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Abstract

We consider numerical stability of the parame-
ter recovery problem in Linear Structural Equa-
tion Model (LSEM) of causal inference. Nu-
merical stability is essential for the recovered
parameters to be reliable. A long line of work
starting from Wright (1920) has focused on
understanding which sub-classes of LSEM al-
low for efficient parameter recovery. Despite
decades of study, this question is not yet fully
resolved. The goal of the present paper is com-
plementary to this line of work: we want to un-
derstand the stability of the recovery problem
in the cases when efficient recovery is possible.
Numerical stability of Pearl’s notion of causal-
ity was first studied in Schulman and Srivastava
(2016) using the concept of condition number
where they provide ill-conditioned examples.
In this work, we provide a condition number
analysis for the LSEM. First we prove that un-
der a sufficient condition, for a certain sub-class
of LSEM that are bow-free (Brito and Pearl
(2002)), parameter recovery is numerically sta-
ble. We further prove that randomly chosen
input parameters for this family satisfy the con-
dition with a substantial probability. Hence for
this family, on a large subset of parameter space,
recovery is stable. Next we construct an exam-
ple of LSEM on four vertices with unbounded
condition number. We then corroborate our
theoretical findings via simulations as well as
real-world experiments for a sociology applica-
tion. Finally, we provide a general heuristic for
estimating the condition number of any LSEM
instance.

Full version of the paper [25]

1 Introduction

Inferring causality, i.e., whether a group of events causes
another group of events is a central problem in a wide
range of fields from natural to social sciences. A common
approach to inferring causality is Randomized controlled
trials (RCT). Here the experimenter intervenes on a sys-
tem of variables (often called stimulus variables) such that
it is not affected by any confounders with the variables of
interest (often called response variables) and observes the
probability distributions on the response variables. Un-
fortunately, in many cases of interest performing RCT is
either costly or impossible due to practical or ethical or
legal reasons. A common example is the age-old debate
[32] on whether smoking causes cancer. In such scenar-
ios RCT is completely out of the question due to ethical
issues. This necessitates new inference techniques.

The causal inference problem has been extensively stud-
ied in statistics and mathematics (e.g., [18, 20, 23, 24])
where decades of research has led to rich mathematical
theories and a framework for conceptualizing and ana-
lyzing causal inference. One such line of work is the
Linear Structural Equation Model (or LSEM in short)
for formalizing causal inference (see the monograph [4]
for a survey of classical results). In fact, this is among
the most commonly used models of causality in social
sciences [2, 4] and some natural sciences [31]. In this
model, we are given a mixed graph on n (observable)
variables' of the system containing both directed and bi-
directed edges (see Figure 1 for an example). We will
assume that the directed edges in the mixed graph form a
directed acyclic graph (DAG). A directed edge from ver-
tex u to vertex v represents the presence of causal effect
of variable u on variable v, while the bi-directed edges
represent the presence of confounding effect (modeled
as noise) which we next explain.2 In the LSEM, the fol-

'In this paper we are interested in properties for large 7.
2We also interchangeably refer to the directed edges as ob-
servable edges since they denote the direct causal effects and
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Figure 1: Mixed Graph: Black solid edges represent
causal edges. Green dotted edges represent covariance of
the noise.

lowing extra assumption is made (see Equation (1)): the
value of a variable v is determined by a (weighted) linear
combination of its parents’ (in the directed graph) values
added with a zero-mean Gaussian noise term (7,). The bi-
directed graph indicates dependencies between the noise
variables (i.e., lack of an edge between variables u and v
implies that the covariance between 7, and 7, is 0). We
use A € R™" to represent the matrix of edge weights of
the DAG, Q € R™" to represent the covariance matrix
of the Gaussian noise and £ € R™" to represent the co-
variance matrix of the observation data (henceforth called
data covariance matrix). Let X € R™! denote a vec-
tor of random variables corresponding to the observable
variables in the system. Let € R™! denote the vec-
tor of corresponding noises whose covariance matrix is
given by Q. Formally, the LSEM assumes the following
relationship between the random variables in X:

X =ATX+1. (D

From the Gaussian assumption on the noise random vari-
able 7, it follows that X is also a multi-variate Gaussian
with covariance matrix given by

rt=I-ANTQa-A)". )

In a typical setting, the experimenter estimates the joint-
distribution by estimating the covariance matrix X over
the observable variables obtained from finitely many sam-
ples. The experimenter also has a causal hypothesis (rep-
resented as a mixed graph for the causal effects and the
covariance among the noise variables, which in turn de-
termines which entries of A and Q are required to be 0,
referred to as the zero-patterns of A and Q). One then
wants to solve the inverse problem of recovering A and Q
given X. This problem is solvable for some special types
of mixed graphs using parameter recovery algorithms,
such as the one in [12, 16].

