
Incremental Learning-to-Learn with Statistical Guarantees

Giulia Denevi1,2 Carlo Ciliberto3 Dimitris Stamos3 Massimiliano Pontil 1,3

giulia.denevi@iit.it c.ciliberto@ucl.ac.uk d.stamos.12@ucl.ac.uk massimiliano.pontil@iit.it
1 Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia, 16163 Genova, Italy

2 Department of Mathematics, University of Genova, 16146 Genova, Italy
3 Department of Computer Science, University College of London, WC1E 6BT, London, United Kingdom

Abstract

In learning-to-learn the goal is to infer a
learning algorithm that works well on a class
of tasks sampled from an unknown meta-
distribution. In contrast to previous work on
batch learning-to-learn, we consider a scenario
where tasks are presented sequentially and the
algorithm needs to adapt incrementally to im-
prove its performance on future tasks. Key to
this setting is for the algorithm to rapidly in-
corporate new observations into the model as
they arrive, without keeping them in memory.
We focus on the case where the underlying al-
gorithm is Ridge Regression parametrised by
a symmetric positive semidefinite matrix. We
propose to learn this matrix by applying a
stochastic strategy to minimize the empirical
error incurred by Ridge Regression on future
tasks sampled from the meta-distribution. We
study the statistical properties of the proposed
algorithm and prove non-asymptotic bounds
on its excess transfer risk, that is, the gener-
alization performance on new tasks from the
same meta-distribution. We compare our on-
line learning-to-learn approach with a state-of-
the-art batch method, both theoretically and
empirically.

1 INTRODUCTION

Learning-to-learn (LTL) or meta-learning aims at find-
ing an algorithm that is best suited to address a class of
learning problems (tasks). These tasks are sampled from
an unknown meta-distribution and are only partially ob-
served via a finite collection of training examples, see
(Baxter, 2000; Maurer, 2005; Thrun & Pratt, 1998) and
references therein. This problem plays a large role in ar-
tificial intelligence in that it can improve the efficiency

of learning from human supervision. In particular, sub-
stantial improvement over “learning in isolation” (also
known as independent task learning, ITL) is to be ex-
pected when the sample size per task is small, a set-
ting which naturally arises in many applications, see e.g.
(Camoriano et al., 2017; Rebuffi et al., 2017; Rohrbach
et al., 2013).

LTL is particularly appealing when considered from an
online or incremental perspective. In this setting, which
is sometimes referred to as lifelong learning, see e.g.
(Ruvolo & Eaton, 2013), the tasks are observed sequen-
tially – via corresponding sets of training examples –
from a common environment and we aim to improve the
learning ability of the underlying algorithm on future yet-
to-be-seen tasks from the same environment. Practical
scenarios of lifelong learning are wide ranging, including
computer vision (Rebuffi et al., 2017), robotics (Camori-
ano et al., 2017), user modelling and many more.

Although LTL is naturally suited for the incremental
setting, surprisingly, theoretical investigations are lack-
ing. Previous studies, starting from the seminal paper
(Baxter, 2000) and (Maurer, 2009; Maurer et al., 2013;
2016; Pentina & Lampert, 2014), have almost exclu-
sively considered the setting in which the tasks are given
in one batch, that is, the meta-algorithm processes multi-
ple datasets from the environment jointly and only once
as opposed to sequentially and indefinitely.

The papers (Balcan et al., 2015; Herbster et al., 2016)
present results in an online framework which applies
to a finite number of tasks using different performance
measures. Perhaps most related to our work is (Alquier
et al., 2017), where the authors consider a general PAC-
Bayesian approach to lifelong learning based on the ex-
ponentially weighted aggregation procedure. Unfortu-
nately, this approach is not efficient for large scale appli-
cations as it entails storing the entire sequence of datasets
during the meta-learning process.

LTL also bears strong similarity to multi-task learning

(MTL), see e.g. (Caruana, 1997), and much work has
been done on the theoretical study of both batch (Ando &
Zhang, 2005; Maurer et al., 2013) and online (Cavallanti
et al., 2010) multi-task learning algorithms. However
multi-task learning aims to solve the different problem
of learning well on a prescribed set of tasks (the learned
model is tested on the same tasks used during training)
whereas LTL aims to extrapolate to new tasks.

The principal contribution of this paper is to propose an
incremental approach to learning-to-learn and to analyse
its statistical guarantees. This incremental approach is
appealing in that it efficiently processes one dataset at
the time, without the need to store previously encoun-
tered datasets. We study in detail the case of linear repre-
sentation learning, in which an underlying learning algo-
rithm receives in input a sequence of datasets and incre-
mentally updates the data representation so as to better
learn future tasks. Following previous work on LTL, e.g.
(Baxter, 2000; Maurer, 2009), we measure the perfor-
mance of the incremental meta-algorithm by the trans-
fer risk, namely the average error obtained by running
the underlying algorithm with the learned representation,
over tasks sampled from the meta-distribution.

Specifically, in this work we choose the underlying algo-
rithm to be Ridge Regression parametrised by a symmet-
ric positive semidefinite matrix. The incremental LTL
approach we propose aims at optimizing the future em-
pirical error (Maurer, 2009; Maurer et al., 2016) in-
curred by Ridge Regression over a class of linear rep-
resentations. For this purpose, we propose to apply
Projected Stochastic Subgradient Algorithm (PSSA). We
show that the objective function of the resulting meta-
algorithm is convex and we give a non-asymptotic con-
vergence rate for the algorithm in high probability. A
remarkable feature of our learning bound is that it is
comparable to previous bounds for batch LTL. Our proof
technique leverages previous work on learning-to-learn
(Maurer, 2009) with tools from online convex optimiza-
tion, see (Cesa-Bianchi et al., 2004; Hazan, 2016) and
references therein.

The paper is organized as follows. In Sec. 2, we review
the LTL problem and describe in detail the case of linear
feature learning with Ridge Regression. In Sec. 3, we
present our incremental meta-algorithm for linear feature
learning. Sec. 4 contains our bound on the excess transfer
risk for the proposed algorithm and in Sec. 5 we compare
the bound to a previous bound for the batch setting. In
Sec. 6, we report preliminary numerical experiments for
the proposed algorithm and, finally, Sec. 7 summarizes
the paper and highlight directions of future research. The
detailed proofs of the statements in the paper are reported
in the appendix.

2 PROBLEM FORMULATION

In the standard independent task learning setting the goal
is to learn a functional relation between an input space
X and an output space Y from a finite number of train-
ing examples. More precisely, given a loss function
` : Y × Y → R measuring prediction errors and given
a distribution µ on the joint data space Z = X × Y , the
goal is to find a function f : X → Y minimizing the
expected risk

Rµ(f) = Ez∼µ `(f, z) (1)

where, with some abuse of notation, for any z = (x, y) ∈
Z we denoted `(f, z) = `(f(x), y). In most prac-
tical situations the underlying distribution is unknown
and the learner is only provided with a finite set Z =
(zi)

n
i=1 ∈ Zn of observations independently sampled

from µ. The goal of a learning algorithm is therefore,
given such a training dataset Z to return a “good” es-
timator A(Z) = fZ whose expected risk is small and
tends to the minimum of Eq. (1) as n increases.

A well-established approach to tackle the learning prob-
lem is offered by regularized empirical risk minimiza-
tion. This corresponds to the family of algorithms Aφ
such that, for any Z ∈ Zn,

Aφ(Z) = argmin
f∈Fφ

RZ(f) + λ‖f‖2Fφ (2)

where φ : X → Fφ is a feature map, Fφ is the Hilbert
space of functions f : X → Y such that f(x) =
〈f, φ(x)〉Fφ for any x ∈ X and

RZ(f) =
1

n

n∑
i=1

`(f, zi)

denotes the empirical risk of function f on the set Z.

2.1 LINEAR FEATURE LEARNING

In this work we will focus on the case that Y ⊆ R,
X ⊆ Rd, ` is the square loss and φ : Rd → Rm is a lin-
ear feature map (also known as a representation), corre-
sponding to the action φ(x) = Φx of a matrix Φ ∈ Rm×d
on the input space. It is well known, see e.g. (Argyriou
et al., 2008), that, settingD = 1

λΦ>Φ ∈ Rd×d, any prob-
lem of the form in Eq. (2) can be equivalently formulated
as

AD(Z) = argmin
w∈Ran(D)

RZ(w) + w>D†w (3)

where, with some abuse of notation, we denoted with
RZ(w) the empirical risk of the linear function x 7→
w>x, for any x ∈ X . Here, D† denotes the pseu-
doinverse of D, which is symmetric positive semidefi-
nite (PSD) but not necessarily invertible; when it is not

invertible the constraint requiring w to be in the range
Ran(D) ⊆ Rd of D is needed to grant the equivalence
with Eq. (2). Since for any linear feature map φ there
exists a symmetric PSD matrix D such that Eq. (2) and
Eq. (3) are equivalent, in the following we will refer to
D as the representation used by algorithm AD.

2.2 LEARNING TO LEARN D

A natural question is how to choose a good representa-
tion D for a given family of related learning problems.
In this work we consider the approach of learning it from
data. In particular, following the seminal work of (Bax-
ter, 2000), we consider a setting where we are provided
with an increasing number of tasks and our goal is to
find a joint representation D such that the corresponding
algorithm AD is suited to address all such learning prob-
lems. The underlying assumption is that all the tasks that
we observe share a common structure that algorithm AD
can leverage in order to achieve better prediction perfor-
mance.

