
Neural Dynamics Discovery via
Gaussian Process Recurrent Neural Networks

Qi She
Intel Labs China

qi.she@intel.com

Anqi Wu
Princeton Neuroscience Institute

Princeton University
anqiw@princeton.edu

Abstract

Latent dynamics discovery is challenging
in extracting complex dynamics from high-
dimensional noisy neural data. Many dimen-
sionality reduction methods have been widely
adopted to extract low-dimensional, smooth
and time-evolving latent trajectories. However,
simple state transition structures, linear embed-
ding assumptions, or inflexible inference net-
works impede the accurate recovery of dynamic
portraits. In this paper, we propose a novel la-
tent dynamic model that is capable of captur-
ing nonlinear, non-Markovian, long short-term
time-dependent dynamics via recurrent neural
networks and tackling complex nonlinear em-
bedding via non-parametric Gaussian process.
Due to the complexity and intractability of the
model and its inference, we also provide a pow-
erful inference network with bi-directional long
short-term memory networks that encode both
past and future information into posterior dis-
tributions. In the experiment, we show that
our model outperforms other state-of-the-art
methods in reconstructing insightful latent dy-
namics from both simulated and experimental
neural datasets with either Gaussian or Pois-
son observations, especially in the low-sample
scenario. Our codes and additional materi-
als are available at https://github.com/
sheqi/GP-RNN_UAI2019.

1 INTRODUCTION

Deciphering interpretable latent regularity or structure
from high-dimensional time series data is a challenging
problem for neural data analysis. Many studies and the-
ories in neuroscience posit that high-dimensional neu-

ral recordings are noisy observations of some underly-
ing, low-dimensional, and time-varying signal of inter-
est. Thus, robust and powerful statistical methods are
needed to identify such latent dynamics, so as to provide
insights into latent patterns which govern neural activity
both spatially and temporally. A large body of literature
has been proposed to learn concise, structured and in-
sightful dynamical portraits from noisy high-dimensional
neural recordings [1, 2, 3, 4, 5, 6, 7]. These methods can
be categorized on the basis of four modeling strategies
(“?” indicates our contributions in these components):

Dynamical model (?) Dynamical models describe the
evolution of latent process: how future states depend on
present and past states. One popular approach assumes
that latent variables are governed by a linear dynamical
system [8, 9], while a second choice models the evolution
of latent states with a Gaussian process, relaxing linear-
ity and imposing smoothness over latent states [10, 1].
However, linear dynamics cannot capture nonlinearities
and non-Markov dynamical properties of complex sys-
tems; and Gaussian process only considers the pair-wise
correlation of time points, instead of considering explicit
temporal dynamics. We argue that the proposed dynami-
cal model in this work is able to both capture the complex
state transition structures and model the long short-term
temporal dynamics efficiently and flexibly.

Mapping function (?) Mapping functions reveal how
latent states generate noise-free observations. A nonlin-
ear transformation is often ignored when pursuing effi-
cient and tractable algorithms. Most previous methods
have assumed a fixed linear or log-linear relationship be-
tween latent variables and mean response levels [2, 3]. In
many neuroscience problems, however, the relationship
between noise-free observation space and the quantity it
encodes can be highly nonlinear. Gao et al., [4] have ex-
plored a nonlinear embedding function using deep neural
networks (DNNs), which requires a large amount of data
to train a large set of model parameters and can not prop-

https://github.com/sheqi/GP-RNN_UAI2019
https://github.com/sheqi/GP-RNN_UAI2019

agate uncertainty from latent space to observation space.
In this paper, we employ a non-parametric Bayesian ap-
proach, Gaussian process (GP), to model the nonlinear
mapping function from latent space to observation space,
which requires much less training data and propagates
uncertainties with probabilistic distributions.

Observation model Neural responses can be mostly
categorized into two types of signals, i.e., continuous
voltage data and discrete spikes. For continuous neural
responses, people usually use Gaussian distributions as
generating distributions. For neural spike trains, a Pois-
son observation model is commonly considered to char-
acterize stochastic, noisy neural spikes. In this work, we
propose models and inference methods for both Gaussian
and Poisson responses, but with a focus on the Poisson
observation model. Directly modeling Poisson responses
with a non-conjugate prior has an intractable solution, es-
pecially for complex generative models. In some previous
methods, researchers have used a Gaussian approximation
for Poisson spike counts through a variance stabilization
transformation [12]. In our framework, we apply an ef-
fective optimization procedure for the Poisson model.

Inference method (?) In our setting, due to the in-
creased complexity of both the dynamical model and the
mapping function, we should provide a more powerful in-
ference method for recognizing latent states. Recent work
has focused on utilizing variational inference for scalable
computation, which takes advantage of both stochastic
and distributed optimization [13]. Additionally, inference
networks improve computational efficiency while still
keeping rich approximated posterior distributions. One
of the choices for inference networks for sequential data
is multi-layer perceptrons (MLP) [14]. However, it is
insufficient to capture the increasing temporal complex-
ity as the dynamic evolves. Recurrent neural networks
(RNNs), e.g., long short-term memory (LSTM) and gated
recurrent unit (GRU) structures, are well known to capture
dynamical structures for sequential data. We utilize RNNs
as inference networks for encoding both past and future
time information into the posterior distribution of latent
states. Specifically, we use two LSTMs for mapping past
and future time points jointly into the mean and diagonal
covariance functions of the approximated Gaussian distri-
bution. We show empirically that instead of considering
only past time information as other recent works [15, 16],
using both past and future time information can retrieve
intrinsic latent structures more accurately.