Thus a central question in the study of LSEM is for which
mixed graphs (specified by their zero patterns) and which
values of the parameters (A and ) is the inverse prob-
lem above solvable; in other words, which parameters
are identifiable. Ideally one would like all values of the
parameters to be identifiable. However, identifiability is

the bi-directed edges as unobservable edges since they indicate
the unobserved common causes.

often too strong a property to expect to hold for all param-
eters and instead we are satisfied with a slightly weaker
property, namely generic identifiability (GI): here we re-
quire that identifiability holds for all parameter values
except for a measure 0 set (according to some reasonable
measure). (The issue of identifiability is a very general
one that arises in solving inverse problems in statistics
and many other areas of science.) A series of works (e.g.,
[6, 14, 13, 16, 22]) have made progress on this question
by providing various classes of mixed graphs that do al-
low generic identifiability. However, the general problem
of generic identifiability has not been fully resolved. This
problem is important since it is a version of a central
question in science: what kind of causal hypotheses can
be validated purely from observational data as opposed
to the situations where one can do RCT. Much of the
prior work has focused on designing algorithms with the
assumption that the exact joint distribution over the vari-
ables is available. However, in practice, the data is noisy
and inaccurate and the joint distribution is generated via
finite samples from this noisy data.

While theoretical advances assuming exact joint distri-
bution have been useful it is imperative to understand
the effect of violation of these assumptions rigorously.
Algorithms for identification in LSEMs are numerical
algorithms that solve the inverse problem of recovering
the underlying parameters constructed from noisy and
limited data (a common heuristic is the RICF algorithm
[12]). Such models and associated algorithms are useful
only if they solve the inverse problem in a stable fash-
ion: if the data is perturbed by a small amount then the
recovered parameters change only a small amount. If the
recovery is unstable then the recovered parameters are un-
likely to tell us much about the underlying causal model
as they are inordinately affected by the noise. We say
that robust identifiability (RI) holds for parameter values
A and Q if even after perturbing the corresponding X to
Y’ (by a small noise), the recovered parameter values A’
and €’ are close to the original ones. It follows from the
preceding discussion that to consider an inverse problem
solved it is not sufficient for generic identifiability to hold;
instead, we would like the stronger property of robust
identifiability to hold for almost all parameter values (we
call this generic robust identifiability; for now we leave
the notions of “almost everywhere” and “close” informal).
In addition, the problem should also be solvable by an
efficient algorithm. The mixed graphs we consider all
admit efficient parameter recovery algorithms. Note that
GI and RI are properties of the problem and not of the
algorithm used to solve the problem.

In the general context of inverse problems, the difference
between GI and RI is quite common and important: e.g.,
in solving a system of n linear equations in n variables



given by an n X n matrix M. For any reasonable distri-
bution on n X n matrices, the set of singular matrices has
measure 0 (an algebraic set of lower dimension given by
det(M) = 0). Hence, M is invertible with probability 1
and GI holds. This however does not imply that generic
robust identifiability holds: for that one needs to say that
the set of ill-conditioned matrices has small measure. To
understand RI for this problem, one needs to resort to
analyses of the minimum singular value of M which are
non-trivial in comparison to GI (e.g., see [7, Sec 2.4]).
In general, proving RI almost everywhere turns out to
be harder and remains an open problem in many cases
even though GI results are known. One recent example
is rank-1 decomposition of tensors (for n X n X n random
tensors of rank up to n%/16, GI is known, whereas generic
robust identifiability is known only up to rank n'?); see,
e.g., [3]. The problem of tensor decomposition is just one
example of a general recent concern for RI results in the
theoretical computer science literature and there are many
more examples. Generic robust identifiability remains
an open problem for semi-Markovian models for which
efficient GI is known, e.g., [23].