More formally, we assume that the tasks we observe are
independently sampled from a meta-distribution ρ on the
set of probability measures on Z . According to the liter-
ature on the topic, see e.g. (Baxter, 2000; Maurer, 2005),
we refer to the meta-distribution ρ as the environment and
we identify each task sampled from ρ by its correspond-
ing distribution µ, from which we are provided with a
training dataset Z ∼ µn of n points sampled indepen-
dently from µ. While it is possible to consider a more
general setting, for simplicity in this work we study the
case where for each task we sample the same fixed num-
ber n of training points. In line with the independent
task learning setting, the goal of a “learning-to-learn” al-
gorithm is therefore to find the best parameter D mini-
mizing the so-called transfer risk

E(D) = Eµ∼ρEZ∼µn Rµ
(
AD(Z)

)
(4)

over a set D of candidate representations. The term E(D)
is the expected risk that the corresponding algorithmAD,
when trained on the dataset Z, would incur on average
with respect to the distribution of tasks µ induced by ρ.
That is, to compute the transfer risk, we first draw a task
µ ∼ ρ and a corresponding n-sample Z ∈ Zn from
µn, we then apply the learning algorithm to obtain an
estimator AD(Z) and finally we measure the risk of this
estimator on the distribution µ.

The problem of minimizing the transfer risk in Eq. (4)
given a finite number T of training datasets Z1, . . . , ZT
sampled from the corresponding tasks µ1, . . . , µT , has
been subject of thorough analysis in literature, see e.g.
(Baxter, 2000; Maurer, 2005; Maurer et al., 2016). Most
work has been focused on the so-called “batch” setting,

where all such training datasets are provided at once.
However, by its nature, LTL is an ongoing (possibly
never ending) process, with training datasets observed a
few at the time. In such a scenario the meta-algorithm
should allow for an evolving representation D, which
improves over time as new datasets are observed. In the
following we propose a meta-algorithm to learn D on-
line with respect to the tasks, allowing us to transfer past
experience about the environment in an efficient man-
ner, without requiring the memorization of training data,
which could be prohibitive in large scale applications.
We will study the statistical guarantees of the proposed
algorithm and compare it to its batch counterpart in terms
of both theoretical and empirical performance.

2.3 CONNECTION WITH MULTI-TASK
LEARNING

LTL is strongly related to multi-task learning (MTL) and
in fact, as we will see later for the algorithm in Eq. (3),
approaches developed for MTL can be used as inspira-
tion to design algorithms for LTL. In multi-task learning
a fixed number of tasks µ1, . . . , µT is provided up front
and, given T datasets Z1, . . . , ZT , each sampled from
its corresponding distribution, the goal is to find a joint
representation D incurring a small average expected risk
1
T

∑T
t=1Rµt(AD(Zt)). In this sense, the main differ-

ence between LTL and MTL is that the former aims to
guarantee good prediction performance on future tasks,
while the latter aims to guarantee good prediction per-
formance on the same tasks used to train D.

A well-established approach to MTL is multi-task feature
learning (Argyriou et al., 2008). This method consists in
solving the optimization problem

min
D∈Dλ

1

T

T∑
t=1

min
w∈Ran(D)

RZt(wt) + w>t D
†wt

over the set

Dλ =
{
D ∈ Sd+ | tr(D) ≤ 1/λ

}
(5)

where Sd+ denotes the set of d×d symmetric PSD matri-
ces, tr(D) is the trace of D and λ is a positive parameter
which controls the degree of regularization. In the sub-
sequent analysis the parameter λ must be intended as a
fixed hyper-parameter, which will be chosen by cross-
validation in the experiments. This choice for Dλ is mo-
tivated by the following variational form, see e.g. (Ar-
gyriou et al., 2008, Prop. 4.2), of the square trace norm
of W = [w1, . . . , wT] ∈ Rd×T

‖W‖21 =
1

λ
inf

D∈Int(Dλ)

T∑
t=1

w>t D
−1wt

where Int(Dλ) is the interior of Dλ, namely the set of
the symmetric PSD invertible matrices with trace strictly
smaller than 1/λ. This leads to the equivalent problem

min
W∈Rd×T

1

T

T∑
t=1

RZt(wt) + γ‖W‖21 (6)

with γ = λ/T . The trace norm of a matrix is defined as
the sum (`1-norm) of its singular values, and it is known
to induce low-rank solutions for Problem (6). Intuitively,
this means that tasks are encouraged to share a common
set of features (or representation). In this paper, we adopt
this perspective to design our online LTL approach for
linear feature learning.

3 ONLINE LEARNING-TO-LEARN

Motivated by the above connection with multi-task learn-
ing, we propose an online LTL approach to approximate
the solution of the learning problem

min
D∈Dλ

E(D)

over the set Dλ introduced in Eq. (5). We consider the
setting in which we are provided with a stream of inde-
pendent datasets Z1, . . . , ZT , . . . , each sampled from an
individual task distribution µ1, . . . , µT , . . . coming from
the environment ρ and our goal is to find an estimator
in Dλ that improves incrementally as the number of ob-
served tasks T increases.

3.1 MINIMIZING THE EMPIRICAL
TRANSFER RISK

A key observation motivating the online procedure pro-
posed in this work, is that in the independent task learn-
ing setting, standard results from learning theory, see e.g.
(Shalev-Shwartz & Ben-David, 2014), allow one to con-
trol the statistical performance of regularized empirical
risk minimization, providing bounds on the generaliza-
tion error of AD as

EZ ∼ µn |Rµ
(
AD(Z)

)
−RZ

(
AD(Z)

)
| ≤ G(D,n) (7)

whereG(·, n) is a decreasing function converging to 0 as
n → +∞, while G(D, ·) is a measure of complexity of
D, which is large for more “expressive” representations
and smaller otherwise.

Eq. (7) suggests us to use the empirical risk RZ as a
proxy for the expected risk Rµ. Therefore, we intro-
duce the so-called future empirical risk (Maurer, 2009;
Maurer et al., 2016),

Ê(D) = Eµ∼ρEZ∼µn RZ
(
AD(Z)

)

Algorithm 1 PSSA applied to Ê

Input: T number of tasks, λ > 0 hyper-parameter,
{γt}t∈N step sizes.
Initialization: D(1) ∈ Dλ

For t = 1 to T :
Sample µt ∼ ρ, Zt ∼ µnt .
Choose Ut ∈ ∂LZt(D(t))
Update D(t+1) = projDλ

(D(t) − γtUt)

Return D̄T =
1

T

T∑
t=1

D(t)

and consider the related problem

min
D∈Dλ

Ê(D), (8)

which in the sequel, introducing the shorthand notation
LZ(D) = RZ(AD(Z)) for any D ∈ Sd+, will be rewrit-
ten as

min
D∈Dλ

Eµ∼ρEZ∼µn LZ(D) (9)

to highlight the dependency on Z.

Problem (9) can be approached with stochastic optimiza-
tion strategies. Such methods proceed by sequentially
sampling a point (dataset in this case) Z and perform-
ing an update step. In recent years, stochastic optimiza-
tion, finding its origin in the Stochastic Approximation
method by (Robbins & Monro, 1951), has been effec-
tively used to deal with large scale applications. We refer
to (Nemirovski et al., 2009) for a more comprehensive
discussion about this topic. We therefore propose to ap-
ply Projected Stochastic Subgradient Algorithm (PSSA)
(Shamir & Zhang, 2013), to solve the optimization prob-
lem in Eq. (9). The candidate representation coincides
in this case with the mean after T iterations D̄T and
it is known as Polyak-Ruppert averaging scheme (Ne-
mirovskii & Yudin, 1985; Polyak & Juditsky, 1992) in
the optimization literature. Alg. 1 reports the application
of PSSA to Ê when LZ is convex on the set Sd+. It re-
quires iteratively: i) sampling a datasetZ, ii) performing
a step in the direction of a subgradient of LZ at the cur-
rent point, and iii) projecting onto the set Dλ (which can
be done in a finite number of iterations, see Lemma 16
in App. E). Note that in this case, since the function LZ
is convex, there is no ambiguity in the definition of the
subdifferential ∂LZ , see e.g. (Bertsekas et al., 2003), and
we can rely on the convergence of Alg. 1 to a global min-
imum of Ê over Dλ for a suitable choice of step-sizes, as
discussed in Sec. 4.

3.2 LTL WITH RIDGE REGRESSION

In this work, we focus on the case that the loss function
` : Y × Y → R corresponds to the square loss, namely
`(y, y′) = (y − y′)2 for any y, y′ ∈ Y ⊆ R. In this set-
ting, given a datasetZ ∈ Zn, algorithmAD is equivalent
to perform the following variant to Ridge Regression

min
w∈Ran(D)

1

n
‖y −Xw‖2 + w>D†w (10)

where X ∈ Rn×d is the matrix with rows corresponding
to the input points xi ∈ Rd in the dataset Z and y ∈ Rn
the vector with entries equal to the corresponding output
points yi ∈ R. The solution to Eq. (10) can be obtained
in closed form, in particular, see e.g. (Argyriou et al.,
2008; Maurer, 2009),

AD(Z) = DX>
(
XDX> + nI

)−1
y. (11)

Plugging this solution in the definition of LZ(D), a di-
rect computation yields that

LZ(D) = n
∥∥(XDX> + nI)−1y

∥∥ 2. (12)

The following result characterizes some key properties
of the function LZ in Eq. (12), which will be useful in
our subsequent analysis. We denote by Br ⊆ Rd the ball
of radius r > 0 centered at 0.

Proposition 1 (Properties of LZ for the Square Loss).
Let X ⊆ B1, Y ⊆ [0, 1] and ` be the square loss. Then,
for any dataset Z ∈ Zn the following properties hold:

1. LZ is convex on the set Sd+.

2. LZ is C∞ and, for every D ∈ Sd+,

∇LZ(D) = −nX>M(D)−1S(D)M(D)−1X

where

M(D) = XDX> + nI

S(D) = yy>M(D)−1 +M(D)−1yy>.

3. LZ is 2-Lipschitz w.r.t. the Frobenius norm.

4. ∇LZ is 6-Lipschitz w.r.t. the Frobenius norm.

