAB. For OSI, we
used mixtures of Gaussian or Beta distributions as the
approximate beliefs, and Gaussian quadrature for approx-
imate integration (see Appendix 3). MAP inference in
OSI used coordinate/gradient descent starting from the
modes of the individual mixture components as discussed
above. All experiments were performed on a desktop with
8 core i7-6700 CPU, except for experiments in section
4.4 which used an additional Nvidia Tesla V100 GPU.

4.1 SYNTHETIC MARGINAL MAP ON TREES

We begin with synthetic experiments on the
tree model in Figure 1a with discrete random
variables and pairwise factorization p(X) =
1
Z exp

(∑
i∈V θi(xi) +

∑
(i,j)∈E θij(xi, xj)

)
. The

parameters θi and θij are sampled from Gaussian distribu-
tions, θi(xi) ∼ N (0, 0.01) and θij(xi, xj) ∼ N (0, σ2),
where the coupling σ is varied from 0.1 to 1.0. For each
different value of σ, 100 different set of θ parameters
are sampled. Out of the 8 nodes in the graph, we pick
three nodes to be MAP nodes and the rest to be sum
nodes. For each θ all 56 combinations of MAP/sum
nodes are considered and the results are averaged. Note
that inference using OSI is only run once for each θ while
MPBP is rerun for each of the 56 possibilities. OSI is run
with 3, 5, and 10 mixture components for 500 iterations
each, starting from randomly selected initial discrete
beliefs and uniform initial mixture weights. We compare
against MPBP, initialized with random messages and
run until convergence (at least 50 iterations, if it has not
converged, we run another 200 extra iterations).

We report the average percentage of correctly identified
MMAP assignments as well as the average relative er-
ror, (p(x̂B)− p(x∗B))/p(x∗B) where x̂B is the estimated
MMAP assignment and x∗B is the optimal MMAP assign-
ment, for each method in Figure 1. The entire process
using OSI for prediction finishes within 40 seconds while
MPBP requires roughly 250 seconds as it must be rerun
on each new inference task. For this task, OSI performed
better on average with respect to both relative error and
percentage of correct solutions for larger couplings. For
small couplings, while OSI returned a MAP estimate that
had small relative error, it did not return the exact MAP
estimate. This is not entirely surprising as OSI was not
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Figure 1: Graph and inference results for a synthetic tree-structured model.

used to solve each specific instance but only to generate a
good approximate distribution. From a practical perspec-
tive, it is probably sufficient to return a solution that is
close enough to the true solution in energy value.

4.2 MARGINAL MAP ON UCI DATASETS

In a second set of experiments, we evaluated OSI
on MMAP tasks over several UCI repository datasets
(Dheeru and Karra Taniskidou, 2017): Iris, Letter, Solar
Flare, Mammographic masses (M.M.), Tic-Tac-Toe and
Yacht Hydrodynamics (Y.H.). For each dataset, we learn
a discrete tree-structured distribution using the method of
Chow and Liu (1968). The number of random variables
in these models varies from 5 to 17.

We compared MPBP with OSI using 3, 5, and 10 mixture
components; on each model, the MMAP performance was
assessed by computing the relative MAP error (against
ground truth) averaged over all possible subsets of 3
MAP nodes (the remaining nodes were summed over).
Each method was run with 5 random initialization; Ta-
ble 1 shows the resulting mean and standard deviation
of MMAP performance. Note that, while increasing the
number of mixture components seems to increase the
number of iterations necessary for OSI to converge, hav-
ing more mixture components tends to reduce the error
of the marginal MAP assignment. Again our procedure
matches or outperforms MPBP while only being run once
- not being tailored to a specific marginal MAP instance.

4.3 INFERENCE IN CYCLIC GRAPHS

Continuing in the same vein as the previous experiments,
we apply our method for MAP and marginal MAP infer-
ence on larger graphs that contain cycles. We consider
MMAP problems on an OCR data set, MNIST, and instan
ecsselected from the set of UAI challenge problems.

Image Completion: For the image completion task we
considered two data sets: an OCR dataset collected by

Kassel (1995) that consists of 16 × 8 binary images of
handwritten letters and the MNIST dataset (LeCun et al.,
1998) consisting of 28× 28 grayscale hand-written digits.
For both models we trained a simple MRF on a subset
of the data using maximum likelihood estimation whose
structure contains a single label node connected to all of
the observed pixels and the observed pixels are connected
via a grid structure. Given the trained models, we took a
collection of data points, removed part of the input image
(the top or bottom half) and then performed conditional
MAP inference to recover the missing pixels from the
remaining observations.