In the context of causality, the study of robust identifia-
bility was initiated in [28] where the authors construct
a family of examples in the so-called Pearl’s notion of
causality on semi-Markovian graphs® (see e.g., [23]) and
show that for this family there exists an adversarial pertur-
bation of the input which causes the recovered parameters
to be drastically different (under an appropriate metric de-
scribed later) from the actual set of parameters. However
this result has the following limitation. Their adversar-
ial perturbations are carefully crafted and this worst case
scenario can be alleviated by modifying just a few edges
(in fact just deleting some edges randomly suffices which
can also be achieved without changing the zero-pattern by
choosing the parameters appropriately). This leads us to
ask: how prevalent are such perturbations? Since there
is no canonical notion of what a typical LSEM model is
(i.e. the graph structure and the associated parameters),
we will assume that the graph structure is given and the
parameters are randomly chosen according to some rea-
sonable distribution. Thus we would like to answer the
following question®.

3Unlike LSEM, this is a non-parametric model. The func-
tional dependence of a variable on the parents’ variables is al-
lowed to be fully general, in particular it need not be linear. This
of course comes at the price of making the inference problem
computationally and statistically harder.

“The question of understanding the condition number (a
measure of stability) of LSEMs was raised in [28], though pre-
sumably in the worst-case sense of whether there are identifiable
instances for which recovery is unstable. As mentioned in their
work, when the model is not uniquely identifiable, the authors
in [11] show an example where uncertainty in estimating the
parameters can be unbounded.

Question 1.1 (Informal). For the class of LSEMs that are
uniquely identifiable, does robust identifiability hold for
most choices of parameters?

The question above is informal mainly because “most
choices of parameters” is not a formally defined notion.
We can quantify this notion by putting a probability mea-
sure on the space of all parameters. This is what we will
do.

Notation. Throughout this paper, we will use the follow-
ing notation. Bold fonts represent matrices and vectors.

Given matrices A, B € R™™ we define the relative dis-
tance, denoted by Rel(A, B) as the following quantity.

e A;j— Bi,
Rel(A, B) &ef max M
|A:.|

1<i<’1’1<j<mi|Ai,_/|¢0

In this paper we use the notion of condition number (see
[7] for a detailed survey on condition numbers in numer-
ical algorithms) to quantitatively measure the effect of
perturbations on data in the parameter recovery problem.
The specific definition of condition number we use is a
natural extension of the {.-condition number studied in
[28] to matrices.

Definition 1.2 (Relative {,-condition number). Let X
be a given data covariance matrix and A be the corre-
sponding parameter matrix. Let a y-perturbed family of
matrices be denoted by ¥, (i.e., set of matrices iy such
that Rel(Z, £,) < y). For any £, € F, let the correspond-
ing recovered parameter matrix be denoted by 1~&y. Then
the relative £.,-condition number is defined as,

. Rel(A, A
KAL) % lim sup A.Ay)

up ————. 3)
y—0* £e7, Rel(X, X))

We confine our attention to the stability of recovery
of A as once A is recovered approximately, @ =
I-A)"Xd-A)canbe easily approximated in a stable
manner. In this paper, we restrict our theoretical analyses
to causal models specified by bow-free paths which are
inspired by bow-free graphs [5]° In [5] the authors show
that the bow-free property of the mixed graph underlying
the causal model is a sufficient condition for unique iden-
tifiability. We now define bow-free graphs and bow-free
paths; Figure 2 has an example of bow-free paths.

Definition 1.3 (Bow-free graphs). Bow-free (mixed)
graphs are those where for any pair of vertices, both
directed and undirected edges are never present simul-
taneously.

3See footnote 4 in [5] for the significance of bow-free graphs
in LSEM.



Figure 2: Illustration of a bow-free path. Solid lines
represent directed causal edges and dotted lines represent
bi-directed covariance edges.

Definition 1.4 (Bow-free Paths). A causal model is called
a bow-free path if the underlying DAG forms a directed
path and the mixed graph is bow-free [5]. Consider n
vertices indexed 1, 2, ..., n. The (observable) DAG forms
a path starting at 1 with directed edges going from vertex
i to vertex i + 1. The bi-directed edges can exist between
pairs of vertices (i, j) only if |i — j| > 2. Thus the only
potential non-zero entries in A are in the diagonal immedi-
ately above the principal diagonal. Similarly, the diagonal
immediately above and below the principal diagonal in
is always zero.