5. LZ(D) ∈ [0, 1], for any D ∈ Sd+.

The proposition above establishes the convexity of Prob-
lem (8) for the case of the square loss. This fact is impor-
tant in that it guarantees no ambiguity in applying Alg. 1
to our setting and moreover, since LZ is differentiable,
Alg. 1 becomes a Projected Stochastic Gradient Algo-
rithm.

4 THEORETICAL ANALYSIS

In this section, we study the statistical properties of
Alg. 1 for the case of the square loss. Below we re-
port the main result of this work, which characterizes
the non-asymptotic behavior of the estimator D̄T pro-
duced by Alg. 1 with respect to a minimizer D∗ ∈
argminD∈Dλ

E(D). To present our results we introduce
the d× d matrix Cρ = Eµ∼ρE(x,y)∼µ[xx>] denoting the
covariance of the input data, obtained by averaging over
all input marginals sampled from ρ. We also denote with
‖Cρ‖∞ the operator norm of Cρ, which corresponds to
the largest eigen-value.
Theorem 2 (Online LTL Bound). Let X ⊆ B1, Y ⊆
[0, 1] and ` be the square loss. Let µ1, . . . , µT be inde-
pendently sampled from ρ and Zt sampled from µnt for
t ∈ {1, . . . , T}. Let D̄T be the output of Alg. 1 with step
sizes γt = (λ

√
2t)−1. Then, for any δ ∈ (0, 1]

E(D̄T)− E(D∗) ≤
4
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ

+
4
√

2

λ
√
T

+

√
8 log

(
2/δ
)

T

with probability at least 1 − δ with respect to the inde-
pendent sampling of the tasks µt ∼ ρ and training sets
Zt ∼ µnt for any t ∈ {1, . . . , T}.

In Sec. 5, we will compare Thm. 2 with the statistical
bound available for a state-of-the-art LTL batch proce-
dure. We will see that the statistical behaviour of these
two approaches is essentially equivalent, with the online
LTL approach being more appealing given the lower re-
quirements in terms of both number of computations and
memory. In the rest of this section we give a sketch of
the proof for Thm. 2. Proofs of intermediate results are
reported in the appendix.

4.1 ERROR DECOMPOSITION

The statistical analysis of Alg. 1 hinges upon the follow-
ing decomposition for the excess transfer risk of the esti-
mator D̄T :

E(D̄T)− E(D∗) (13)

= E(D̄T)± Ê(D̄T)± Ê(D∗)− E(D∗)

≤ 2 sup
D∈Dλ

|E(D)− Ê(D)|+ Ê(D̄T)− Ê(D∗)

≤ 2 sup
D∈Dλ

|E(D)− Ê(D)|︸ ︷︷ ︸
Uniform generalization

error

+ Ê(D̄T)− Ê(D̂∗)︸ ︷︷ ︸
Excess future
empirical risk

where the matrix D̂∗ denotes a minimizer of the future
transfer risk over Dλ, that is, D̂∗ ∈ argminD∈Dλ

Ê(D).

Eq. (13) decomposes E(D̄T)− E(D∗) in a uniform gen-
eralization error, implicitly encoding the complexity of
the class of algorithms parametrised by D and an excess
future empirical risk, measuring the discrepancy between
the estimator D̄T and the minimizer D̂∗ of Ê . In the fol-
lowing we describe how to bound these two terms.

4.2 BOUNDING THE UNIFORM
GENERALIZATION ERROR

Results providing generalization bounds for the class of
regularized empirical risk minimization algorithms AD
considered in this work are well known. The following
result, which is taken from (Maurer, 2009), leverages an
explicit estimate of the generalization boundG(D,n) in-
troduced in Sec. 3.1 for independent task learning, see
Eq. (7), to obtain a uniform bound over the class of algo-
rithms parametrized by Dλ.

Proposition 3 (Uniform Generalization Error Bound).
Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square loss,
then

sup
D∈Dλ

|E(D)− Ê(D)| ≤ 2
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ
.

For completeness, we report the proof of this proposition
in App. B.3.

4.3 BOUNDING THE EXCESS FUTURE
EMPIRICAL RISK

Providing bounds for the excess future empirical risk in-
troduced in Eq. (13) consists in studying the convergence
rates of Alg. 1 to the minimum of Ê over Dλ in high
probability with respect to the sample of T tasks µt from
ρ and datasets Zt from µnt for any t ∈ {1, . . . , T}.

To this end, we leverage classical results from the online
learning literature (Hazan, 2016). In online learning, the
performance of an online algorithm returning a sequence
{D(t)}Tt=1 over T trials is measured in terms of its regret,
which in the context of this work corresponds to

RT =
1

T

T∑
t=1

LZt(D(t))− min
D∈Dλ

1

T

T∑
t=1

LZt(D).

Differently from the statistical setting considered in this
work, in the online setting no assumption is made about
the data generation process of Z1, . . . , ZT , which could
be even adversely generated. Therefore, an algorithm
that is able to solve the online problem (i.e. if its re-
gret vanishes as T → ∞) can be also expected to solve
the corresponding problem in the statistical setting. This
is indeed the case for Alg. 1, for which the following
lemma provides a non-asymptotic regret bound.

Lemma 4 (Regret Bound for Alg. 1). Let X ⊆ B1, Y ⊆
[0, 1] and ` be the square loss. Then the regret of Alg. 1
with step-sizes γt = (λ

√
2t)−1 is such that

RT ≤
4
√

2

λ
√
T
.

The above lemma is a corollary of Prop. 1 combined
with classical results on regret bounds for Projected On-
line Subgradient Algorithm (Hazan, 2016). We refer the
reader to App. D.1 for a more in-depth discussion and for
a detailed proof.

In our setting, the datasets Z1, . . . , ZT are assumed to
be independently sampled from the underlying environ-
ment. Combining this assumption with the regret bound
in Lemma 4, we can control the excess future empirical
risk by means of so-called online-to-batch conversion re-
sults (Cesa-Bianchi et al., 2004; Hazan, 2016), leading to
the following proposition.
Proposition 5 (Excess Future Empirical Risk Bound for
Alg. 1). Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square
loss. Let µ1, . . . , µT be independently sampled from ρ
and Zt sampled from µnt for t ∈ {1, . . . , T}. Let D̄T

be the output of Alg. 1 with step sizes γt = (λ
√

2t)−1.
Then, for any δ ∈ (0, 1]

Ê(D̄T)− Ê(D̂∗) ≤
4
√

2

λ
√
T

+

√
8 log(2/δ)

T

with probability at least 1 − δ with respect to the inde-
pendent sampling of the tasks µt ∼ ρ and training sets
Zt ∼ µnt for any t ∈ {1, . . . , T}.

The result above follows by combining Prop. 1 with
online-to-batch results, see e.g. (Hazan, 2016, Thm. 9.3)
and (Cesa-Bianchi et al., 2004). In App. D.2 we provide
the complete proof of this statement together with a more
detailed discussion about this topic. At this point we are
ready to give the proof of Thm. 2.

Proof of Thm. 2. The claim follows by combining
Prop. 3 and Prop. 5 in the decomposition of the error
E(D̄T)− E(D∗) given in Eq. (13).

5 ONLINE LTL VERSUS BATCH LTL

In this section, we compare the statistical guarantees ob-
tained for our online meta-algorithm with a state-of-the-
art batch LTL method for linear feature learning. We also
comment on the computational cost of both procedures.

5.1 STATISTICAL COMPARISON

Given a finite collection Z = {Z1, . . . , ZT } of datasets,
a standard approach to approximate a minimizer of the

future empirical risk Ê is to take a representation D̂T

minimizing the multi-task empirical risk

ÊZ(D) =
1

T

T∑
t=1

RZt(AD(Zt)) (14)

over the set Dλ. Such a choice has been extensively stud-
ied in the LTL literature (Baxter, 2000; Maurer, 2009;
Maurer et al., 2013; 2016). Here we report a result anal-
ogous to Thm. 2, characterizing the discrepancy between
the transfer risks of D̂T and D∗.

Theorem 6 (Batch LTL Bound). LetX ⊆ B1, Y ⊆ [0, 1]
and let ` be the square loss. Let tasks µ1, . . . , µT be
independently sampled from ρ and Zt sampled from µnt
for t ∈ {1, . . . , T}. Let D̂T be a minimizer of the multi-
task empirical risk in Eq. (14) over the set Dλ. Then, for
any δ ∈ (0, 1]

E(D̂T)− E(D∗) ≤
4
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ

+
2
√

2π

λ
√
T

+

√
2 log

(
2/δ
)

T

with probability at least 1 − δ with respect to the inde-
pendent sampling of the tasks µt ∼ ρ and training sets
Zt ∼ µnt for any t ∈ {1, . . . , T}.

The result above is obtained by further decomposing
the error E(D̂T) − E(D∗) as done in Eq. (13). In par-
ticular, since the multi-task empirical error provides an
estimate for the future empirical risk, it is possible to
control the overall error by further bounding the term
|Ê(D)−ÊZ(D)| uniformly with respect toD ∈ Dλ. This
last result was originally presented in (Maurer, 2009); in
App. C we report the complete analysis of such decom-
position, leading to the bound in Thm. 6.

5.2 STATISTICAL CONSIDERATIONS

For a fixed value of λ, we can now compare the bounds
on the excess transfer risk for the representations result-
ing from the application of the online procedure (see
Thm. 2) and the batch one (see Thm. 6). Since the ap-
proximation error due to the choice of λ will be the same
for both approaches, this comparison provides a first in-
dication of their statistical behavior. However, it should
be kept in mind that we are comparing upper bounds,
hence our considerations are not conclusive and further
analysis by means of lower bounds for both algorithms
would be valuable.