Given current limitations in the dynamical model, map-
ping function, and inference method, we propose a novel
method using recurrent neural networks (RNNs) as the
dynamical model, Gaussian process (GP) for the nonlin-

ear mapping function, and bi-directional LSTM structure
as the inference network. This combination poses a richly
distributed internal state representation and flexible non-
linear transition functions due to the representation power
of RNNs (e.g., long short-term memory (LSTM) or gated
recurrent unit (GRU) structures). Moreover, it shows ex-
pressive power for discovering structured latent space by
nonlinear embeddings with Gaussian process thanks to
its advantage in capturing uncertainty in a non-parametric
Bayesian way. In addition, the bi-directional LSTM with
increasing model complexity can further enhance infer-
ence capability because it summarizes either the past or
the future or both at every time step, forming the most
effective approximation to the variational posterior of
the latent dynamic. Our framework is evaluated on both
simulated and real-world neural data with detailed abla-
tion analysis. The promising performance of our method
demonstrates that our method is able to: (1) capture bet-
ter and more insightful nonlinear, non-periodic dynamics
from high-dimensional time series; (2) significantly im-
prove prediction performance over baseline methods for
noisy neuronal spiking activities; and (3) robustly and
efficiently learn the turning curves of underlying complex
neural systems from neuronal recording datasets.

Table 1 summarizes the state-of-the-art methods for ex-
tracting latent state space from high-dimensional spike
trains1 by varying different model components discussed
above. In a nutshell, our contributions are three-fold com-
paring to the listed methods:

• We propose to capture nonlinear, non-Markovian,
long short-term time-dependent dynamics by incor-
porating recurrent neural networks in the latent vari-
able model. Different from the vanilla RNN, we
achieve a stochastic RNN structure by introducing
latent variables;

• We incorporate Gaussian process for learning non-
linear embedding functions, which can achieve bet-
ter reconstruction performance for the low-sample
scenario and provide the posterior distribution with
uncertainty instead of point estimation in neural net-
works. Together with RNN, we provide a GP-RNN
model (Gaussian Process Recurrent Neural Network)
that is capable of capturing better latent dynamics
from complex high-dimensional neural population
recordings;

1We focus on exploring intrinsic latent structures from spike
trains, and the related works mentioned here are to our knowl-
edge the most relevant with this research line. Although some ex-
cellent works take advantages of both RNN structures and Gaus-
sian process for either modeling or inference [17, 18, 19, 20, 21],
they are out of the scope in this work.

Model Dynamics Mapping function Link function Observation Inference
PLDS [2] LDS Linear exp Poisson LP
PfLDS [4] LDS NN exp Poisson VI + inference network

GCLDS [3] LDS Linear exp Count VI
LFADS [6] RNN Linear exp Poisson VI + inference network

P-GPFA [11] GP Linear Identity Poisson LP or VI
P-GPLVM [5] GP GP exp Poisson LP

Ours : GP-RNN RNN GP exp Poisson/Gaussian VI + inference network

Table 1: Comparison of different models. “PLDS”: Poisson linear dynamical system [2]; “PfLDS”: Poisson feed-
forward neural network linear dynamical systems [4]; “GCLDS”: generalized count linear dynamical systems [3];
“P-GPFA”: Poisson Gaussian process factor analysis [11]; “P-GPLVM”: Poisson Gaussian process latent variable
model [5]; and our method GP-RNN: Gaussian process recurrent neural networks. “LDS” denotes Linear Dynamical
Systems. “LP” and “VI” indicate Laplace approximation and variational inference, respectively.

• We evaluate the efficacy of different inference net-
works based on LSTM structures for inference
and learning, and demonstrate that utilizing the bi-
directional LSTM as the inference network can sig-
nificantly improve model learning.

2 GAUSSIAN PROCESS RECURRENT
NEURAL NETWORK (GP-RNN)

Suppose we have simultaneously recorded spike count
data from N neurons. Let xi,t denote the spike count
of neuron i ∈ {1, . . . , N} at time t ∈ {1, . . . , T}. We
aim to discover low-dimensional, time-evolving (zt de-
pends on z1:t−1) latent trajectory zt ∈ RL (L� N , and
L is the latent dimensionality), which governs the evo-
lution of the high-dimensional neural population xt =
[x1,t, x2,t, ..., xN,t] ∈ RN at time t.

Recurrent structure latent dynamics: Let zt ∈ RL de-
note a (vector-valued) latent process, which evolves based
on a recurrent structure (RNN) to capture the sequential
dependence. At each time step t, the RNN reads the latent
process zt−1 at the previous time step and updates its
hidden state νt ∈ RH by:

νt = RNNθ(zt−1,νt−1), (1)

where RNNθ is a deterministic nonlinear transition func-
tion with parameter θ. RNNθ can be implemented via
long short-term memory (LSTM) or gated recurrent unit
(GRU). It is denoted that the latent process zt is modeled
as random variables and νt represents hidden states of the
RNN model. We model the latent process zt by parame-
terizing a factorization of the joint sequence probability
distribution as a product of conditional probabilities such

that:

p(z1, · · · , zT) =

T∏
t=1

p(zt|z1, ..., zt−1) =

T∏
t=1

p(zt|z<t)

p(zt|z<t) = p
(
zt; gψ (νt)

)
, (2)

where gψ(·) is an arbitrary differentiable function
parametrized by ψ. The function gψ(·) maps the RNN
state νt to the parameter of the distribution of zt, which
is modeled using a feed-forward neural network with 2
hidden layers as:

p
(
zt; gψ (νt)

)
= N

(
µzt ,diag(σ2

zt)
)
, (3)

[µzt , σ
2
zt] = NN2−layer(νt). (4)