We further assume the following conditions on the pa-
rameters of the bow-free paths for studying the numeri-
cal stability of any parameter recovery algorithm. Later
in Section 4 we show that a natural random process of
generating A and  satisfies these assumptions with high-
probability. Informally, the model can be viewed as a
generalization of symmetric diagonally dominant (SDD)
matrices.

Model 1.5. Our model satisfies the following conditions
on the data-covariance matrix and the perturbation with
the underlying graph structure given by bow-free paths.
It takes parameters @ and A.

1. Data properties. X > 0 is an n X n symmetric
matrix satisfying the following conditions® for some
O<a<i.

[Ziords [Ziint | [Bicrin| <@Zy Vien-11.

Additionally, the frue parameters A, corresponding
to X, satisfy the following. For every i, j such that
there is a directed edge from i to j, we have n% <

% < |A,-,j| < 1, where A is a parameter.

2. Perturbation properties. For each i, j € [n] and
afixed y < nlﬁ let ;; = &;; be arbitrary numbers

%We note that the important part is that ¢ is bounded by a
constant independent of n. The precise constant is of secondary
importance.

Z,-,j| for all i, j such
that that there exists a pair i*, j* € [n] with |s,-*, j«| =

satisfying 0 < |ei,j| = |8j,,-| <y

|8 j*,,-*| =y |Zi«, I | Note that we eventually consider
v in the limit going to 0, hence some small but fixed

y suffices. Let &; j &f X, j + &; j for every pair (i, j).

Remark 1.6. The covariance matrix has errors arising
from three sources: (1) measurement errors, (2) numer-
ical errors, and (3) error due to finitely many samples.
The combined effect is modeled by Item 2 (perturbation
properties) above of Model 1.4 which is very general as
we only care about the max error.

Remark 1.7. We show in the full version that the constant

% is an approximation to the following. Let T = 1 + 5ny.

Then we want [1 — (t +2)a —(7 + 1) @?] > O and @ < %.

With the definitions and model in place, we can now pose
Question 1.1 formally:

Question 1.8 (Formal). For the class of LSEMs repre-
sented by bow-free paths and Model 1.5, can we charac-
terize the behavior of the £,-condition number?

1.1 Our Contributions

Our key contribution in this paper is a step towards under-
standing Question 1.1 by providing an answer to Ques-
tion 1.8. In particular, we first prove that when Model
assumptions 1.5 hold, the {.,-condition number of the
parameter recovery problem is upper-bounded by a poly-
nomial in n. Formally, we prove Theorem 1.9. This
implies that the loss in precision scales logarithmically
and hence we need at most O(log d) additional bits to get
a precision of d bits”. See [7] and [28] for further discus-
sion on the relation between condition number and the
number of bits needed for d-bit precision in computation
as well as other implications of small condition number.

Theorem 1.9 (Stability Result). Under the assumptions
in Model 1.5, we have the following bound on the condi-
tion number for bow-free paths with n vertices.

k(A X) < On).

More specifically, the condition number is upper-bounded
by (A, X) < O (1) and for the parameters chosen in this
model we have the bound in Theorem 1.9.

Furthermore, in Section 4 we show that a natural gen-
erative process to construct matrices A and Q satisfies
the Model assumptions 1.5. Hence this implies that a
large class of instances are well-conditioned and hence
ill-conditioned models are not prevalent under our gen-
erative assumption. Moreover, as described in the model

"Note we already need O(poly(n) log n) bits to represent the
graph and the associated matrices.



preliminaries, all data covariance matrices that are SDD
and have the property that every row has at least 8 entries
that are not arbitrarily close to 0, satisfy the assumptions
in Model 1.5. Thus an important corollary of this theorem
is that when the data covariance matrix is in this class of
SDD matrices, it is well-conditioned.

Next we show that there exist examples for LSEMs with
arbitrarily high condition number. This implies that on
such examples it is unreasonable to expect any form of ac-
curate computation. Formally, we prove Theorem 1.10. It
shows that the recovery problem itself has a bad condition
number and does not depend on any particular algorithm
that is used for parameter recovery. This theorem follows
easily using the techniques of [16] and we include it for
completeness.