Thm. 2 and Thm. 6 are both composed of three terms.
The first term is exactly the same for both procedures
and this is obvious looking at the decompositions used

to deduce both results. This term can be interpreted as a
within-task-estimation error, that depends on the number
of points n used to train the underlying learning algo-
rithm (in our case Ridge Regression with a linear feature
map). This term, similarly to the MTL setting, highlights
the advantage of exploiting the relatedness of the tasks in
the learning process in comparison to independent task
learning (ITL). Indeed, if the inputs are distributed on a
high dimensional manifold, then ‖Cρ‖∞ � 1, while up-
per bounds for ITL have a leading constant of 1. In par-
ticular, ‖Cρ‖∞ = 1/d if the marginal distributions of the
tasks are uniform on the d − 1 dimensional unit sphere;
see (Maurer, 2009; Maurer et al., 2016) for a more de-
tailed discussion about this point. The last term in the
bounds expresses the dependency on the confidence pa-
rameter δ and it is again approximately the same for the
batch and the online case. It follows that the main role
in the comparison between the online and batch bounds
is driven by the middle term, which expresses the depen-
dency of the bound on the number of tasks T . This term
originates in different ways: in the batch approach it is
derived from the application of uniform bounds and it
can be interpreted as an inter-task estimation error, while
in the online approach, it plays the role of an optimiza-
tion error. Despite the different derivations, we can as-
certain from the explicit formula of the bounds that this
term is approximately the same for both procedures. This
is remarkable since it implies that the representation re-
sulting from our online procedure enjoys the same sta-
tistical guarantees than the batch one, despite its more
parsimonious memory and computational requirements.

5.3 COMPUTATIONAL CONSIDERATIONS

After discussing the theoretical comparison between the
online and the batch LTL approach, in this section we
point out some key aspects regarding the computational
costs of both procedures.

Memory. The batch LTL estimator corresponds to a
minimizer of the multi-task empirical risk in Eq. (14)
over all tasks observed so far. The corresponding ap-
proach therefore requires storing in memory all training
datasets as they arrive in order to perform the optimiza-
tion. This is clearly not sustainable in the incremental
setting, since tasks are observed sequentially and, possi-
bly indefinitely, inevitably leading to a memory overflow.
On the contrary, in line with stochastic methods, online
LTL has a small memory footprint, since it requires to
store only one dataset at the time, allowing to “forget” it
as soon as one gradient step is performed.

Time. Online LTL is also advantageous in terms of the
number of iterations performed whenever a new task is
observed. Indeed, for every new task, online LTL per-

forms only one step of gradient descent for a total of
T steps after T tasks. On the contrary, batch LTL re-
quires finding a minimizer for Eq. (14), which cannot
be obtained in closed form but requires adopting an it-
erative method such as Projected Gradient Descent, see
e.g. (Combettes & Wajs, 2005). These methods typi-
cally require k iterations to achieve an error of the order
of O(1/k) from the optimum (better rates are possible
adopting accelerated schemes). However, since for any
new task batch LTL needs to find a minimizer for the
multi-task empirical error from scratch, this leads to a
total of Tk iterations after T tasks. Noting that every
such iteration requires to compute T gradients of LZ in
contrast to the single one of PSSA, this shows that on-
line LTL requires much less operations. In the batch
case, a “warm-restart” strategy can be adopted to ini-
tialize the Projected Gradient Descent with the represen-
tation learned during the previous step, however, as we
empirically observed in Sec. 6, online LTL is still signif-
icantly faster than batch.

6 EXPERIMENTS

In this section, we report preliminary empirical evalua-
tions of the online LTL strategy proposed in this work;
the Python implementation of our algorithm is available
at https://github.com/dstamos. In particular we compare
our method with its batch (or offline) counterpart and in-
dependent task learning (ITL), i.e. standard Ridge Re-
gression, which does not leverage any shared structure
among the tasks.

In all experiments, we obtain the online and batch esti-
mators D̄λ,Ttr

and D̂λ,Ttr
by learning them on a dataset

Ztr of Ttr training tasks, each comprising n input-output
pairs (x, y) ∈ X ×Y . Below to simplify our notation we
omit the subscript Ttr in these estimators. We perform
this training for different values of λ ∈ {λ1, . . . , λp}
and select the best estimator based on the prediction error
measured on a separate set Zva of Tva validation tasks.
Once such optimal λ value has been selected, we report
the generalization performance of the corresponding es-
timator on a set Zte of Tte test tasks. Note that the tasks
in the test and validation sets Zte and Zva are all pro-
vided with both a training and test datasets Z,Z ′ ∈ Zn.
Indeed, in order to evaluate the performance of a rep-
resentation D, we need to first train the corresponding
algorithm AD on Z, and then test its performance on
Z ′ (sampled from the same distribution), by computing
the empirical riskRZ′(AD(Z)). For all methods consid-
ered in this setting, we perform parameter selection over
p = 30 candidate values of λ over the range [10−6, 103]
with logarithmic spacing. In the online setting the train-
ing datasets arrive one at the time, therefore model se-

Figure 1: Relative improvement (in %) of our online LTL al-
gorithm over the ITL baseline for a varying range of training
tasks Ttr and number of samples n per task, during 30 trials.

lection is performed online: the system keeps track of
all candidate representation matrices D̄λ1

, . . . , D̄λm and
whenever a new training task is presented, these matrices
are all updated by incorporating the corresponding new
observations. The best representation is then returned at
each iteration, based on its performance on the validation
set Zva. Finally, in the subsequent experiments, we set
the step sizes of the online LTL method in Alg. 1 equal
to γt = c/

√
t, for some constant c > 0 chosen by model

selection. Moreover, we computed the batch LTL esti-
mator by classical Projected Gradient Descent method
up to convergence, within 10−6 relative descent of the
objective function.

Synthetic Data. We considered a regression problem on
X ⊆ Rd with d = 50 and a variable number of train-
ing tasks Ttr and training points n. We also generated
Tte = 300 test tasks and we sampled a number Tva of
validation tasks equal to 50% of Ttr. For each task, the
corresponding dataset (xi, yi)

n
i=1 was generated accord-

ing to the linear regression equation y = w>x + ε, with
x sampled uniformly on the unit sphere in Rd and ε sam-
pled from a Normal distribution, ε ∼ N (0, 0.2). The
tasks predictors w were generated as Pw̃ with the com-
ponents of w̃ ∈ Rd/2 sampled from N (0, 1) and then w̃
normalized to have unit norm, with P ∈ Rd×d/2 a matrix
with orthonormal rows. In this way, the tasks reflect the
assumption of sharing a low dimensional representation,
which needs to be inferred by the LTL algorithm.

Fig. 1 reports the comparison between the baseline ITL
and the proposed online LTL approach in terms of the
relative difference of the prediction error on test tasks
for the two methods. More precisely, given the mean
squared errors (MSE) RoLTL of online LTL and RITL

of ITL averaged across the test tasks, we report the ra-
tio (RITL−RoLTL)/RITL as a percentage improvement.
Results are reported across a range of Ttr and n. We note
that the regime considered for these experiments is par-

Table 1: Time (in seconds) for computing online and batch LTL
for Ttr training tasks and n of samples per task.

Ttr 50 100 150
n 20 50 20 50 20 50

Batch 85 227 246 617 428 2003
Online 36 86 108 273 227 776

ticularly favorable to LTL, almost always outperforming
ITL. However, when the number of training points per
task is small, the LTL algorithm, as expected, is unable
to capture the underlying representation, unless several
tasks are used in training.

To provide further evidence of the performance of on-
line LTL, Fig. 2 (Top) compares the prediction error of
online LTL, batch LTL, and ITL as the number of train-
ing tasks Ttr increases one at the time and the different
methods update their corresponding representation ac-
cordingly. In this case, the number of samples per task
is fixed to n = 40. We also added to the comparison the
multi-task algorithm (MTL) described in Sec. 2.3, per-
forming trace norm regularization on the test set. As ex-
pected, the performance of both ITL and MTL does not
depend on the number of training tasks. Consistently to
what observed before, ITL is outperformed by both LTL
methods, which tend to converge to the MTL method as
more training tasks are provided. In general, when, as
in this case, the number of test tasks is large enough,
the MTL method is expected to outperform LTL, since
MTL optimizes the representation directly on the test
tasks. Concerning the LTL methods, consistently with
the theory presented in Sec. 4, the performance of the on-
line method is equivalent to that of its batch counterpart,
which is, as already stressed in Sec. 5.3, less appealing
from the computational point of view. To confirm this
aspect, we report in Tab. 1 the computational times re-
quired on average by online LTL and batch LTL as Ttr
and n vary. Online LTL is faster than batch LTL.

Schools Dataset. We evaluated online LTL on the
Schools dataset, consisting of examination records from
139 schools, see (Argyriou et al., 2008). Each school is
associated to a regression task, individual students corre-
spond to the input and their exam score to the output. In
this case, the sample size n varies across the tasks and the
features belong to an input space X ⊆ Rd, with d = 26.
We randomly sampled 25% and 50% of the 139 tasks
for LTL training and validation respectively and the re-
maining tasks were used as test set. Fig. 2 (Bottom) re-
ports the performance of online LTL, batch LTL, ITL and
MTL. Performance is reported in terms of the Explained
Variance on the tasks (Argyriou et al., 2008), higher val-
ues correspond to better performance. Results are con-
sistent with synthetic experiments; in particular, online

Figure 2: Performance of online LTL, batch LTL, ITL and MTL
(on the test set) during 30 trials on the synthetic dataset (Top)
and the Schools dataset (Bottom) as the number of training
tasks increases incrementally.

and batch LTL are comparable.