For the letter data, the model contained only discrete
variables and was trained on 7427 images consisting of
‘f’ and ’h’ labels (it achieves 93% accuracy on the clas-
sification task). For evaluation we deleted the top half
of all of the training examples, ran OSI with three mix-
ture components and standard max-product message pass-
ing to complete the images, and stored the energy of
the MAP solution of each completion. On average, OSI
produced a completion with an average energy value of
−146.77± 12.51 while max-product returned a slightly
worse average energy value of −146.09 ± 13.33. Al-
though OSI does not achieve a lower energy on every
instance in the data set, the energy values were lower
on average and when max-product outperformed OSI it
did so only marginally, while when OSI outperformed
max-product the gap was typically much larger.

For MNIST, the model contained 784 continuous vari-
ables, one discrete variable, and 2296 edges (1512 be-
tween continuous variables and 784 hybrid discrete-
continuous edges). The model was specified by a simple
exponential family, whose log potential functions corre-
spond to over-complete features for the discrete node,
second-order polynomials for the continuous nodes, and
products of node features for all the edges. The model
was trained on all MNIST training images of digits 1 and
9 for 300 iterations using maximum likelihood (with OSI
performing the required inference) to a training accuracy



Table 1: Relative error of OSI and mixed-product BP for a marginal MAP task on various UCI datasets.

Dataset mixed-BP mixture-3 mixture-5 mixture-10
Iris −0.1848± 0.0743 −0.1242± 0.1238 −0.1473± 0.1326 −0.1188± 0.0566

Letter −0.0236± 0.0380 −0.0253± 0.0312 −0.0223± 0.0290 −0.0216± 0.0273
Solar Flare −0.0404± 0.0620 −0.0370± 0.0654 −0.0369± 0.0664 −0.0367± 0.0627

M.M. −0.1736± 0.2014 −0.1884± 0.1892 −0.1637± 0.1614 −0.1732± 0.1784
Tic-Tac-Toe −0.0789± 0.0768 −0.1078± 0.0750 −0.0791± 0.0562 −0.0757± 0.0778

Y.H. −0.0590± 0.1371 −0.0245± 0.0538 −0.0245± 0.0538 −0.0211± 0.0514

(a) (b) (c) (d)

Figure 2: Example of the image completion task on
MNIST, where: (a) is the partial image given (along with
the label), (b) is the ground truth, (c) is the OSI solution
(0.17 s/image), (d) is the D-PMP solution (3.42 s/image).

of 96%. We randomly sampled 100 images, hid either
the top or bottom half, performed MAP inference over
the hidden pixels using OSI or D-PMP (Pacheco and Sud-
derth, 2015), and evaluated the energy of the solutions
under the given model, as before.

For OSI, we used mixtures of Beta distributions for the
beliefs of continuous random variables (this seems like
an appropriate choice as the grayscale input only varies
from 0 to 1); we ran inference for 250 iterations in the
learned hybrid MRF to obtain a surrogate mixture for
image completion, on which gradient ascent was then run
to maximize the probability of the hidden pixels given
each incomplete image; the completions had an average
energy value of 3042.5 ± 58.2 and MSE (mean squared
error) of 0.0193 ± 0.0082. For comparison, D-PMP was
run in the reduced MRF over the remaining pixels given
each incomplete observation (since D-PMP only handles
continuous MRFs), using 20 particles, Gaussian random
walk proposal, for 10 iterations (this resulted in full con-
vergence). D-PMP obtained worse average completion
energy of 3044.7 ± 56.0 and MSE of 0.0226±0.0102,
while requiring 20 times more CPU time per image (we
used the optimized D-PMP implementation provided by
the authors; neither method used parallelization). See
Figure 2 for examples of completions.