Nonlinear mapping function: Let fi : RL → R denote
a nonlinear function mapping from the latent variable
zt ∈ RL to the i-th element of the observation vector
xi,t ∈ R. fi is usually referred as the neuronal tuning
curve characterizing the firing rate of the neuron as a
function of relevant stimulus in neural analysis. We pro-
vide a non-parametric Bayesian approach using Gaussian
process (GP) as the prior for the mapping function fi.
Noticing that fi is a time-invariant function, we can omit
the notation for time step t and describe the GP prior as,

fi(z) ∼ GP(0, kz), (5)

kz(z, z
′) = ρ exp(

−||z− z′||22
2σ2

), (6)

where kz is a spatial covariance function over its L-
dimensional input latent space. Note that the input z
is a random variable with uncertainty (eq. (2)). Given
that the neuronal tuning curve is usually assumed to be
smooth, we use the common radial basis function (RBF)
or smooth covariance function as eq. (6), where z′ are
arbitrary points in latent space, ρ is the marginal vari-
ance and σ is the length scale. We stack fi(zt) across T

hidden state

latent state

observation

RNN

(Gaussian or Poisson)

Figure 1: The proposed GP-RNN models the dynamics
of hidden states νt (yellow circle) with an RNN struc-
ture, and generates latent dynamics zt (blue circle) given
hidden states. Both hidden states νt and latent dynamics
zt contribute to νt+1. The latent states zt are mapped
to observations xt (green circle) via a Gaussian process
mapping function f .

time steps to obtain fi ∈ RT . According to the defini-
tion of Gaussian process, fi forms a multivariate normal
distribution given latent vectors at all time steps, as

fi|z1:T ∼ N (0,Kz), (7)

with a T × T covariance matrix Kz generated by evaluat-
ing the covariance function kz at all pairs of latent vectors
in z1:T . Finally, by stacking fi for N neurons, we form a
matrix F ∈ RN×T with f>i on the i-th row.

Observation model: Real-world time series data is often
categorized into real-valued data and count-valued data.
For real-valued data, the observation model is usually
a Gaussian distribution given the firing rate fi(zt) and
some additive noise ε ∼ N (0, l). Marginalizing out ε, we
obtain the observation model as

xi,t|fi, zt ∼ N
(
fi(zt), l

)
. (8)

However the observation following Gaussian distribution
is infeasible under count-valued setting. Considering
neural spike trains, we assume that the spike rate λi,t =
exp

(
fi(zt)

)
(non-negative value), and the spike count of

neuron i at time t is generated as

xi,t|fi, zt ∼ Poisson
(

exp
(
fi(zt)

))
. (9)

In summary, our model uses an RNN structure to capture
nonlinearity and long short-term temporal dependence
of latent dynamics, while keeping the flexibility of non-
parametric Bayesian (GP) in learning nonlinear mapping
functions. Finally, we generate Gaussian observations
with Gaussian additive noise given spike rates or propa-
gate spike rates via an exponential link function to gener-
ate Poisson observations. The graphical model is shown
in Fig. 1. Denote that RNN structure is not directly ap-
plied for latent process zt, it is over zt’s prior via a neural

network mapping (shown in eq. (1) and (2)), completely
different from a simple RNN for latent states zt as existing
works, e.g., LFADS. This modeling strategy, similar to
[15], establishes stochastic RNN dynamics, which gives
a strong and flexible prior over the latent process. zt is
propagated with well-calibrated uncertainty via Gaussian
process to the firing rate function f . The observation xt
is generated from f with Gaussian or Poisson noise based
on the applications.

3 INFERENCE FOR GP-RNN

Gaussian response: When the observation is Gaussian,
the tuning curve fi in eq. (8) can be marginalized out
due to the conjugacy. Variational Bayes Expectation-
Maximization (VBEM) algorithm is adopted for esti-
mating latent states z1:T (E-step) and parameters Θ =
{θ, ψ, ρ, σ} (M-step). In E-step, we need to characterize
the full posterior distribution p(z1:T |x1:T ,Θ), which is
intractable. We employ a Gaussian distribution as the vari-
ational approximate distribution. Denoting z̄ = vec(z1:T)
and x̄ = vec(x1:T), we approximate p(z̄|x̄) with qφ(z̄) =
N
(
µφ(x̄

)
, σ2
φ(x̄)), whose mean and variance are the out-

puts of a highly nonlinear function of observation x̄, and
φ encodes the function parameters. We identify the op-
timal z̄,Θ and φ by maximizing a variational Bayesian
lower bound (also called “ELBO′′) as

L(z̄,Θ, φ) = Eqφ(z̄)

[
log pΘ(z̄, x̄)

]
− Eqφ(z̄)

[
log qφ(z̄)

]
.

(10)
The first term in eq. (10) represents an energy, encour-

aging qφ(z̄) to focus on the probability mass, pΘ(z̄, x̄).
The second term (including the minus sign) represents the
entropy of qφ(z̄), encouraging it to spread the probability
mass thus avoiding concentrating on one point estimate.
The entropy term in eq. (10) has a closed-form expression:

Eqφ(z̄)

[
log qφ(z̄)

]
= −LT

2

(
1 + log(2π)

)
− 1

2
log |Σ|.

(11)
The gradients of eq. (10) with respect to φ,Θ can be eval-
uated by sampling directly from qφ(z̄), for example, using
Monte Carlo integration to obtain noisy estimates of both
the ELBO and its gradient [22, 23]. Score function esti-
mator achieves it by leveraging a property of logarithms
to write the gradient as

∇L(Θ, φ) =
1

S

S∑
s=1

[
∇ log qφ(z̄s)

(
log pΘ(z̄s, x̄)

− log qφ(z̄s)
)]
, (12)

which first draws S samples {z̄s}S1 from qφ(z̄), and then
evaluates the empirical expectation using {z̄s}S1 . In gen-
eral, the approximate gradient using score function es-
timator exhibits high variance [22], and practically we
compute the integral with the “reparameterization trick”

Inference Network Vanilla MF VAE r-LSTM l-LSTM bi-LSTM
Variational Approximation q(zt) q(zt|xt) q(zt|xt:T) q(zt|x1:t) q(zt|x1:T)

Table 2: Inference networks applied in variational approximation

proposed by [24]. We can parameterize the multivariate
normal z̄ ∼ q(z̄|x̄) as

z̄ = µφ(x̄) +Rφ(x̄)ε, ε ∼ N (0, I), (13)

therefore z is distributed as a multivariate normal with
mean µφ(x̄) and covariance Rφ(x̄)Rφ(x̄)>. We finally
separate the gradient estimation as

∇ΘL(Θ, φ) = Eqφ(z̄)

[
∇Θ log pΘ(z̄, x̄)

]
,

∇φL(Θ, φ) = Eε
[
∇φ log pΘ

(
µφ(x̄) +Rφ(x̄)ε, x̄

)]
+∇φHφ, (14)

where Hφ = Eqφ(z̄) [log qφ(z̄)] is the entropy of the vari-
ational distribution. Now both gradients can be approxi-
mated with Monte-Carlo estimates.