7 CONCLUSION AND FUTURE WORK

We proposed an on-line (incremental) approach to LTL
for linear data representation learning. Compared with
its batch counterpart, this approach is computationally
more efficient both in terms of memory and number of
operations, while enjoying the same generalization prop-
erties. Preliminary experiments have highlighted the fa-
vorable learning capability of the proposed LTL strat-
egy. Our analysis opens several future research direc-
tions. First, it would be valuable to investigate whether
the same statistical guarantees hold for a projection-free
meta-algorithm which does not require the computation
of the entire SVD (e.g. certain variants of Frank Wolfe
algorithm (Hazan & Kale, 2012), which do not require
memorizing the sequence of datasets). Second, from
a modeling perspective, we could take inspiration from
the vast MTL literature to design new LTL methods in
order to deal with tasks that are not necessarily span-
ning a low-rank subspace but are for instance organized
into clusters (Jacob et al., 2009) or share a sparse set of
relations (Ciliberto et al., 2015a;b). Finally, extending
our analysis to non-convex settings would allow one to
tackle more general families of learning algorithms as
well as recent empirical meta-learning approaches (e.g.
Franceschi et al., 2018) which implicitly attempt to di-
rectly minimize the transfer risk.

References
Alquier, Pierre, Mai, The Tien, and Pontil, Massimiliano. Re-

gret bounds for lifelong learning. In International Confer-
ence on Artificial Intelligence and Statistics, 2017.

Ando, Rie Kubota and Zhang, Tong. A framework for learning
predictive structures from multiple tasks and unlabeled data.
Journal of Machine Learning Research, 2005.

Argyriou, Andreas, Evgeniou, Theodoros, and Pontil, Massim-
iliano. Convex multi-task feature learning. Machine Learn-
ing, 2008.

Balcan, Maria-Florina, Blum, Avrim, and Vempala, Santosh.
Efficient representations for lifelong learning and autoen-
coding. In Conference on Learning Theory, 2015.

Bartlett, Peter L and Mendelson, Shahar. Rademacher and
gaussian complexities: Risk bounds and structural results.
Journal of Machine Learning Research, 3:463–482, 2002.

Bauschke, Heinz H, Combettes, Patrick L, et al. Convex
analysis and monotone operator theory in Hilbert spaces.
Springer.

Baxter, Jonathan. A model of inductive bias learning. J. Artif.
Intell. Res., 12(149–198):3, 2000.

Bertsekas, Dimitri P, Nedi, Angelia, and Ozdaglar, Asuman.
Convex analysis and optimization. Athena Scientific, 2003.

Bhatia, Rajendra. Matrix analysis, volume 169 of graduate
texts in mathematics, 1997.

Boucheron, Stéphane, Lugosi, Gábor, and Bousquet, Olivier.
Concentration inequalities. In Advanced Lectures on Ma-
chine Learning, pp. 208–240. Springer, 2004.

Camoriano, Raffaello, Pasquale, Giulia, Ciliberto, Carlo, Na-
tale, Lorenzo, Rosasco, Lorenzo, and Metta, Giorgio. Incre-
mental robot learning of new objects with fixed update time.
In ICRA, 2017.

Caruana, Rich. Multitask learning. Machine Learning, 1997.

Cavallanti, Giovanni, Cesa-Bianchi, Nicolo, and Gentile, Clau-
dio. Linear algorithms for online multitask classification.
Journal of Machine Learning Research, 2010.

Cesa-Bianchi, Nicolo, Conconi, Alex, and Gentile, Claudio.
On the generalization ability of on-line learning algorithms.
IEEE Transactions on Information Theory, 2004.

Ciliberto, Carlo, Mroueh, Youssef, Poggio, Tomaso, and
Rosasco, Lorenzo. Convex learning of multiple tasks and
their structure. In ICML, 2015a.

Ciliberto, Carlo, Rosasco, Lorenzo, and Villa, Silvia. Learning
multiple visual tasks while discovering their structure. In
CVPR, 2015b.

Combettes, Patrick L and Wajs, Valérie R. Signal recovery by
proximal forward-backward splitting. Multiscale Modeling
& Simulation, 4(4):1168–1200, 2005.

Franceschi, Luca, Frasconi, Paolo, Grazzi, Riccardo, Salzo,
Saverio, and Pontil, Massi. Bilevel programming for hyper-
parameter optimization and meta-learning. In ICML, 2018.

Grimmett, Geoffrey and Stirzaker, David. Probability and ran-
dom processes. Oxford university press, 2001.

Hazan, Elad. Introduction to online convex optimization. Foun-
dations and Trends in Optimization, 2016.

Hazan, Elad and Kale, Satyen. Projection-free online learning.
arXiv preprint arXiv:1206.4657, 2012.

Herbster, Mark, Pasteris, Stephen, and Pontil, Massimiliano.
Mistake bounds for binary matrix completion. In Advances
in Neural Information Processing Systems, 2016.

Jacob, Laurent, Vert, Jean-philippe, and Bach, Francis R. Clus-
tered multi-task learning: A convex formulation. In Ad-
vances in neural information processing systems, 2009.

Kollo, Tonu and von Rosen, Dietrich. Advanced Multivariate
Statistics with Matrices, volume 579. Springer Science &
Business Media, 2006.

Maurer, Andreas. Algorithmic stability and meta-learning.
Journal of Machine Learning Research, 2005.

Maurer, Andreas. Transfer bounds for linear feature learning.
Machine learning, 75(3):327–350, 2009.

Maurer, Andreas, Pontil, Massi, and Romera-Paredes,
Bernardino. Sparse coding for multitask and transfer learn-
ing. In ICML, 2013.

Maurer, Andreas, Pontil, Massimiliano, and Romera-Paredes,
Bernardino. The benefit of multitask representation learn-
ing. The Journal of Machine Learning Research, 17(1):
2853–2884, 2016.

McDonald, Andrew M, Pontil, Massimiliano, and Stamos,
Dimitris. New perspectives on k-support and cluster norms.
Journal of Machine Learning Research, 2016.

Nemirovski, Arkadi, Juditsky, Anatoli, Lan, Guanghui, and
Shapiro, Alexander. Robust stochastic approximation ap-
proach to stochastic programming. SIAM Journal on opti-
mization, 2009.

Nemirovskii, A. and Yudin, D. B. Problem complexity and
method efficiency in optimization. SIAM Review, 1985.

Pentina, Anastasia and Lampert, Christoph. A PAC-Bayesian
bound for lifelong learning. In International Conference on
Machine Learning, pp. 991–999, 2014.

Petersen, Kaare Brandt and Pedersen, Michael Syskind. The
matrix cookbook. Technical University of Denmark, 2008.

Polyak, Boris T and Juditsky, Anatoli B. Acceleration of
stochastic approximation by averaging. SIAM Journal on
Control and Optimization, 30(4):838–855, 1992.

Rebuffi, Sylvestre-Alvise, Kolesnikov, Alexander, and Lam-
pert, Christoph H. iCaRL: Incremental classifier and rep-
resentation learning. In Proc. CVPR, 2017.

Robbins, Herbert and Monro, Sutton. A stochastic approxima-
tion method. The Annals of Mathematical Statistics, 1951.

Rohrbach, Marcus, Ebert, Sandra, and Schiele, Bernt. Transfer
learning in a transductive setting. In Advances in Neural
Information Processing Systems, pp. 46–54, 2013.

Ruvolo, Paul and Eaton, Eric. Ella: An efficient lifelong learn-
ing algorithm. In ICML, 2013.

Shalev-Shwartz, Shai and Ben-David, Shai. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press, 2014.

Shamir, Ohad and Zhang, Tong. Stochastic gradient descent for
non-smooth optimization: Convergence results and optimal
averaging schemes. In ICML, 2013.

Thrun, Sebastian and Pratt, Lorien. Learning to Learn.
Springer, 1998.

APPENDIX

A PROOF OF Prop. 1

We denote by Sd, Sd+ and Sd++ the sets of symmetric, positive semidefinite (PSD) and positive definite d × d real
matrices, respectively. We denote by 〈·, ·〉 the standard inner product in Rd (or Rn, depending on the context) and by
‖·‖ the associated norm. For any p ∈ [1,∞], the p-Schatten norm of a matrix will be denoted by ‖·‖p. Note that ‖·‖1,
‖·‖2 and ‖·‖∞ are the trace, Frobenius and spectral norms, respectively.

Recall the definition of the function LZ in Eq. (12). In order to provide the proof of Prop. 1 we need the following
Lemma, see (Maurer, 2005, Lemma 11).

Lemma 7. If G1, G2 ∈ Sd+, then for any γ > 0 and for i = 1, 2, the following points hold.

(a) Gi + γI is invertible.

(b)
∥∥(Gi + γI

)−1∥∥
∞ ≤ γ

−1.

(c)
∥∥(G1 + γI

)−1 − (G2 + γI
)−1∥∥

∞ ≤ γ
−2
∥∥G1 −G2

∥∥
∞.

(d) Let w1 and w2 satisfy
(
Gi + γI

)
wi = y for some y, for i = 1, 2. Then we have that∣∣∣‖w1‖2 − ‖w2‖2

∣∣∣ ≤ 2γ−3
∥∥G1 −G2

∥∥
∞‖y‖

2
.

Proof of Prop. 1. We now prove each point in turn.

1. Recall that a function h : Sd → Sd is matrix-convex if for every A,B ∈ Sd and λ ∈ [0, 1], h(λA+ (1− λ)B) �
λh(A) + (1 − λ)h(B), see e.g. (Bhatia, 1997, Chap. V). The function h(A) = A−2 is matrix convex on
Sd++. It follows, for every y ∈ Rn, that the real-valued function gy : Sd++ → R defined at A ∈ Sd++ as
gy(A) = 〈y, A−2y〉 is convex. By Eq. (12), we have that LZ(D) = gy(XDX> + nI), hence it is convex
because it is the composition of the convex function gy with an affine function.

2. Since the function LZ in Eq. (12) is the composition of C∞ functions, it is itself C∞ on Sd+; therefore, as soon as
we restrict it to a bounded subset of Sd+, all its derivatives1 become Lipschitz. In this section we will use formula
deriving from matrix calculus, we refer to the books (Kollo & von Rosen, 2006; Petersen & Pedersen, 2008) for
more details. Recalling the notation M(D) = XDX> + nI ∈ Rn×n, we now compute the Jacobian of the
function LZ . Denoting by xk the k-th column of the matrix X (it will be a column vector) for k = 1, . . . , d, we
first show, for every i, j ∈ {1, . . . , d}, that[

∇LZ(D)
]
i,j

= −n tr
(
yy>M(D)−1

(
xixj

>
M(D)−1 +M(D)−1xixj

>
)
M(D)−1

)
= −n

〈
y,M(D)−1

(
xixj

>
M(D)−1 +M(D)−1xixj

>
)
M(D)−1y

〉
.