UAI challenge problems: In a second set of experiments
on loopy graphs we considered MMAP estimation on
models and potentials obtained from various UAI chal-
lenge problems. For each of these discrete models, we

considered three different configurations of MAP and sum
nodes (see Appendix A). For each configuration, we ran
OIS with 5 mixture components and used the resulting
mixture and MPBP to predict the MMAP solution. To
evaluate the quality of the predictions, we used exact infer-
ence (variable elimination). The results are described in
Table 2. Our method significantly outperforms MPBP in
this case. One possible explanation for this performance
is that OSI, if a good mixture is obtained in the infer-
ence phase, is actually making fewer approximations than
MPBP on loopy models. In particular, the beliefs returned
by our method are always realizable as the marginals of
some joint distribution over all of the variables whereas
this is not the case with MPBP.

4.4 COMPUTER VISION TASKS

We conclude the experimental section with two computer
vision tasks: optical flow estimation and stereo depth
estimation. The scale of the MRFs for these tasks is sig-
nificantly larger than those considered in the previous
experiments as these models can contain hundreds of
thousands of nodes and edges. For these tasks, our aim
is to show that, like deep neural networks, our inference
method can scale to such problems by taking advantage
of modern GPU hardware. Since the BFE and its gradient
only involve expectations with respect to cliques in the
MRF, the required computation is embarrassingly paral-
lelizable, and can be easily distributed across GPU cores,
e.g., with MATLAB’s arrayfun; alternatively, the com-
putation can be highly vectorized to utilize efficient GPU
primitives for tensor operations (see Appendix B for a
discussion). As such, we implemented our method using
MATLAB’s built-in GPU computing support.

4.4.1 Optical Flow

Optical flow estimation attempts to recover 2D pixel mo-
tion from a sequence of images. A typical approach mod-
els the flow field using a pairwise MRF with node poten-
tials that enforce data constancy and edge potentials that
penalize discrepancies between adjacent pixels. The flow
at each pixel is defined as a vector (u, v), with scalars u
and v representing horizontal and vertical speed respec-
tively. We adopt the same potentials as the Classic-C



Table 2: The marginal MAP value produced by mixed-product and OSI on several UAI challenge problems.

Combination #1 Combination #2 Combination #3
Dataset mixed-BP mixture-5 mixed-BP mixture-5 mixed-BP mixture-5
Grids26 4378.0± 149.9 4963.0± 40.6 3927.0± 310.3 4621.6± 60.9 3530.5± 276.1 4189.1± 63.8
Grids28 6661.1± 244.4 7442.5± 29.2 5484.1± 412.6 6944.6± 56.3 4851.9± 271.6 6285.6± 16.6
Grids29 2280.8± 85.4 2472.2± 24.4 2000.9± 111.7 2290.8± 22.5 1897.9± 63.6 2087.7± 12.1
Grids30 4661.2± 54.0 5078.7± 31.8 3784.3± 318.0 4606.0± 42.0 3230.5± 558.9 4264.6± 24.6
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Figure 3: The running time of D-PMP versus GPU-
accelerated OSI on 5 images from the Middlebury dataset.

model (Sun et al., 2014) and apply bicubic interpolation
for continuous coordinates of pixels (see Appendix D).

We consider the optical flow estimation problem on 5
pairs of image sequences from the Middlebury optical
flow dataset (Baker et al., 2011). We compare OSI with
the base-line method Classic-C (Sun et al., 2014) for pixel
level models and with particle based max-product method
D-PMP on a super pixel version of the problem as in
(Pacheco and Sudderth, 2015). Note that the standard
implementation of D-PMP is impractical to run at the
pixel level, and it’s less clear how to take advantage of
GPU acceleration in the particle case. For OSI, we used a
Gaussian mixture with 3 components as the approximate
distribution, and 9 quadrature points for approximate inte-
gration. We explored multiplying the entropy term in the
BFE by a constant that was halved every 500 iterations
(approximating the zero temperature limit); it gave similar
performance to optimizing the BFE without modification.

The average endpoint error (AEPE) and converged ener-
gies are reported in Table 3. Classic-C, which applies a
median filter on the intermediate flow results after every
warping iteration, is included for comparison purposes.
At the super pixel level, OSI performs comparably to
D-PMP on both metrics while running for a fraction of
the time - estimated energy per iteration can be found in
Figure 3. Figure 4 visualizes the flow results generated
by the two methods. The extension to the continuous case

provides a smoother estimate of the ground truth when
run at the pixel level instead of at the super pixel level,
yielding the lower energy and AEPE reported in Table 3.