Theorem 1.10 (Instability Result). There exists a bow-
free path of length four and data covariance matrix X
such that the parameter recovery problem of obtaining A
from X has an arbitrarily large condition number.

We perform numerical simulations to corroborate the theo-
retical results in this paper. We verify our theorems using
numerical simulations. Furthermore, we consider general
graphs (e.g., clique of paths, layered graphs) and show
that a similar behavior on the condition number holds.
Finally, we consider a real-world dataset used in [29] and
perform condition number analysis experimentally.

In the full-version of the paper, we additionally give a gen-
eral heuristic for practitioners to determine the condition
number of any given instance, which may be of indepen-
dent interest. This heuristic can detect bad instances with
high-probability.

1.2 Related work

A standard reference on Structural Causal Models is
Bollen [4]. Identifiability and robust identifiability of
LSEMs has been studied from various viewpoints in the
literature: Robustness to model misspecification, to mea-
surement errors, efc. (e.g., Chapter 5 of Bollen [4] and
[19, 26, 21]). These works are not directly related to this
paper, since they focus on the identifiability problem un-
der erroneous model specification and/or measurement.
See the sub-section on measurement errors below for fur-
ther details.

Identifiability. The problem of (generic) identification in
LSEMs is well-studied though still not fully understood.
We give a brief overview of the known results. All works
in this section assume that the data-covariance matrix is
exact and do not consider robustness aspects of the prob-
lem. These works do not directly relate to the problem

studied in this paper. This problem has a rich history 5

(see [23] for some classical results) and we only give an
overview of recent results. Brito and Pearl [6] gave a suf-
ficient condition called G-criterion which implies linear
independence on a certain set of equations. The variables
involved in this set is called the auxiliary variables. The
main theorem in their paper is that if for every variable
there is a corresponding “auxiliary” variable, then the
model is identifiable. Followed by this, Foygel et al. [16]
introduced the notion of half-trek criterion which gives a
graphical criterion for identifiability in LSEM. This crite-
rion strictly subsumes the G-criterion framework. Both
[6, 16] supply efficient algorithms for identification. Chen
et al. [10] tackle the problem of identifying “overiden-
tifying constraints”, which leads to identifiability on a
class of graphs strictly larger than those in [16] and [6].
Ernest et al. [15] consider a variant of the problem called
“Partially Linear Additive SEM” (PLSEM) with gaussian
noise. In this variant the value for a random variable X is
determined both by an additive linear factor of some of its
parents (called linear parents) and additive factor of the
other parents (called non-linear parents) via a non-linear
function. They give characterization for identifiability
in terms of graphical conditions for this more general
model. Chen [8] extends the half-trek criterion of [16]
and give a c-component decomposition (Tian [33]) based
algorithm to identify a broader class of models. Drton and
Weihs [14] also extend the half-trek criterion ([16]) to in-
clude the ancestor decomposition technique of Tian [33].
Chen et al. [9] approach the parameter identification prob-
lem for LSEM via the notion of auxiliary variables. This
method subsumes all the previous works above and iden-
tifies a strictly larger set of models.

Measurement errors. Another recent line of work
[27, 34] studies the problem of identification under mea-
surement errors. Both our work and these works share
the same motivation: causal inference in real-world is
usually performed on noisy data and hence it is important
to understand how noise affects the causal identification.
However their focus differs significantly from the ques-
tion we tackle in this paper. They pose and answer the
problem of causal identification when the variables used
are not identical to the ones that were intended to be mea-
sured. This leads to different conditional independences
and hence a different causal graph; they study the identifi-
cation problem in this setting and characterize when such
identification is possible. Recently [17] looked at sam-
ple complexity of identification in LSEM. They consider
the special case when Q is the Identity matrix and give
a new algorithm for identifiability with optimal sample
complexity.

In this paper we are interested in the question of robust
identifiability, along the lines of aforementioned work of



Schulman and Srivastava [28]. While the work of [28]
was direct inspiration for the present paper, since we work
with LSEMs and [28] work with the semi-Markovian
causal models of Pearl, the techniques involved are com-
pletely different. Moreover, as previously remarked, an-
other important difference between [28] and our work
is that our main result is positive: the parameter recov-
ery problem is well-conditioned for most choices of the
parameters for a well-defined notion of most choices.