(15)

To see this, we first exploit the cyclic property of the trace to rewrite, for any Z ∈ Zn and D ∈ Sd+, the function
LZ in Eq. (12) as

LZ(D) = n
〈
y,M(D)−2y

〉
= n tr

(
y>M(D)−2y

)
= n tr

(
yy>M(D)−2

)
= n f

(
U(D)

)
where for any matrix V ∈ Rn×n we have introduced the function f

(
V
)

= tr(yy>V) and the symmetric matrix

U(D) = M(D)−2 ∈ Rn×n. Hence, since
∂f(V)

∂V
= yy> for any symmetric V (Petersen & Pedersen, 2008,

Eq. (93)), thanks to the chain rule (Petersen & Pedersen, 2008, Eq. (126)), for any i, j ∈ {1, . . . , d}, we have that

∂LZ(D)

∂Dij
= n tr

(∂f(U(D))

∂U(D)

>
∂U(D)

∂Dij

)
= n tr

(
yy>

∂U(D)

∂Dij

)
= n

〈
y,
∂U(D)

∂Dij
y
〉
.

1On the boundary of the set we define the derivatives by continuity.

Moreover, the following formula, which is a direct consequence of (Petersen & Pedersen, 2008, Eq. (33),Eq. (53)),
holds:

∂M(D)−2

∂Di,j
= −M(D)−1

(∂M(D)

∂Di,j
M(D)−1 +M(D)−1

∂M(D)

∂Di,j

)
M(D)−1 (16)

and, for every k, h ∈ {1, . . . , n}, we have that

[∂M(D)

∂Di,j

]
kh

=
[∂(XDX>)

∂Di,j

]
kh

= xikx
j
h =

[
xixj

>]
kh
.

Hence, substituting in Eq. (16) we obtain:

∂U(D)

∂Di,j
=
∂M(D)−2

∂Di,j
= −M(D)−1

(
xixj

>
M(D)−1 +M(D)−1xixj

>
)
M(D)−1

and this conclude the proof of Eq. (15). Now, using the fact that for two n × 1 vectors v and w, we have that
xi
>
v, xj

>
w ∈ R and (

xi
>
v
)(
xj
>
w
)

=
[
X>v

]
i

[
X>w

]
j

=
[
X>vw>X

]
ij
,

and exploiting the symmetry of M(D), we can rewrite:[
∇LZ(D)

]
i,j

= −n
〈
y,M(D)−1

(
xixj

>
M(D)−1 +M(D)−1xixj

>
)
M(D)−1y

〉
= −n

〈
y,M(D)−1xixj

>
M(D)−2y

〉
− n

〈
y,M(D)−2xixj

>
M(D)−1y

〉
= −n

(
xi
>
M(D)−1y︸ ︷︷ ︸

v

)(
xj
>
M(D)−2y︸ ︷︷ ︸

w

)
− n

(
xi
>
M(D)−2y︸ ︷︷ ︸

v

)(
xj
>
M(D)−1y︸ ︷︷ ︸

w

)
= −n

[
X>M(D)−1yy>M(D)−2X

]
ij
− n

[
X>M(D)−2yy>M(D)−1X

]
ij

= −n
[
X>M(D)−1

(
yy>M(D)−1 +M(D)−1yy>

)
M(D)−1X

]
ij
.

This last equation contains the elements of the Jacobian in the statement of the proposition.

3. In order to compute the Lipschitz constant of the function LZ we first recall, for any D ∈ Sd+ and Z ∈ Zn, the
expression LZ(D) = n

∥∥(XDX> + nI
)−1

y
∥∥2 in Eq. (12). Consequently, for any D1, D2 ∈ Sd+ we have that∣∣LZ(D1)− LZ(D2)

∣∣ = n
∣∣∣∥∥(XD1X

> + nI
)−1

y
∥∥2 − ∥∥(XD2X

> + nI
)−1

y
∥∥2∣∣∣

≤ 2n

n3
∥∥XD1X

> −XD2X
>
∥∥
∞‖y‖

2

=
2

n2
∥∥X(D1 −D2

)
X>
∥∥
∞‖y‖

2

≤ 2

n2
‖X‖2∞‖y‖

2∥∥D1 −D2

∥∥
∞

≤ 2

n2
‖X‖2∞‖y‖

2∥∥D1 −D2

∥∥
2
,

where in the first inequality we have applied Lemma 7-(d) with Gi = XDiX
>, for i = 1, 2. The statement now

follows observing that if Y ⊆ [0, 1], then ‖y‖2 ≤ n and if X ⊆ B1, then ‖X‖2∞ ≤ n.

4. We now compute the Lipschitz constant of the gradient ∇LZ . In the following we will use the more compact
notation M1 = M(D1) and M2 = M(D2), for any D1, D2 ∈ Sd+, and R = yy>. Exploiting the following facts:

(a) ‖AB‖2 ≤ ‖A‖∞‖B‖2 for any two matrices A and B,
(b) by Lemma 7-(b): ‖M−1i ‖∞ ≤ 1/n for i = 1, 2,

(c) by Lemma 7-(c): ∥∥M−11 −M−12

∥∥
∞ =

∥∥(XD1X
> + nI

)−1 − (XD2X
> + nI

)−1∥∥
∞

≤ 1

n2
∥∥XD1X

> −XD2X
>
∥∥
∞

≤ 1

n2
‖X‖2∞

∥∥D1 −D2

∥∥
∞,

(d)
∥∥M−21 −M−22

∥∥
∞ =

∥∥M−11

(
M−11 −M−12

)
+
(
M−11 −M−12

)
M−12

∥∥
∞ ≤

2

n

∥∥M−11 −M−12

∥∥
∞,

(e) if X ⊆ B1 and Y ⊆ [0, 1], then ‖X‖2 ≤
√
n and ‖R‖∞ = ‖yy>‖∞ ≤ n,

we can write the following relations:∥∥∥∇LZ(D1)−∇LZ(D2)
∥∥∥
2

=

n
∥∥∥X>(M−11

(
yy>M−11 +M−11 yy>

)
M−11 −M−12

(
yy>M−12 +M−12 yy>

)
M−12

)
X
∥∥∥
2
≤

n‖X‖∞‖X‖2
∥∥∥M−11

(
yy>M−11 +M−11 yy>

)
M−11 −M−12

(
yy>M−12 +M−12 yy>

)
M−12

∥∥∥
∞

=

n‖X‖∞‖X‖2
∥∥∥M−11 RM−21 +M−21 RM−11 −M−12 RM−22 −M−22 RM−12

∥∥∥
∞

=

n‖X‖∞‖X‖2
∥∥∥M−11 RM−21 +M−21 RM−11 −M−12 RM−22 −M−22 RM−12

±M−12 RM−21 ±M−21 RM−12

∥∥∥
∞

=

n‖X‖∞‖X‖2
∥∥∥(M−11 −M

−1
2

)
RM−21 +M−21 R

(
M−11 −M

−1
2

)
+M−12 R

(
M−21 −M

−2
2

)
+(

M−21 −M
−2
2

)
RM−12

∥∥∥
∞
≤

2‖X‖∞‖X‖2‖R‖∞
(1

n

∥∥M−11 −M−12

∥∥
∞ +

∥∥M−21 −M−22

∥∥
∞

)
≤

2‖X‖∞‖X‖2
(∥∥M−11 −M−12

∥∥
∞ + 2

∥∥M−11 −M−12

∥∥
∞

)
=

6‖X‖∞‖X‖2
∥∥M−11 −M−12

∥∥
∞ ≤

6

n2
‖X‖2‖X‖

3
∞
∥∥D1 −D2

∥∥
∞

≤ 6
∥∥D1 −D2

∥∥
2
.

5. The last point is contained in (Maurer, 2009, Prop. 1-(i)); we report here the proof for completeness. To this end,
we require some additional notation, which will be also used in the next section of the appendix.

Remark 1 (Notation). According to our actual notation,X ∈ Rn×d is the matrix having as rows the points xi for
i = 1, . . . n. In the sequel, since the analysis will be extended also to the infinite dimension case, we will need to
introduce the notation x = (xi)

n
i=1 ∈ Xn, to indicate the collection of these points; to remark this difference, we

will denote the complete dataset (x,y) by z and no more by Z. For any symmetric PSD matrix/ linear operator
D and any dataset z, with some abuse of notation, we let D1/2z = (D1/2xi, yi)

n
i=1. Moreover, according to the

notation introduced in the paper, we will denote the empirical error of a linear function x 7→ 〈w, x〉 over the
dataset z as

R̂(z, w) = Rz(w).

Coming back to the proof of the proposition, as observed in (Argyriou et al., 2008; Maurer, 2009), it is possible
to rewrite the algorithm defined in Eq. (11) in the equivalent form

AD(z) = D1/2ARid(D1/2z), (17)

where ARid(z) ∈ Rd is the solution of Ridge Regression on the dataset z, that is

ARid(z) = arg min
w∈Rd

{
R̂(z, w) + ‖w‖2

}
.

From Eq. (17), we have that 〈AD(z), x〉 =
〈
ARid(D1/2z), D1/2x

〉
, for any x ∈ X and any dataset z. Conse-

quently
R̂
(
z, AD(z)

)
= R̂

(
D1/2z, ARid(D1/2z)

)
. (18)

Due to the definition of ARid, assuming Y ⊆ [0, 1], the following relations hold:

R̂
(
D1/2z, ARid(D1/2z)

)
≤ R̂

(
D1/2z, ARid(D1/2z)

)
+
∥∥ARid(D1/2z)

∥∥2
≤ 1

n

n∑
i=1

`(0, yi) =
1

n

n∑
i=1

y2i ≤ 1.

