
SUPPLEMENT

A Proof of Theorem 1

Throughout the proof, we denote the covariance between variables X̃i and X̃j as Σ̃ij for i, j ∈ {1, 2, 3, 4}. First we
prove the direction ‘⇐= ’: 

ρ̃u13|2 = 0 ⇐⇒ Σ̃12Σ̃23 − Σ̃13(Σ̃22 − u) = 0

ρ̃u14|2 = 0 ⇐⇒ Σ̃12Σ̃24 − Σ̃14(Σ̃22 − u) = 0

ρ̃u34|2 = 0 ⇐⇒ Σ̃32Σ̃24 − Σ̃34(Σ̃22 − u) = 0
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Σ̃12Σ̃23

Σ̃13

=
Σ̃12Σ̃24

Σ̃14

=
Σ̃23Σ̃24

Σ̃34

⇐⇒ Σ̃23

Σ̃13

=
Σ̃24

Σ̃14

,
Σ̃12

Σ̃14

=
Σ̃23

Σ̃34

⇐⇒ Σ̃12Σ̃34 = Σ̃13Σ̃24 = Σ̃14Σ̃23.

The result follows by applying Lemma 1 in the main paper, and observing that these are the only structures for a
random measurement model where all d-separations hold.

Now we prove ‘ =⇒ ’. Since the true underlying causal graph is as in Figure 1 in the main paper, we have that there is
an α such that X̃2 = αL+ E2 +M2 for some α 6= 0, where E2 is an independent noise variable with variance τ for
X2 and M2 is an independent random measurement error for X̃2. We let Σij denote the covariance between variables
Xi and Xj for i, j ∈ {1, 2, 3, 4}. Covariances between L and variables (X1, X2, X3, X4) are denoted as ΣLi and ΣiL

for i ∈ {1, 2, 3, 4}. Hence

Cov(X̃1, X̃2, X̃3) =

Σ11 +m1 ασL1 Σ13

αΣL1 α2ΣLL + τ +m2 αΣL3

Σ13 αΣL3 Σ33 +m3,

 .

where m1,m2,m3 are the variances of M1,M2,M3 respectively and ΣLL denotes the variance of the latent variable
L. From this we obtain the relation for the adjusted partial correlation:

ρ̃u13|2 = 0 ⇐⇒ α2(ΣL1ΣL3 − Σ13ΣLL)− Σ13(τ +m2 − u) = 0.

Since L d-separates X1 and X3, the partial correlation ρ̃13|L = 0 by the Markov assumption. Therefore

ΣL1ΣL3 − Σ13ΣLL = 0.

Because Σ13 6= 0 by assumption, we find that ρ̃u13|2 = 0 if and only if u = τ + m2. Via a similar argument we can
show that for this u we also have that ρ̃u14|2 = 0 and ρ̃u34|2 = 0.

B Data simulations

In this section we give some additional details about the simulations that we used for the experiments in Section 7 of
the main paper.

We obtained the results in Figure 7a of the main paper, by generating random DAGs for 6 variables with a connection
probability of 0.7, parameters chosen uniformly at random from the interval [−1.0, 1.0], and error variances chosen
uniformly from the interval [0.5, 1.0]. Three out of the 6 variables were observed variables, and the remaining three
were latent. We then used rejection sampling to select models for which the observed variables (X1, X2, X3) satisfied:
the λ-strong faithfulness assumption for λ = 0.1, X1 6⊥⊥ X2, X2 6⊥⊥ X3, and X1 6⊥⊥ X3 |X2. For each model, we
generated 10000 datapoints and added measurement error with varying variances.

For the experiment in Figure 7b in the main paper, we generated models for three variables (X1, X2, X3) that satisfy:
X1 6⊥⊥ X2, X2 6⊥⊥ X3, and X1 ⊥⊥ X3 |X2. To do this, we considered all causal structures for (X1, X2, X3) that
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(a) Conditional dependences
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(b) Conditional independences.