2 Bow-free Paths — Stable Instances

In this section, we show that for bow-free paths under
Model 1.5, the condition number is small. More precisely,
we prove Theorem 1.9.

To prove the main theorem, we set-up some helper lem-
mas. Using Foygel ef al. [16], we obtain the following
recurrence to compute the values of A from the correla-
tion matrix X. The base case is Aj, =
i > 2 we have,

>
s For every

Aot = =Ai—1Zirir1 + i @
Li+l — .
=Ai_1Zici + 2

We first show that the model assumptions 1.5 imply that
the parameters recovered from the perturbed version are
not too large.

Lemma 2.1. For each i € [n — 1], we have |/~\i,,-+1| <
T (=7 +5y) <T(=1+5ny).

Next, we show that the relative distance between the real

parameter A and the recovered parameter from the per-

turbed instance A is not too large.

Lemma 2.2. Let 7 =
[(3+37) a+(r+1)]

1-(t+2) @ —(7+1) @? —4ny "
that,

1 + 5ny. Define B, :=
Then for each i € [n — 1] we have

Ajivt = Ajjr| <Be - % .

2.1 Proof of Theorem 1.9

We are now ready to prove the main Theorem 1.9.
From Lemma 2.2 and the model assumptions we have

Rel(A, 1"&) — |Au+l 11+I| <ﬁL

|Ax i+1 |
properties in the Model 1.5, and the definition of i*, j*,

- A. From perturbation

we have Rel(Z, £) = 7||z’ j|| = 7. Therefore,
Rel(A, A) A- ﬁL
Rel(Z, ) 1 -
This implies that,
Rel(A, A)

im — < 1B, < 0(1) < O(n?).
y-0* Rel(X, X) & @ =)

The second last inequality used the fact that 8, < O(1)
and the last inequality used the fact that % > Q(n2).

3 Instability Example

In this section, we show that there exist simple bow-free
path examples where the condition number can be arbi-
trarily large. We consider a point on the measure O set of
unidentifiable parameters and apply a small perturbation
(of magnitude €). This instance in the parameter space
is identifiable (by using [16]). We then apply a perturba-
tion (of magnitude ) to this instance and compute the
condition number. By making € arbitrarily close to 0, we
obtain as large a condition number as desired. Any point
on the singular variety could be used for this purpose and
the proof of Theorem 1.10 provides a concrete instance.
The example we construct is as follows. Consider a path
of four vertices. Fix a small value e. Define the matrices
Q and A as follows.

10 12 12
o 1 0 12
12 0 1+e o|=°
12 12 0 1

Q=

and A1 = V2,A03 = —V2,A3, = 3

Thus, we have the following.

V2 -2 -1
1 -V2 -1/V2
0 1 1/2
0 0 1

1-A)"=

S OO =

Multiplying with Q we get (1 — A) T Q s,

1 0 1/2 1/2
V2 1 1/V2  1/V2+1)2
-3/2 -2 € ~1-1/v2
—1/4 —1/V2+1/2 €2 1/20-1/v2)

Therefore, the resulting matrix X, obtained by (1 —
AN TQM - A)!

1 V2 -3 -1
3 1_ 3
\/35 35 v 3 12‘5
_3 _5 3_L e
3 5 S+e€ st
_1 1_ 3 g_L+£ §_L+§
1 275y 27\ T2 aT QT

Perturb every entry of X additively by  to obtain . This
will ensure that Rel(Z, £) = 4y since all entries in X are
at least 1/4. Now we show that in the reconstruction of
A from X, the entry As4 = 1. This implies that the

condition number x(A,X) = O (%) and since y can be



made arbitrarily close to 0, this implies that the condition
number is unbounded.

The denominator in the expression for 1~\3,4 in (4) is,
—A2’322!3 + 23,3 =€+ (1 + \/§) Y.

Likewise the numerator in the expression for 1~\3,4 evalu-
ates to, —A2,32274 + 23’4 =€/2+ (1 + \/E) Y.

Therefo~re when € — 0 we have f\3,4 — 1 and hence
Rel(A,A) = 0() #0.