The claim now follows by combining the last inequality with Eq. (18).

B UNIFORM BOUNDS FOR LINEAR FEATURE LEARNING

In this section, we provide the uniform bounds on E(D)−Ê(D) and Ê(D)−ÊZ(D) (and the corresponding symmetric
quantities) for the family of linear feature learning algorithms. Our observations are essentially taken from (Maurer,
2009), we report them for clarity of exposition. We start from recalling some tools from empirical processes, then we
state the uniform bounds for a more general class of learning algorithms and finally we specialize the bounds to linear
feature learning. We ignore issues of measurability throughout.

B.1 PRELIMINARIES

Let m be a positive integer. In the following, we denote by (σj)
m
j=1 a sequence of i.i.d. Rademacher random variables,

that is σj takes values on −1 or 1 with equal probabilities. We also denote by (γj)
m
j=1 a sequence of i.i.d. standard

Gaussian random variables. For a set S ⊆ Rm we define the Rademacher average of S as

R(S) = Eσj
[

sup
v∈S

2

m

m∑
j=1

σjvj

]
and the Gaussian average

G(S) = Eγj
[

sup
v∈S

2

m

m∑
j=1

γjvj

]
.

For more details about these quantities, we refer to (Bartlett & Mendelson, 2002). Given a class F of real-valued
functions on a set V , and given a point V = (v1, . . . , vm) ∈ Vm, we let

F(V) =
{(
f(v1), . . . , f(vm)

)
: f ∈ F

}
⊂ Rm

so that R(F(V)) and G(F(V)) are the corresponding Rademacher and Gaussian averages.

The following theorem is taken from (Maurer, 2009, Thm. 4), where the author considers only the inequality for the
function Φ1. Considering both inequalities allows us to obtain symmetric uniform bounds. The proof follows the same
pattern as in (Maurer, 2009).

Theorem 8. Let η be a probability distribution over the space V , let F be a real-valued function class on V and let
V = (v1, . . . , vm) ∈ Vm. Define the random functions:

Φ1(V) = sup
f∈F

{
Ev∼η

[
f(v)

]
− 1

m

m∑
j=1

f(vj)
}

Φ2(V) = sup
f∈F

{ 1

m

m∑
j=1

f(vj)− Ev∼η
[
f(v)

]}
.

Then the following statements hold.

1. EV∼ηm
[
Φk(V)

]
≤ EV∼ηm

[
R(F(V))

]
, for k = 1, 2.

2. If F is [0, 1]-valued, then, for any δ ∈ (0, 1], we have that

Φk(V) ≤ EV∼ηm
[
R(F(V))

]
+

√
log
(
1/δ
)

2m

with probability at least 1− δ in V ∼ ηm, for k = 1, 2.

3. In the previous two points we can replace R(F(V)) with
√
π/2G(F(V)).

Proof. The proof for the symmetric term Φ2 proceeds in the same way as the one for Φ1 in (Maurer, 2009, Thm. 4),
more precisely, since the proof is based on symmetric arguments, the statement does not change if we flip the order of
Ev∼η

[
f(v)

]
and 1

m

∑m
j=1 f(vj). The last inequality is a standard result, see e.g. (Boucheron et al., 2004).

B.2 UNIFORM BOUNDS FOR A MORE GENERAL FAMILY OF ALGORITHMS

The results presented in this sub-section hold for the infinite dimension case. In the sequel, we let X be a generic
Hilbert space and we denote by 〈·, ·〉 and ‖·‖ its scalar product and the induced norm. We let S+(X) be the set of
positive semidefinite bounded linear operators on X and, for any operator D ∈ S+(X), we denote its p-Schatten norm
by ‖D‖p, where p ∈ [1,∞]. We continue to use the notation introduced in the paper and in Remark 1, in particular,
Z = {zt}Tt=1 is the meta-sample and, for any D ∈ S+(X), we denote D1/2z =

(
D1/2xi, yi

)n
i=1

. Throughout this
section we will consider linear models and a learning algorithm A(z) processing a training set z ∈ Zn of n points:

A : Zn → X
z 7→ A(z),

hence, according to our notation, we have that A(z)(x) = 〈A(z), x〉 for any x ∈ X . For any D ∈ S+(X), define now
the more general family of modified algorithms

AD(z) = D1/2A(D1/2z).

By this definition, as we have already observed in the proof of Prop. 1-(5) in App. A, we have that〈
AD(z), x

〉
=
〈
A(D1/2z), D1/2x

〉
for any x ∈ X and consequently

R̂
(
z, AD(z)

)
= R̂

(
D1/2z, A(D1/2z)

)
.

In this way, we can consider the family of learning algorithms
{
z 7→ AD(z) : D ∈ S+(X)

}
, parametrised by the

operators D. Recall now, for every D ∈ S+(X), the notion of transfer risk

E(D) = Eµ∼ρEz∼µnE(x,y)∼µ
[
`(〈AD(z), x〉, y)

]
,

future empirical risk
Ê(D) = Eµ∼ρEz∼µn

[
R̂
(
z, AD(z)

)]
and multi-task empirical risk

ÊZ(D) =
1

T

T∑
t=1

R̂
(
zt, AD(zt)

)
.

The following two theorems are taken from (Maurer, 2009), where the author does not consider the symmetric case,
which immediately follows from Thm. 8. More precisely, The first theorem is taken from (Maurer, 2009, Thm. 6)
and second one from (Maurer, 2009, Thm. 8). In the sequel, the symbol Cρ, already introduced in the paper,
denotes the covariance of the input data, obtained by averaging over all input marginals sampled from ρ, that is,
Cρ = Eµ∼ρE(x,y)∼µ [C(x)], where for any x ∈ X , and for any v ∈ X , C(x)v = 〈v, x〉x.

Theorem 9. Let p and q be conjugate exponents in [1,∞] and assume X ⊆ B1. Consider a learning algorithm A
such that ‖A(D1/2z)‖ ≤ 1 for any z ∈ Zn and any D ∈ S+(X), and let ` be a loss function such that, for any y ∈ R,
`(·, y) has Lipschitz constant L(K) on the interval [−K,K], for any K ≥ 0. Then for any meta-distribution ρ on Z
and for any D ∈ S+(X) we have that:

∣∣E(D)− Ê(D)
∣∣ ≤√2π

n
L
(
‖D‖1/2∞

)
‖Cρ‖p

1/2‖D‖q
1/2
.

In order to give the next theorem, we need to introduce the Gramian matrix defined by the entries [G(x)]i,j = 〈xi, xj〉
for i, j = 1, . . . , n.

Theorem 10. Let X ⊆ B1 and D ⊆ S+(X) be a bounded set. Consider a function f : Zn → [0, 1] satisfying the
condition ∣∣f(z)− f(z′)

∣∣ ≤ LK
n

∥∥G(x)−G(x′)
∥∥
2

for any z, z′ ∈ Zn and for some LK ≥ 0. Let µ1, . . . , µT tasks independently sampled from ρ and zt sampled from
µnt for t ∈ {1, . . . , T}. Then, for any δ ∈ (0, 1], we have that

sup
D∈D

∣∣∣Eµ∼ρEz∼µn
[
f(D1/2z)

]
− 1

T

T∑
t=1

f(D1/2zt)
∣∣∣ ≤ (sup

D∈D
‖D‖2

)√2πLK√
T

+

√
log
(
1/δ
)

2T

with probability at least 1−δ with respect to the independent sampling of the tasks µt ∼ ρ and training sets zt ∼ µnt for
any t ∈ {1, . . . , T}.

B.3 APPLICATION TO THE FAMILY OF LINEAR FEATURE LEARNING ALGORITHM

Similarly to what observed in Prop. 1-(5) in App. A, also in the infinite dimension case, we can cast the family of
linear feature learning algorithms in the framework described in the previous sub-section, taking the original vanilla
algorithm A(z) as Ridge Regression with regularization parameter equal to 1:

A(z) = ARid(z) = arg min
w

{
R̂(z, w) + ‖w‖2

}
, (19)

we refer to (Maurer, 2009) for more details. Thus, we can apply the results in the previous sub-section to this specific
case, in order to obtain the results stated in the paper for the uniform bounds. In fact, in the paper we have analyzed
the finite dimension case, but from this analysis, we deduced that they still hold in the infinite dimension setting. The
following definition, see (Maurer, 2009, Def. 1), will be used in the sequel.

Definition 11. Relative to a loss function `, a learning algorithm A : Zn → X is said to

1. be 1-bounded if ‖A(z)‖ ≤ 1 and R̂(z, A(z)) ≤ 1 for any z ∈ Zn;

2. have kernel stability LK if
∣∣R̂(z, A(z)) − R̂(z′, A(z′))

∣∣ ≤ LK
n

∥∥G(x) − G(x′)
∥∥
2
, for any z, z′ ∈ Zn and for

some LK ≥ 0.

The following two lemmas are essentially taken from (Maurer, 2009) and they are respectively immediate conse-
quences of Thm. 9 and Thm. 10 applied to the family of linear feature learning algorithms with restriction to the
set

D = Dλ =
{
D ∈ S+(X) : tr(D) ≤ 1/λ

}
.

Proposition 3 (Uniform Generalization Error Bound). Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square loss, then

sup
D∈Dλ

|E(D)− Ê(D)| ≤ 2
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ
.

Proof. Thanks to the assumption Y ⊆ [0, 1], by (Maurer, 2009, Prop. 1), ARid(z), is 1-bounded – and in particular,
‖ARid(D1/2z)‖ ≤ 1 for any D ∈ L+(X) and any dataset z – with respect to the square loss. Hence, we can apply
Thm. 9 to ARid. We restrict to the set Dλ, we choose q = 1 and p = ∞ and we observe that the square loss is
M(K) = 2(K + 1)-Lipschitz on the interval [−K,K].