4.4.2 Stereo Depth Estimation

Finally, in order to further demonstrate the utility of con-
tinuous models in practice, we consider the stereo depth
estimation problem: given two images taken from sightly
different angles, the goal of stereo estimation is to esti-
mate the depth d(i, j) of each pixel in the image. As in
optical flow, bicubic interpolation was used to extend the
discretized problem to the continuous case.

We evaluate OSI on the Teddy and Cones images from the
Middlebury stereo dataset (Scharstein and Szeliski, 2003).
The quarter-size images in this dataset are 450 × 375.
Ground truth disparities dT in the data use quarter-pixel
accuracy in the range [0.25, 63.75], where 0 indicates
an unknown value. A quantitative comparison of OSI
(using the previous setup), graph cuts (min-cut with alpha-
expansion), and tree-reweighted belief propagation on
this dataset in terms of percentage of bad matching pixels
on non-occluded area can be found in Table 4. Note,
Bad% = 1

N

∑
(|(d(i, j)−dT (i, j)| > t), where t = 1, 2.

In Table 5, we report the average energy estimate and
the corresponding running time for each of the methods.
OSI’s convergence rate on the continuous inference task is
comparable to that of graph cuts on the discrete inference
task, while producing better depth estimates not only
quantitatively but also qualitatively (see Figure 5).

5 DISCUSSION

We have proposed a method for one-shot inference in
discrete, continuous, and hybrid graphical models that is
especially practical in situations requiring repeated infer-
ence on the same model. We also showed that, even as
a stand-alone inference procedure, our approach can be
implemented efficiently on modern GPUs - allowing us to
tackle problem sizes that would be challenging for com-
peting general purpose MRF inference techniques. The
approach retains these advantages on MRFs that may con-
tain both discrete and continuous variables and is essen-
tially potential function independent, i.e., the procedure



Figure 4: Optical flow estimation on Hydrangea (top) and Dimetrodon (bottom) image sequences by D-PMP (super
pixel level) and OSI (pixel level). The color key in the upper right corner encodes the flow vector for each pixel.

Table 3: Energy and AEPE of the three methods for optical flow estimation on Middlebury training set on both the
super pixel level (top) and the pixel level (bottom).

Dimetrodon RubberWhale Hydrangea Venus Grove2 Avg.
OSI

(super)
Energy 3.107E5 2.707E5 5.881E5 3.267E5 9.797E5 4.952E5
AEPE 0.157 0.133 0.222 0.331 0.169 0.202

D-PMP
(super)

Energy 3.221E5 2.714E5 5.667E5 3.239E5 9.981E5 4.964E5
AEPE 0.203 0.137 0.245 0.357 0.168 0.222

OSI Energy 3.386E5 2.950E5 8.413E5 5.420E5 9.139E5 5.862E5
AEPE 0.157 0.132 0.220 0.330 0.162 0.200

Classic-C Energy 3.472E5 3.208E5 7.228E5 4.118E5 11.87E5 5.979E5
AEPE 0.162 0.110 0.194 0.286 0.183 0.187

Table 4: Performance on non-occlusion area for disparity
estimation on the Teddy and Cones datasets.

Bad % Teddy Cones
t=1 t=2 t=1 t=2

OSI 14.1% 11.2% 10.7% 6.7%
GC 29.3% 11.4% 12.6% 7.0%
BP 16.3% N/A 10.6% N/A

Table 5: Converged energy (106) and run time (seconds)
on “Teddy” image by OSI, TRW for tree reweighted BP,
MP for max-product, and GC for graph cuts.

OSI TRW MP GC
Energy 1.328 1.366 1.402 1.365
Run Time 30 246 207 32

is generic enough to apply in many situations of inter-
est without significant modification. Further, it does not
suffer from the kind of convergence and unboundedness
issues that can arise even in simple continuous models.

Acknowledgments

This work was supported, in part, by the DARPA Explainable
Artificial Intelligence (XAI) program under contract number
N66001-17-2-4032 and NSF grant III-1527312.

Figure 5: Stereo depth estimation results on “Teddy” us-
ing graph cuts and OSI. The color map encodes pixel dis-
parities: hotter color means larger disparity (less depth).



References

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,
and R. Szeliski. A database and evaluation methodol-
ogy for optical flow. International Journal of Computer
Vision, 92(1):1–31, 2011.