4 When do random instances satisfy
model assumptions?

In this section, we prove theoretically that randomly gen-
erated A and Q satisfy the Model 1.5 for a natural genera-
tive process, albeit with slightly weaker constants.

Generative model for LSEM instances. We consider
the following generative model for the LSEM instances.
A € R™" is generated by choosing each non-zero entry
to be a sample from the uniform U[—h, k] distribution.
Q € R™" is chosen by first sampling n-dimensional vec-
tors vy, va, ..., v, € R from a d-dimensional unit sphere,
such that v; is a uniform sample in the subspace perpen-
dicular to v;_; for every i (i.e., (v;,v;;) = 0) and then
letting €; ; = (v;,v;). Note, in the scenario when  need
not follow a specified zero-pattern then first generating
vectors vy, s, .. . , U, independently and uniformly from a
d-dimensional unit sphere and then setting Q; ; = (v;,v;)
gives an uniform distribution over PSD matrices. Hence,
the above generative procedure is a natural extension to
randomly generating PSD matrices with a specified zero-
patterns.

4.1 Regime when the generative model satisfy the
Model 1.5 properties

First, we prove that the random generative process satis-
fies the bound @ < % in Theorem 4.1 below.

Theorem 4.1. Consider A and  generated using the

above random model with 0 < h < \sz Then there exists

a0 < & < h+o(l) and Qn™2) < xpn such that for
every sufficiently large n, there exists 0 < 0, < % and
0< 02, < % such that,

PV S, [Siit] [Ziorin] < 4Zi] 2 1= 614 (9)

P[Vi|Aii] = x| > 1= 62 ©6)

Moreover, we have that lim, 01, = 0 and
lim, o 62, = 0. Thus, the above statements hold with
high-probability.

Remark 4.2. Note that in this theorem, the constant ¢,
for « is at most 4. When 0 < h < Lz’ this is at most \%
where the maximum is achieved when / = % Moreover,

when /2 < 0.2, we have i < % Therefore, this satisfies the
exact requirement in data properties of Model 1.5 when
h < 0.2 and in the regime 0.2 < h < Lz it satisfies the

property for a slightly larger value of a, namely, @ < %
Nonetheless in Section 5 we show experimentally that
even in this regime the instance is well-conditioned.

4.2 What happens to the random model when
h>1?

We now briefly show that when 4 > 1, the conditions of
Model 1.5 do not hold. More specifically, we can show
that the value of « is larger than 1 with non-negligible
probability. Note that the following theorem implies that
in this regime we cannot hope to expect {;, < 1.

Theorem 4.3. For every h = (1 + z), where z > O is a
constant and a large enough n, there exists an i € [n] such
that for a constant (dependent on z), 0 < C, < 1 we have
that,

P HE,-,M| > Z,’,l‘] > C,. @)

S Experiments

In this section, we will describe our numerical and real-
world experimental results. For the purposes of this sec-
tion, we define the following quantity randomized condi-
tion number as follows. Consider a given data correlation
matrix X and the corresponding parameter matrix A. Let
¥ be a matrix obtained by adding N(0, €?) independent
random variable to each entry in X and let A be the corre-

sponding parameter matrix. Then the randomized condi-
Rel(A,A)
Rel.E,)
number as a proxy for studying the {,-condition number.

tion number is [E

]. We use randomized condition

5.1 Good instances

We start off by showing that on most random instances,
the randomized condition number is small (i.e., instances
are stable). In particular, it is stable because it satisfies the
Model 1.5. Thus, a large fraction of random instances sat-
isfies the condition and hence the stability proof directly
implies low condition number on these instances.

The first experiment is as follows. We start with an in-
stance of (A, Q) and the bow-free path. We construct
the matrix X using the recurrence (4). We then plot the
values of |Z; ], % i1, [Zi—1.4l, [Zic1+11- A, € are generated
exactly as described in the generative model discussed in
the Section 4 with 4 = 1. Figure 3 shows the plots for



three random runs. Note that in all three cases it satisfies
the data properties in Model 1.5.

Next, we explicitly analyze the effect of random perturba-
tions on these instances. As predicted by our theory, the
instances are fairly stable. We do this as follows. Given a
(A, ) pair, we can generate X in two ways. We can either
(1) use the recurrence (4), which can introduce numerical
precision errors in X, or (2) we can generate samples of
X (observational data) and estimate X by taking the aver-
age over samples of XX, which can introduce sampling
errors in X.