Figure 1: Rate of conditional dependences and independences that were not detected using a measurement error
correction in the experiment in Figures 7a and 7b in the main paper.

satisfied these conditions. For each causal structure, parameters were chosen uniformly at random from the interval
[−1.0, 1.0] and error variances were chosen uniformly at random from the interval [0.5, 1.0]. We then used rejection
sampling to select model that satisfied the λ-strong faithfulness for λ = 0.1. For each model, we generated 10000
datapoints and added measurement error with varying variances. We made sure that an equal amount of models was
selected from each causal structure.

For the experiments in Figures 7a and 7b in the main paper, the measurement-error corrected method also gives the
output ‘unknown’. The rate of conditional dependences and independences that could not be detected in the experiment
are shown in Figures 1a and 1b respectively.

To obtain the results in Figure 7c, we generated causal structures for triples of variables (X1, X2, X3). To generate
data for triples that did not have the structure of an LCD triple, we used the simulations for Figure 7a, but only
selected causal structures where X1 was not caused by X2 and X3. Similarly, to generate data for triples that did have
the structure of LCD triples, we used the simulations for Figure 7b, but only selected causal structures where X1 can
be treated as an intervention variable. We added measurement error with a fixed variance of 0.8.

Finally, in order to obtain the results in Figure 7d, we generated random DAGs with 15 nodes and a connection
probability of 0.15. In this case edge weights were chosen uniformly at random from the interval [0.8, 1.2] and error
variance were chosen uniformly at random from the interval [0.5, 1.0]. After generating 10000 datapoints for each
model, we added measurement error with a fixed variance of 0.8.

C Protein Signaling Data

The raw data was pre-processed by transforming each datapoint x by

x̂ = arcsinh(x/5).

As a preprocessing step we filtered out cells that are in the M cell cycle phase according to the gating procedure
described in [Behbehani et al., 2012]. We motivate this filtering step by several reasons. First, cells in the M phase
form a distinct cluster and strongly violate our assumption of a linear-Gaussian model since they represent a separate
cluster. Second, in the M phase the cells already have doubled nuclei and some other organelle, so we cannot safely
assume that the causal mechanisms of signalling are the same anymore. Therefore, the removal of these cells should be
seen as removal of a contaminating population. Practically this came down to selecting only single cell measurements
for which the abundance of the phosphorylated protein pHH3 was smaller than 3.0.

We then only included data in our (conditional) independence tests, when all measurements that were needed to
conduct the test exceeded a lower threshold of 0.5, to account for the detection limit in mass cytometry.

For the analysis in the main paper, we only considered the proteins that were over-expressed and whose phosphorylated
abundances were also measured. We considered the measurements 5 minutes after stimulation, because at this time-



point the signaling responses were generally strong, see also Figure 3 in [Lun et al., 2017]. For our analysis we only
used the first replica of the experiment, which had the most measurements for each condition.

We analyzed a subset of the available proteins, based on the recommendations in Lun et al. [2017], and excluded pro-
teins from the cause variables when spill-over effects were reported under the condition that they were over-expressed,
see also Table 1. We also excluded pS6 because over-expressing it induced no strong signaling responses. Finally, we
also discarded SHP2. Although the condition where SHP2 was over-expressed was not affected by spill-over effects,
the measured phosphorylated abundances of pSHP2 were affected by spill-over affects under multiple conditions.

Table 1: Proteins that are both over-expressed in one of the conditions and whose phosphorylated abundance is mea-
sured under all conditions, with an indication whether spillover effects are present.

Over-expressed protein Measured protein Spill-over

JNK1 pJNK no
MKK6 pMKK3/6 no
PDPK1 pPDPK1 yes
P38 pP38 no
AKT1 pAKT no
ERK2 pERK no
SHP2 pSHP2 no
GSK3B pGSK3B yes
S6 pS6 no*
P90RSK pP90RSK yes
MEK1 pMEK1/2 no
P70S6K pS6K no
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