D. Bickson. Gaussian belief propagation: Theory and ap-
plication. PhD thesis, Hebrew University of Jerusalem,
2008.

M. A. Carreira-Perpinan. Mode-finding for mixtures of
Gaussian distributions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1318–1323,
2000.

C. Chow and C. Liu. Approximating discrete probability
distributions with dependence trees. IEEE transactions
on Information Theory, 14(3):462–467, 1968.

B. Cseke and T. Heskes. Properties of Bethe free energies
and message passing in Gaussian models. Journal of
Artificial Intelligence Research, pages 1–24, 2011.

D. Dheeru and E. Karra Taniskidou. UCI machine learn-
ing repository, 2017. URL http://archive.ics.
uci.edu/ml.

S. J. Gershman, M. D. Hoffman, and D. M. Blei. Non-
parametric variational inference. In Proceedings of the
29th International Conference on Machine Learning
(ICML), pages 235–242, 2012.

A. Globerson and T. S. Jaakkola. Fixing max-product:
Convergent message passing algorithms for MAP LP-
relaxations. In Proc. 21st Neural Information Process-
ing Systems (NIPS), Vancouver, B.C., Canada, 2007.

G. H. Golub and J. H. Welsch. Calculation of Gauss
quadrature rules. Mathematics of computation, 23(106):
221–230, 1969.

Y. Guo, H. Xiong, and N. Ruozzi. Marginal inference in
continuous Markov random fields using mixtures. In
AAAI, 2019.

A. T. Ihler and D. A. McAllester. Particle belief propaga-
tion. In Twelfth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 256–263,
2009.

T. S. Jaakkola and M. I. Jordan. Improving the mean field
approximation via the use of mixture distributions. In
M. I. Jordan, editor, Learning in Graphical Models.
Cambridge: MIT Press, 1999.

R. H. Kassel. A comparison of approaches to on-line
handwritten character recognition. PhD thesis, Mas-
sachusetts Institute of Technology, 1995.

D. Koller and N. Friedman. Probabilistic graphical mod-
els: principles and techniques. MIT press, 2009.

V. Kolmogorov and C. Rother. Minimizing nonsubmodu-
lar functions with graph cuts-a review. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 29
(7):1274–1279, July 2007.

V. Kolmogorov and M. Wainwright. On the optimality
of tree-reweighted max-product message-passing. In
Proceedings of the Twenty-First Conference Annual
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 316–323, Arlington, Virginia, 2005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

T. Lienart, Y. W. Teh, and A. Doucet. Expectation particle
belief propagation. In Advances in Neural Information
Processing Systems (NIPS), pages 3609–3617, 2015.

Q. Liu and A. Ihler. Variational algorithms for marginal
map. The Journal of Machine Learning Research, 14
(1):3165–3200, 2013.

Q. Liu, J. Lee, and M. Jordan. A kernelized Stein dis-
crepancy for goodness-of-fit tests. In International
Conference on Machine Learning (ICML), pages 276–
284, 2016.

B. London, B. Huang, and L. Getoor. The benefits
of learning with strongly convex approximate infer-
ence. In International Conference on Machine Learn-
ing (ICML), pages 410–418, 2015.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-
sums and belief propagation in Gaussian graphical
models. Journal of Machine Learning Research, 7:
2031–2064, 2006.

R. Marinescu, R. Dechter, and A. Ihler. And/or search
for marginal MAP. In Proceedings of the Thirtieth
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 563–572. AUAI Press, 2014.

R. Marinescu, J. Lee, A. T. Ihler, and R. Dechter. Anytime
best+depth-first search for bounding marginal MAP. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI), 2017.

T. Meltzer, A. Globerson, and Y. Weiss. Convergent mes-
sage passing algorithms: a unifying view. In Proc. 25th
Uncertainty in Artifical Intelligence (UAI), Montreal,
Canada, 2009.

T. P. Minka. Expectation propagation for approximate
Bayesian inference. In Proceedings of the Seventeenth
conference on Uncertainty in Artificial Intelligence
(UAI), pages 362–369, 2001.