We add, to each non-zero entry of the obtained X (e.g.,
perturbations), an independent N (0, €?) random variable.
The value of € we chose for this experiment is 107°. We
then recover A from this perturbed £ using the recurrence
(4). Hence, the “noise” entering the system is through
two sources, namely, sampling errors and perturbations.
Figure 4 shows the effect of both sampling and perturba-
tions.

In the full-version we consider additional experiments.
First, we show that both sampling errors and perturbations
equally affect the randomized condition number. More-
over, we consider general DAGs and show that similar
results holds even for more general graphs.

5.2 Bad Instances

In the next experiment, we start off with the bad example
on a bow-free path of length 4. We show that as confirmed
in the theory, this instance is highly unstable. We then
perturb this instance slightly and show that in a small
enough ball around this instance, it continues to remain
unstable. Finally, we plot a graph showing the variation
of the randomized condition number as a function of the
radius of the ball around this instance (see next paragraph
for precise definition).

In particular, we start with the bad A and Q. We then
consider a region around these matrices as follows. To A
(and likewise to ) add an independent N(0, €*) random
variable to each non-zero entry. We then consider the ef-
fect of random perturbations starting from this new A, Q)
pair. Figure 5 shows the effect of random perturbations
in the region around the matrix A and Figure 6 shows the
same in the region around Q. As evident from the figures,
the randomized condition number continues to remain
large even when slightly perturbed. Hence, this implies
that there are infinitely many pairs (A, ) which produce
very large condition numbers.
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5.3 Real-world data

In this experiment, we analyze a sociology dataset on
6 vertices, taken from a public Internet repository [1].
This was used in [29] which almost resembles our model
of LSEM with the exception that we consider Gaussian
noise while they don’t. Nonetheless, we experiment with
the matrices returned by their algorithm, and compute the
randomized condition number.

The dataset and pre-processing is the same as [29]®. Note
that the causal graph given by domain experts is bow-free
therefore, from the theorem in [5], this graph is identifi-
able. We constructed the X matrix from the observational
data. We then use the algorithm of [16] to recover the
parameter A. We then perturb the data as follows. To
each entry in the observational data, we add an additive
N(0, €2) noise independently. Compared to the magni-
tudes of the actual data, this additive noise is insignificant.
We recompute £, from this perturbed observational data.
Using the algorithm of [16], we once again recover the
parameter A. For a given €, we run 100 independent runs
and take the average. Figure 7 shows the variation of the
randomized condition number as a function of €. As the
value of € becomes very small, the randomized condition
number remains almost constant and approaches 107!,
This number is very close to our well-behaved instances
implying that this dataset is fairly robust when modeled
as a LSEM.

6 Conclusion and Future Directions

In this paper, we initiate the study of condition number
analysis for LSEMs. We build theory and experiments
to analyze the condition number for a class of instances.
Further we give a heuristic that can be used in practice
to identify if a given instance is well-conditioned. This
work opens a number of future directions. An immediate
direction is to extend our understanding to other instances.
In particular, can we prove condition number for every
bow-free graph? More generally, a series of recent works
has extended the identifiability criteria beyond bow-free
graphs. Can we analyze the condition number of these
larger class of instances? The other direction is to com-
pute the condition number algorithmically. This can be
approached by either trying to prove the correctness of the
heuristic proposed in this paper, or coming up with a new
algorithm. What happens for causal models other than
LSEMs? In particular, are the ill-conditioned instances
rare in a well-defined sense for Pearl’s semi-Markovian
causal model?

80btained via a private communication with the authors of
[29].
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Figure 3: Local values of X for three random runs. x-axis: Value of i (0-indexed). y-axis: Value of X. Thus, a point on
the red-line with x-axis label 2 represents the value X, 3.
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the randomized condition number in various runs. (First three plots): x-axis: index of A, ;41 (0-indexed). y-axis: Value
of A.
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Finally, our results in this paper can be summarized as ~ Acknowledgements
suggesting that while arbitrarily ill-conditioned instances
exist they are rare and unlikely to arise in practice. More-
over, one may check how well-conditioned the instance
at hand is. However, this statement depends on the under-
lying probability distribution on the instances. While our
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