On the choice of the optimal variational distribution:
In eq. (10), we consider the approximated posterior qφ(z̄)
as a Gaussian, N

(
µφ(x̄), σ2

φ(x̄)
)
, whose mean and vari-

ance are the outputs of a highly nonlinear function of
observation x̄. Here, we consider five structured q dis-
tributions by encoding x̄ in different sequential patterns
shown in Table 2: (1) vanilla mean field (MF); (2) varia-
tional autoencoder (VAE); (3) LSTM conditioned on past
observations (l-LSTM); (4) LSTM conditioned on future
observations (r-LSTM) and (5) bi-directional LSTM (bi-
LSTM) conditioned on both past and future observations.

For l-LSTM and r-LSTM, “l” or “r” is an abbreviation
of “left” or “right”, which considers past or future in-
formation. We parametrize mean µt and variance σ2

t

for the variational approximated posterior at time step
t as a function of the hidden state ht, e.g., for l-LSTM,
ht,l = LSTM(x1:t). We illustrate the l/r/bi-LSTM struc-
ture of inference networks in Fig 2. Inference network
maps observation x̄ to varational parameters µt, σ2

t of
approximate posterior p(z̄|x̄) via LSTM-based structures.
The inference network maps observations to the mean
and covariance functions of approximated Gaussian latent
states. The parameterization (r-LSTM) can be written as

µt,r = Wµrht,r + bµr ,

σ2
t,r = softplus(Wσ2

r
ht,r + bσ2

r
). (15)

Similar with the l-LSTM. Here W and b are weights and
bias mapping ht to variational parameters. In bi-LSTM,
we use a weighted mean and variance to parameterize the
variational posterior as

µt,bi = (µt,rσ
2
t,l + µt,lσ

2
t,r)/(σ

2
t,l + σ2

t,r),

σ2
t,bi = (σ2

t,lσ
2
t,r)/(σ

2
t,l + σ2

t,r). (16)

latent state

l-LSTM

r-LSTM

observation

variational
parameter

Figure 2: Inference network for l-LSTM, r-LSTM and bi-
LSTM. Briefly, bi-LSTM is the joint effect of l/r-LSTM.
The blue circle denotes latent states zt, the blue square
shows the variational parameters (µt, σ2

t), the yellow
circle denotes hidden states of two LSTMs ht,l and ht,r,
and the green circle represents observation data xt.

All operations should be performed element-wisely on
the corresponding vectors. The Gaussian approximated
posterior q(zt|x1:T) ∼ N (µt,bi, σ

2
t,bi) thus summarizes

both the past and future information from observations.

Algorithm 1 summarizes the inference method for the
Gaussian observation model based on variational infer-
ence.

Algorithm 1 Inference of GP-RNN-Gaussian
Input: dataset x1:T

Output: latent process z1:T , model parameters Θ =
{ρ, σ, θ, ψ}, variational parameter φ
repeat

Evaluate µφ(x1:T) and σ2
φ(x1:T) based on eq. (16)

Sample z1:T ∼ N
(
µφ(x1:T), σ2

φ(x1:T)
)

Evaluate L(φ,Θ) based on eq. (10)
Compute ∇ΘL and ∇φL based on eq. (14)
Update Θ and φ using ADAM

until convergence

Poisson response: When the observation model is Pois-
son, the integration over the mapping function f in eq. (9)
is now intractable due to the non-conjugacy between its
GP prior and the Poisson data distribution. The inter-
play between z and f involves a highly-nonlinear trans-
formation, which makes inference difficult. Inducing
points [25] and decoupled Laplace approximation [5]
have been recently introduced to release this dependence
and make inference tractable. In this paper, we adapt a
straightforward maximum a posteriori (MAP) estimation

for training both F and z̄, as

F, z̄ = argmaxF,z̄ p(x̄,F, z̄) (17)
= argmaxF,z̄ p(x̄|F)p(F|z̄, ρ, σ)p(z̄|θ, ψ),

where the joint distribution p(x̄,F, z̄) of latent variables
z̄,F and observations x̄ of the RHS for eq. (18) is

p(x̄,F, z̄) = p(x̄|F)p(F|z̄, ρ, σ)p(z̄|θ, ψ) (18)

=

N∏
i=1

T∏
t=1

p(xi,t|fi,t)︸ ︷︷ ︸
Poisson

N∏
i=1

p(fi|z̄, ρ, σ)︸ ︷︷ ︸
GP

T∏
t=1

pθ(zt|z<t)︸ ︷︷ ︸
RNN

.

Eq. (18) is a joint probability with three main components:
(1) Poisson spiking (observation model); (2) Gaussian
process (GP , nonlinear embedding); and (3) recurrent
neural networks (RNN, dynamical model). During the
training procedure, we adapt composing inference [26],
fixing F or z̄ while optimizing the other in a coordinate
ascent manner. More details and the pseudo-algorithm
for inference of GP-RNN-Poisson can be found in the
supplementary.