N. Noorshams and M. J. Wainwright. Belief propaga-
tion for continuous state spaces: stochastic message-
passing with quantitative guarantees. Journal of Ma-
chine Learning Research (JMLR), 14(1):2799–2835,
2013.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


J. Pacheco and E. Sudderth. Proteins, particles, and
pseudo-max-marginals: a submodular approach. In In-
ternational Conference on Machine Learning (ICML),
pages 2200–2208, 2015.

J. Pearl. Reverend Bayes on inference engines: A dis-
tributed hierarchical approach. Cognitive Systems
Laboratory, School of Engineering and Applied Sci-
ence, University of California, Los Angeles, 1982.

N. Ruozzi. Exactness of approximate MAP inference in
continuous MRFs. In Advances in Neural Information
Processing Systems (NIPS), pages 2332–2340, 2015.

N. Ruozzi. A lower bound on the partition function of
attractive graphical models in the continuous case. In
Artificial Intelligence and Statistics (AISTATS), 2017.

N. Ruozzi and S. Tatikonda. Message-passing algorithms
for quadratic minimization. Journal of Machine Learn-
ing Research, 14:2287–2314, 2013a.

N. Ruozzi and S. Tatikonda. Message-passing algorithms:
Reparameterizations and splittings. IEEE Transactions
on Information Theory, 59(9):5860–5881, Sept. 2013b.

D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, volume 1, pages I–I.
IEEE, 2003.

L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin.
Kernel belief propagation. In Proceedings of the Four-
teenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pages 707–715, 2011.

E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman,
and A. S. Willsky. Nonparametric belief propagation.
In Computer Vision and Pattern Recognition (CVPR),
IEEE Computer Society Conference on, 2003.

D. Sun, S. Roth, and M. J. Black. A quantitative analy-
sis of current practices in optical flow estimation and
the principles behind them. International Journal of
Computer Vision, 106(2):115–137, 2014.

N. Taga and S. Mase. On the convergence of loopy belief
propagation algorithm for different update rules. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., E89-
A(2):575–582, Feb. 2006.

M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Foun-
dations and Trends in Machine Learning, 1(1-2):1–305,
2008.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-
based reparameterization framework for analysis of
sum-product and related algorithms. IEEE Transac-
tions on information theory, 49(5):1120–1146, 2003.

D. Wang, Z. Zeng, and Q. Liu. Stein variational message
passing for continuous graphical models. In Interna-
tional Conference on Machine Learning (ICML), 2018.

S. Wang, A. Schwing, and R. Urtasun. Efficient inference
of continuous Markov random fields with polynomial
potentials. In Advances in neural information process-
ing systems (NIPS), pages 936–944, 2014.

M. Welling and Y. W. Teh. Belief optimization for binary
networks: A stable alternative to loopy belief propa-
gation. In Proceedings of the Seventeenth conference
on Uncertainty in Artificial Intelligence (UAI), pages
554–561. Morgan Kaufmann Publishers Inc., 2001.

T. Werner. A linear programming approach to max-sum
problem: A review. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(7):1165–1179,
2007.

Y. Xue, Z. Li, S. Ermon, C. P. Gomes, and B. Selman.
Solving marginal map problems with NP oracles and
parity constraints. In Advances in Neural Information
Processing Systems (NIPS), pages 1127–1135, 2016.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Construct-
ing free-energy approximations and generalized belief
propagation algorithms. Information Theory, IEEE
Transactions on, 51(7):2282 – 2312, July 2005.


	INTRODUCTION
	MARKOV RANDOM FIELDS
	BETHE FREE ENERGY

	ONE-SHOT INFERENCE
	BOUNDEDNESS OF THE BFE

	EXPERIMENTS
	SYNTHETIC MARGINAL MAP ON TREES
	MARGINAL MAP ON UCI DATASETS
	INFERENCE IN CYCLIC GRAPHS
	COMPUTER VISION TASKS
	Optical Flow
	Stereo Depth Estimation


	DISCUSSION
	Configurations for UAI Marginal MAP Experiments
	Computational Details
	Gradient of the Bethe Free Energy
	Computing Expectations
	Quadrature Approximation for Expectations with Respect to Continuous Beliefs
	Expectations with Respect to Discrete/Mixed Beliefs


	Proof of Lemma 2
	Computer Vision Experiments Setup
	Model and Potentials Used in Optical Flow Experiment
	Model and Potentials Used in Stereo Depth Estimation Experiment
	More Details about Bicubic Interpolation