4 EXPERIMENTS

To demonstrate the superiority of GP-RNN in latent dy-
namics recovery, we compare it against other state-of-the-
art methods on both extensive simulated data and a real
visual cortex neural dataset.

4.1 Recovery of Lorenz Dynamics

First we recover the well-known Lorenz dynamics in a
nonlinear system. The Lorenz system describes a two
dimensional flow of fluids with z1,2,3 as latent states:

dz1

dt
= σ(z2−z1),

dz2

dt
= z1(ρ−z3)−z2,

dz3

dt
= z1y−βz3.

(19)
This system has chaotic solutions (for certain parameter
values) that revolve around the so-called Lorenz attractor.
Lorenz uses the values σ = 10 , β = 8/3 and ρ = 28,
exhibiting a chaotic behavior, which generates a nonlinear,
non-periodic, and three-dimensional complex system. It
has been utilized for testing latent structure discovery in
recent works [27, 28, 6].

We simulated a three-dimensional latent dynamic us-
ing Lorenz system as in eq. (19), and then apply three
different mapping functions for simulations: xt =
w>zt + Φ + η; xt = tanh(w>zt + Φ) + η; and
xt = sin(w>zt + Φ) + η. Note that the oscillatory
response of sine wave is well-known as the properties of
grid cells [4]). Thus, we generate simulated data with
nonlinear dynamics and linear/nonlinear mapping func-
tions. Gaussian response is the Gaussian noise corrupted

version of xt; Poisson spike trains are generated from a
Poisson distribution with exp(xt) as the spike rate.

In our simulation, the latent dimension is 3 and the num-
ber of neurons is 50, thus zt ∈ R3 and w ∈ R3×50. We
randomly generate weights w and bias Φ uniformly from
region [0, 1.0], and the noise η is drawn fromN (0, I). We
test the ability of each method to infer the latent dynamics
of the Lorenz system (i.e., the values of the three dynamic
variables) from Gaussian and Poisson responses, respec-
tively. Models are compared in three aspects: inference
network, dynamical model and mapping function.

Analysis of inference network and dynamical model:
Table 3 and 4 show performance of variational approxi-
mation techniques applied to both P-GPLVM with AR1
kernel (AR1-GPLVM) and GP-RNN models on Gaus-
sian and Poisson response data respectively. P-GPLVM
with AR1 kernel is mathematically equal to the GPLVM
model with LDS when the linear mapping matrix in LDS
is full-rank. Therefore we are essentially comparing be-
tween LDS and RNN for dynamic modeling. In general,
GP-RNN outperforms AR1-GPLVM via capturing com-
plex dynamics of nonlinear systems with powerful RNN
representations.

bi-LSTM inference networks render best results due to
its consideration of both past and future information.
Meanwhile, l-LSTM demonstrates the importance of past
dependence with better results than r-LSTM. Overall,
LSTM-style inference networks have more promising
results than models considering current observations only
(e.g., MF and VAE).

Moreover, the inference network of VAE is not a much
more expressive variational model for approximating pos-
terior distribution compared with vanilla mean field meth-
ods. With only current time points, both of them have sim-
ilar inference power (as shown in Table 3 and 4 columns
of “MF” and “VAE”). VAE only has global parameters
of the neural network for mapping data points to posteri-
ors, while vanilla MF has local parameters for each data
point. VAE can be scaled to large-scale datasets, but the
performance is upper-bounded by vanilla MF [26].

Analysis of mapping function:

Table 5 shows the comparison between a neural network
and a Gaussian process as the nonlinear mapping func-
tions. The dynamical model is RNN, and the true mapping
functions include linear, tanh, and sine functions. The
number of data points for training (N) are 50, 100, 200
and 500. The subsequent 50 time points following the
training time points are used for testing the accuracy of
reconstructions of latent trajectories. In Table 5, We can
tell that a Gaussian process provides a superior mapping
function for smaller datasets for training (columns of “GP”

Gaussian AR1-GPLVM GP-RNN
MF VAE r-LSTM l-LSTM bi-LSTM MF VAE r-LSTM l-LSTM bi-LSTM

linear 4.12 4.10 4.01 3.27 1.64 2.17 2.17 1.98 1.54 0.96
tanh 3.20 3.22 3.01 2.46 1.17 2.01 2.01 1.83 1.41 0.78
sine 3.12 3.12 2.74 2.33 1.02 1.81 1.78 1.34 1.12 0.56

Table 3: Inference network and dynamical model analysis. Root mean square error (RMSE, 10−2) of latent trajectories
reconstructed from various simulated models are presented. We compare two latent dynamical models: first-order
autoregressive (AR1) and recurrent neural network (e.g., LSTM), three mapping functions: linear, tanh and sine, and
five variational approximations listed in Table 2. The observations are Gaussian responses with 50 observational
dimensions and 200 time points. Underlined and bold fonts indicate best performance. Results with standard errors
(ste) can be found in the supplementary.

Poisson AR1-GPLVM GP-RNN
MF VAE r-LSTM l-LSTM bi-LSTM MF VAE r-LSTM l-LSTM bi-LSTM

linear 6.34 6.34 6.02 5.71 3.67 6.01 6.01 5.94 5.71 3.10
tanh 3.22 3.21 3.01 2.84 1.57 3.09 3.11 2.98 2.54 1.21
sine 2.80 2.79 2.77 2.51 1.49 2.67 2.67 2.43 2.33 1.14

Table 4: Root mean square error (RMSE, 10−2) of latent trajectories reconstructed from Poisson responses in test
datasets. Underlined and bold fonts highlight best performance. Results with standard errors (ste) can be found in the
supplementary.

Data linear tanh sine
GP NN GP NN GP NN

N = 50 2.51 3.88 1.45 2.75 1.97 3.43
N = 100 1.27 1.65 1.15 1.45 1.03 1.31
N = 200 0.96 1.29 0.78 1.22 0.56 0.70
N = 500 0.34 0.35 0.26 0.26 0.12 0.12

Table 5: Mapping function analysis. RMSE (10−2) of
latent trajectory reconstruction using Gaussian process
(GP-RNN) and neural network (NN-RNN) mapping func-
tions are shown. Both of them are combined with an RNN
dynamical model component. We simulate 50 trials and
present averaged RMSE results across all trials. Linear,
tanh and sine mapping functions are used to generate the
data. “N” indicates the number of data points for training
in each trial, and RMSE is the result of subsequent 50
time points for testing. Results with standard errors (ste)
can be found in the supplementary.

and “NN”). When we have more time points, the predic-
tion performance of a neural network mapping is com-
parable with a Gaussian process (rows of N = 200 and
500). Bigger datasets can help to learn complex Lorenz
dynamics, and meanwhile, prevent the overfitting problem
in neural network models. Smaller datasets may affect
latent dynamics recovery but a Gaussian process mapping
enhances nonlinear embedding recovery via keeping the
local constraints.

Comparison with state-of-the-art methods:

Consistent with results reported in state-of-the-art meth-

ods, we compare R2 values for latent trajectory recon-
struction of our GP-RNN method against others as shown
in Table 6. The inference network of our model is bi-
LSTM since the simulated results shown above demon-
strate its stronger power in model fitting. Note that we use
the Poisson model and compare it with recently developed
models for analyzing spike trains. For each dimension
of Lorenz dynamics, GP-RNN significantly outperforms
baseline methods, e.g., 10.8% (z1), 11.2% (z2) and 0.5%
(z3) increment of R2 values compared with the second
best model P-GPLVM. We have also found several ex-
cellent works combining RNN structures with Gaussian
process for either modeling or inference [17, 19, 20, 21],
but note that they are not in the research line of explor-
ing latent intrinsic structures of high-dimensional real or
count-valued data as stated in our work. The methods
we compared in our paper (e.g., PLDS [2], GCLDS [3],
PfLDS [4], P-GPFA [11], and P-GPLVM [5]) are to our
knowledge recently proposed methods analyzing the same
problems and can be more worthwhile being compared.

4.2 Application to Macaque V1 Neural Data

We apply GP-RNN to the neurons recorded from the pri-
mary visual cortex of a macaque [29]. Data was obtained
when the monkey was watching sinusoidal grating drift-
ings with 72 orientations (0◦, 5◦, 10◦, · · · , 355◦), and had
50 repeated trials for each orientation. Following [4], we
consider 63 well-behaved neurons based on their tuning
curves, and bin 900 ms spiking activity with window size

Dimension PLDS GCLDS PfLDS P-GPFA P-GPLVM GP-RNN
z1 0.641 0.435 0.698 0.733 0.784 0.869
z2 0.547 0.364 0.659 0.720 0.785 0.873
z3 0.903 0.755 0.797 0.960 0.966 0.971

Table 6: R2 (best possible score is 1.0) values of our method and other state-of-the-art methods for the prediction of
Lorenz-based spike trains. The included methods are Poisson linear dynamical system (PLDS [2]), generalized count
linear dynamical system (GCLDS [3]), Poisson feed-forward neural network linear dynamical system (PfLDS [4]), and
Poisson-Gaussian process latent variable model(P-GPLVM [5]). GP-RNN recovers more variance of the latent Lorenz
dynamics, as measured by R2 between the linearly transformed estimation of each model and the true Lorenz dynamics.
Results with standard errors (ste) can be found in the supplementary.

300 400 500 600 700 800 900 1000 1100 1200
0

20

40

60

80 neuron #7

300 400 500 600 700 800 900 1000 1100 1200

time after stimulus onset (ms)

0

20

40

60

80

fir
in

g
ra

te
 (s

pi
ke

/s
)

neuron #29

PfLDS P-GPLVM GP-RNN

A) B)true firing rate estimated 2D latent trajectory

Figure 3: A) True firing rates for 2 example neurons for orientation 0◦ averaged across 30 trials. We can tell there exists
clear periodicity in the firing rate time series given the sinusoidal grating stimulus. B) 2-dimensional latent trajectories
of 10 out of 30 trials using PfLDS, P-GPLVM and GP-RNN. Color denotes the phase of the grating stimulus implied in
(A). Each circle corresponds to a period of latent dynamics z1:T (T = 90) inferred by the models. Each trial is estimated
from 63-neuronal spike trains. The latent embedding is smoother and more structured when applying GP-RNN, which
is interpretable since the stimulus is sinusoidal for each orientation across time. We can tell that the phase of latent
dynamics inferred by GP-RNN is better locked to the phase of the stimulus.

∆t = 10 ms, resulting in 90 time points for each trial.

We take orientation 0◦ as an example for visualizing 2-
dimensional (2D) latent trajectory estimation. The other
orientations exhibit similar patterns. The true firing rates
of two example neurons are presented in Fig. 3 (A), which
exhibit clear periodic patterns locked to the phase of the
sinusoidal grating stimulus. In order to get latent dynam-
ics estimation, we fit our model with randomly selected
30 repeated trials, which are used to learn RNN dynam-
ics parameters and GP hyperparameters shared across all
trials, and trial-dependent latent dynamics. We also ap-
ply PfLDS and P-GPLVM to the same data. For better
visualization purpose, Fig. 3(B) shows the results of 10
best trials, which are selected with 10 smallest variances
from the mean trajectory within each model. PfLDS has
a worse performance compared with the other two meth-
ods. Different from the result shown in [4], we report the
result of 30 trials for training instead of 120. Benefiting
from the non-parametric Bayes (Gaussian process), in
such a small-data scenario, GP-RNN extracts much more

clear, compact, and structured latent trajectories, which
well capture oscillatory patterns in neural responses for
the grating stimulus. Meanwhile, the proposed model is
able to convey interpretable sinusoidal stimulus patterns
in 2D rings without including the external stimulus as
the model variable. Therefore, GP-RNN with nonlinear
dynamics and nonlinear embedding function can help ex-
tract latent patterns more efficiently. Although P-GPLVM
also achieves promising results compared with PfLDS
(still worse than our GP-RNN), P-GPLVM needs much
more effort than GP-RNN to fine-tune the optimization
hyperparameters.

We next show the quantitative prediction performance
of multiple methods. The evaluation procedure is well
known as “co-smoothing” [27, 5], which is a standard
leave-one-neuron-out test. We select all the trials with
0◦, 90◦, 180◦, and 270◦ orientations of sinusoidal grat-
ing drifting. We split all the trials into training sets (40
trials) and test sets (10 trials). The model-specific param-
eters, e.g., RNN dynamics and GP mapping function for

GP-RNN, are estimated using training sets (all neurons).
Then we fix the estimated model parameters and leave
one neuron in test trials out and infer latent trajectories
based on the remaining neurons. The left-out neuron spik-
ing activity is then predicted given inferred latents of test
trials and estimated parameters from training trials. Con-
sistent with the results reported in the previous literature,
the prediction is quantified by R2. It shows the prediction
performance of the firing rates compared with empirical
firing rates of the left-out neurons. We iterate over all
neurons as left-out ones and average the prediction R2

values for each model shown in Table. 7. In this neural
dataset, each recently proposed method can only increase
the R2 value by a small amount, which is still non-trivial
to achieve. GP-RNN has already doubled the increment
from PfLDS (13% increase of R2 value) to P-GPLVM
(7% increase). P-GPLVM and PfLDS have comparable

Dim PLDS P-GPFA LFADS PfLDS P-GPLVM GP-RNN
2 0.68 0.69 0.73 0.73 0.74 0.77
4 0.69 0.72 0.74 0.73 0.75 0.78
6 0.72 0.73 0.74 0.74 0.77 0.80
8 0.74 0.74 0.75 0.75 0.77 0.80
10 0.75 0.74 0.77 0.76 0.77 0.81

Table 7: Predictive R2 on neural spiking activity of test
dataset. The column “Dim” indicates the dimension of
latent process z. GP-RNN has consistently the best per-
formance when increasing predefined latent dimensions.

results and we think they benefit from nonlinear mapping
functions, i.e., feed-forward neural network and Gaussian
process. PLDS and P-GPFA use linear mapping but can-
not capture nonlinear embeddings, and require more latent
dimensionality to achieve similar results as P-GPLVM
and PfLDS. Our GP-RNN with RNN dynamics and GP
mapping provides the most competitive prediction accu-
racy, due to its nonlinear dynamical model encoding time
dependence and complex nonlinear embedding function
with uncertainty propagation.

4.3 Implementation Notes

We have encountered the risk of over-parameterization
during our experiments. When the algorithm breaks down,
increasing the number of hidden nodes of RNN structures
cannot improve the results much. We successfully avoid
it via (1) using cross-validation to choose the number
of hidden states (the risk happened with more than 30
hidden nodes in this experimental dataset); (2) adopting
Dropout(0.3)/L2 regularization for RNN gates. Too many
hidden states of RNN dynamics will lead to learning both
hidden states ν and cell states c failure, also too few
hidden states report much lower prediction performance
(we fix 30 hidden nodes ultimately in our experiments);

(3) applying orthogonal initialization for RNN gates and
clipping gradients tricks during training; and (4) instead
of marginalizing out the latent function f in the Poisson
model, adopting the composing inference strategy and
using GPFA to initialize f . The experiments are benefited
from the probabilistic modeling library “Edward” [26].

With respect to the stable learning process, it is robust
when applying orthogonal initialization for RNN gates,
Xavier Initialization for parameters of fully connected
layers (mapping hidden states ν to latent states z), and
clipping gradients tricks during training. This combina-
tion is a relatively effective way of eliminating exploding
and vanishing gradients, and provides a robust learning
process.

Concerning sample perturbations, in the simulation, we
randomly (both Poisson and Gaussian noise) generated
the observations and parameters of mapping functions
(Gaussian noise) for 10 times; and with real neural data,
we shuffled the training/testing datasets for 10 times. The
learning was based on these sample perturbations (trial
variants) and the above-mentioned initialization strategies.
The analysis of the sample perturbations are listed in the
supplementary materials with standard errors.

5 CONCLUSION

To discover the insightful latent structure from neural data,
we propose an unsupervised Gaussian process recurrent
neural network (GP-RNN), utilizing the representation
power of recurrent neural networks and the flexible
nonlinear mapping function with Gaussian process.
We show that GP-RNN is superior at recovering more
structured latent trajectories as well as having better quan-
titative performance compared with other state-of-the-art
methods. Besides the visual cortex dataset tested in the
paper, the proposed model can also be potentially applied
to analyzing the neural dynamics of primary motor cortex,
prefrontal cortex (PFC) or posterior parietal cortex (PPC)
which plays a significant role in cognition (evidence
integration, short term memory, spatial reasoning, etc.).
The model can also be applied to other domains, e.g.,
finance, healthcare, for extracting low-dimensional,
underlying latent states from complicated time series.
Our codes and additional materials are available at
https://github.com/sheqi/GP-RNN_UAI2019.

https://github.com/sheqi/GP-RNN_UAI2019

References

[1] M Yu Byron, John P Cunningham, Gopal San-
thanam, Stephen I Ryu, Krishna V Shenoy, and Ma-
neesh Sahani. Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural pop-
ulation activity. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1881–1888,
2009.

[2] Jakob H Macke, Lars Buesing, John P Cunningham,
M Yu Byron, Krishna V Shenoy, and Maneesh Sa-
hani. Empirical models of spiking in neural popula-
tions. In Advances in Neural Information Processing
Systems (NeurIPS), pages 1350–1358, 2011.

[3] Yuanjun Gao, Lars Busing, Krishna V Shenoy, and
John P Cunningham. High-dimensional neural spike
train analysis with generalized count linear dynam-
ical systems. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2044–2052,
2015.

[4] Yuanjun Gao, Evan W Archer, Liam Paninski, and
John P Cunningham. Linear dynamical neural pop-
ulation models through nonlinear embeddings. In
Advances in Neural Information Processing Systems
(NeurIPS), pages 163–171, 2016.

[5] Anqi Wu, Nicholas G Roy, Stephen Keeley, and
Jonathan W Pillow. Gaussian process based nonlin-
ear latent structure discovery in multivariate spike
train data. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 3499–3508, 2017.

[6] Chethan Pandarinath, Daniel J O’Shea, Jasmine
Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T
Kaufman, Stephen I Ryu, Leigh R Hochberg, et al.
Inferring single-trial neural population dynamics
using sequential auto-encoders. Nature methods,
page 1, 2018.

[7] Qi She, Yuan Gao, Kai Xu, and Rosa HM Chan.
Reduced-rank linear dynamical systems. In Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[8] Rahul G Krishnan, Uri Shalit, and David Sontag.
Structured inference networks for nonlinear state
space models. In The Thirty-first AAAI Conference
on Artificial Intelligence (AAAI), pages 2101–2109,
2017.

[9] Qi She and Rosa HM Chan. Stochastic dynami-
cal systems based latent structure discovery in high-
dimensional time series. In 2018 IEEE International

Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 886–890. IEEE, 2018.

[10] Neil D Lawrence. Gaussian process latent variable
models for visualisation of high dimensional data. In
Advances in Neural Information Processing Systems
(NeurIPS), pages 329–336, 2004.

[11] Hooram Nam. Poisson extension of gaussian pro-
cess factor analysis for modeling spiking neural pop-
ulations. Master’s thesis, Department of Neural
Computation and Behaviour, Max Planck Institute
for Biological Cybernetics, Tübingen, 2015.

[12] Guan Yu. Variance stabilizing transformations of
poisson, binomial and negative binomial distribu-
tions. Statistics & Probability Letters, 79(14):1621–
1629, 2009.

[13] Matthew D Hoffman, David M Blei, Chong Wang,
and John Paisley. Stochastic variational inference.
The Journal of Machine Learning Research (JMLR),
14(1):1303–1347, 2013.

[14] M Bishop Christopher. Pattern recognition and
machine learning. Springer-Verlag New York, 2016.

[15] Junyoung Chung, Kyle Kastner, Laurent Dinh,
Kratarth Goel, Aaron C Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential
data. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2980–2988, 2015.

[16] Karol Gregor, Ivo Danihelka, Alex Graves,
Danilo Jimenez Rezende, and Daan Wierstra. Draw:
A recurrent neural network for image generation.
arXiv preprint arXiv:1502.04623, 2015.

[17] Roger Frigola, Yutian Chen, and Carl Edward Ras-
mussen. Variational gaussian process state-space
models. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 3680–3688, 2014.

[18] Trung V Nguyen, Edwin V Bonilla, et al. Collabo-
rative multi-output gaussian processes. In Annual
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 643–652, 2014.

[19] César Lincoln C Mattos, Zhenwen Dai, Andreas
Damianou, Jeremy Forth, Guilherme A Barreto, and
Neil D Lawrence. Recurrent gaussian processes.
arXiv preprint arXiv:1511.06644, 2015.

[20] Andreas Svensson, Arno Solin, Simo Särkkä, and
Thomas Schön. Computationally efficient bayesian
learning of gaussian process state space models. In
Artificial Intelligence and Statistics (AISTATS), 2016
International Conference on, pages 213–221, 2016.

[21] Stefanos Eleftheriadis, Tom Nicholson, Marc
Deisenroth, and James Hensman. Identification of
gaussian process state space models. In Advances in
Neural Information Processing Systems (NeurIPS),
pages 5309–5319, 2017.

[22] Rajesh Ranganath, Sean Gerrish, and David Blei.
Black box variational inference. In Artificial Intelli-
gence and Statistics (AISTATS), 2014 International
Conference on, pages 814–822, 2014.

[23] Evan Archer, Il Memming Park, Lars Buesing, John
Cunningham, and Liam Paninski. Black box vari-
ational inference for state space models. arXiv
preprint arXiv:1511.07367, 2015.

[24] Diederik P Kingma and Max Welling. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[25] Andreas C Damianou, Michalis K Titsias, and
Neil D Lawrence. Variational inference for latent
variables and uncertain inputs in gaussian processes.
The Journal of Machine Learning Research (JMLR),
17(1):1425–1486, 2016.

[26] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous,
Eugene Brevdo, Kevin Murphy, and David M. Blei.
Deep probabilistic programming. In International
Conference on Learning Representations (ICLR),
2017.

[27] Yuan Zhao and Il Memming Park. Variational latent
gaussian process for recovering single-trial dynam-
ics from population spike trains. Neural Computa-
tion, 29(5):1293–1316, 2017.

[28] Scott Linderman, Matthew Johnson, Andrew Miller,
Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switch-
ing linear dynamical systems. In Artificial Intelli-
gence and Statistics (AISTATS), 2017 International
Conference on, pages 914–922, 2017.

[29] Arnulf BA Graf, Adam Kohn, Mehrdad Jazayeri,
and J Anthony Movshon. Decoding the activity
of neuronal populations in macaque primary visual
cortex. Nature neuroscience, 14(2):239, 2011.

	INTRODUCTION
	GAUSSIAN PROCESS RECURRENT NEURAL NETWORK (GP-RNN)
	INFERENCE FOR GP-RNN
	EXPERIMENTS
	Recovery of Lorenz Dynamics
	Application to Macaque V1 Neural Data
	Implementation Notes

	CONCLUSION