Proposition 12. Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square loss. Let µ1, . . . , µT be independently sampled from
ρ and Zt sampled from µnt for t ∈ {1, . . . , T}. Then, for any δ ∈ (0, 1],

sup
D∈Dλ

∣∣Ê(D)− ÊZ(D)
∣∣ ≤ 2

√
2π

λ
√
T

+

√
log
(
1/δ
)

2T

with probability at least 1 − δ with respect to the independent sampling of the tasks µt ∼ ρ and training sets Zt ∼
µnt for any t ∈ {1, . . . , T}.

Proof. Thanks to the assumption that Y ⊆ [0, 1], by (Maurer, 2009, Prop. 1),ARid(z) is 1-bounded – and in particular,
R̂
(
D1/2z, ARid(D1/2z)

)
≤ 1 for any D ∈ L+(X) and any dataset z – and has kernel stability LK = 2 with respect

to the square loss. We can then apply Thm. 10 to the function

f(z) = R̂
(
z, AD(z)

)
= R̂

(
D1/2z, ARid(D1/2z)

)
.

C PROOF OF Thm. 6

In this section, we report the proof of Thm. 6. We do not make any claim of originality in this theorem which is merely
a collection of results contained in (Maurer, 2009); we report the proof for completeness.

Theorem 6 (Batch LTL Bound). Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square loss. Let tasks µ1, . . . , µT be
independently sampled from ρ and Zt sampled from µnt for t ∈ {1, . . . , T}. Let D̂T be a minimizer of the multi-task
empirical risk in Eq. (14) over the set Dλ. Then, for any δ ∈ (0, 1]

E(D̂T)− E(D∗) ≤
4
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ

+
2
√

2π

λ
√
T

+

√
2 log

(
2/δ
)

T

with probability at least 1 − δ with respect to the independent sampling of the tasks µt ∼ ρ and training sets Zt ∼
µnt for any t ∈ {1, . . . , T}.

Proof. Similarly to the online case, the proof of Thm. 6 relies on the following decomposition.

E(D̂T)− E(D∗) = E(D̂T)− ÊZ(D̂T)︸ ︷︷ ︸
A

+ ÊZ(D̂T)− ÊZ(D∗)︸ ︷︷ ︸
B

+ ÊZ(D∗)− E(D∗)︸ ︷︷ ︸
C

.

We now describe how to deal with each term. We decompose the term A as

E(D̂T)− ÊZ(D̂T) = E(D̂T)− Ê(D̂T)︸ ︷︷ ︸
A1

+ Ê(D̂T)− ÊZ(D̂T)︸ ︷︷ ︸
A2

and we bound the termA1 by Prop. 3 and the termA2 by Prop. 12 with confidence parameter δ/2. The termB, thanks
to the definition of D̂T , is negative. Lastly, as regards the term C, we split it in

ÊZ(D∗)− E(D∗) = ÊZ(D∗)− Ê(D∗)︸ ︷︷ ︸
C1

+ Ê(D∗)− E(D∗)︸ ︷︷ ︸
C2

,

where we bound C2 by Prop. 3, while, in order to bound the first term C1, we apply Hoeffding’s inequality (see
Lemma 13 below) with parameters at = 0 and bt = 1 for any t (thanks to Prop. 1-(5)) and confidence parameter δ/2,
i.e. for any δ ∈ (0, 1], we have that

ÊZ(D∗)− Ê(D∗) ≤

√
log
(
2/δ
)

2T

with probability at least 1− δ/2 in Z. Joining all the previous parts, the statement follows.

Lemma 13 (Hoeffding’s inequality (Boucheron et al., 2004)). Let m be a positive integer and let X1, . . . , Xm be

independent random variables such that Xi ∈ [ai, bi] with probability 1, for i = 1, . . . ,m. Define X̄m =
1

m

m∑
i=1

Xi.

Then, for any ε > 0, we have that

P
[
X̄m − E

[
X̄m

]
≥ ε
]
≤ exp

(
− 2m2ε2∑m

i=1(bi − ai)2
)
,

or equivalently, for any δ ∈ (0, 1], we have that

X̄m − E
[
X̄m

]
≤

√√√√ 1

2m2

(m∑
i=1

(bi − ai)2
)

log
(1

δ

)
with probability at least 1 − δ. Moreover, thanks to symmetric arguments, the previous inequalities hold also for
E
[
X̄m

]
− X̄m.

D NON-ASYMPTOTIC RATES FOR PROJECTED STOCHASTIC SUBGRADIENT
ALGORITHM

In this section, we briefly describe how to derive non-asymptotic convergence rates in probability for Projected
Stochastic Subgradient Algorithm (PSSA), exploiting the regret bounds for Projected Online Subgradient Algorithm
(POSA). In the first part we give a regret bound for POSA and we specialize it to Alg. 1 for the case of the square loss
(Lemma 4). In the second part we first show, in general, how a bound on the regret implies a rate in probability for
the convergence in the statistical setting and then we specialize this result to obtain the bound on the excess empiri-
cal future risk of the output of Alg. 1 for the case of the square loss (Prop. 5). The results contained in this section
are standard, we will cite during the presentation some references where the interested reader can find more details.
Throughout this section, no differentiability assumptions on the functions will be made, we only require them to be
convex and Lipschitz. We also require the boundedness of the diameter of the set over which we optimize. The general
analysis will be conducted in a Hilbert space with scalar product 〈·, ·〉 and induced norm ‖·‖.

D.1 PROJECTED ONLINE SUBGRADIENT ALGORITHM, POSA

The Online Convex Optimization (OCO) framework (Hazan, 2016) over a convex and closed set H of a Hilbert space
can be seen as a repeated game: at iteration t, the online player, i.e. the online algorithm, chooses h(t) ∈ H , after this,
a cost function ft : H → R is revealed by the adversary and the cost incurred by the online player is ft(h(t)). The
cost functions ft are usually assumed to be bounded convex functions over H , belonging to some bounded family of
functions and they could be even adversely chosen. The performance of an online algorithm over a total number of
game iterations T is measured by its regret, defined as the difference between the total averaged cost the algorithm
incurred over T matches and that of the best fixed decision in hindsight:

RT =
1

T

T∑
t=1

ft(h
(t))−min

h∈H

1

T

T∑
t=1

ft(h).

In the sequel, we will always assume the convexity of the functions ft and the existence of a minimizer of the batch
problem ĥ ∈ arg minh∈H

∑T
t=1 ft(h). In our case, we will focus on the classical Projected Online Subgradient

Algorithm described in Alg. 2 and we will give an upper bound on its regret. When needed, the following assumptions
will be made.

Algorithm 2 POSA

Input: T ∈ N number of iterations, {γt}t step sizes
Initialization: h(1) ∈ H
For t = 1 to T

Receive ft, pay ft(h(t))
Choose ut ∈ ∂ft(h(t))
Update h(t+1) = projH(h(t) − γtut)

Return h(T)

Assumption 1. Assume that for any t the functions ft are G-Lipschitz on H , i.e. there exists a positive constant such
that ‖u‖ ≤ G for any u ∈ ∂ft(h) and for any h ∈ H .

Assumption 2. Assume that the diameter of the set H is bounded by some constant D > 0, i.e. sup
h,h′∈H

‖h− h′‖ ≤ D.

The following theorem is a classical result and a slightly different version can be found in (Hazan, 2016, Thm. 3.1),
we report here the proof because of clarity and completeness.

Theorem 14 (Regret Bound for Alg. 2). Under Asm. 1 and Asm. 2, the regret of Alg. 2, with γt = c/
√
t for some

c > 0, is bounded by

RT ≤
1

2

(D2

c
+ 2cG2

) 1√
T
.

Moreover, the optimal value for the previous bound, attained at c =
D√
2G

, is RT ≤
√

2DG√
T

.

Proof. Since ut ∈ ∂ft(h(t)), by convexity of ft and definition of subgradient, we have that:

ft(h
(t))− ft(ĥ) ≤ 〈ut, h(t) − ĥ〉. (20)

Using the update rule of Alg. 2, Pythagorean Theorem (i.e. the non-expansiveness property of the projection operator)
and Asm. 1, the following relations hold:

‖h(t+1) − ĥ‖2 = ‖projH(h(t) − γtut)− ĥ‖2

≤ ‖h(t) − γtut − ĥ‖2

= ‖h(t) − ĥ‖2 − 2γt〈ut, h(t) − ĥ〉+ γ2t ‖ut‖
2

≤ ‖h(t) − ĥ‖2 − 2γt〈ut, h(t) − ĥ〉+ γ2tG
2,

which imply that

〈ut, h(t) − ĥ〉 ≤
‖h(t) − ĥ‖2 − ‖h(t+1) − ĥ‖2

2γt
+
γtG

2

2
. (21)

Combining Eq. (21) with Eq. (20), we obtain:

ft(h
(t))− ft(ĥ) ≤ ‖h

(t) − ĥ‖2

2γt
− ‖h

(t+1) − ĥ‖2

2γt
+
γtG

2

2
. (22)

Now, summing Eq. (22) from t = 1 to t = T , using the convention 1/γ0 = 0, and setting γt = c/
√
t we can write:

T∑
t=1

(
ft(h

(t))− ft(ĥ)
)
≤ 1

2

T∑
t=1

‖h(t) − ĥ‖2

γt
− 1

2

T∑
t=1

‖h(t+1) − ĥ‖2

γt
+
G2

2

T∑
t=1

γt

=
1

2

T∑
t=1

‖h(t) − ĥ‖2

γt
− 1

2

T∑
t=1

‖h(t) − ĥ‖2

γt−1
− 1

2

‖h(T+1) − ĥ‖2

γT
+
G2

2

T∑
t=1

γt

≤ 1

2

T∑
t=1

(1

γt
− 1

γt−1

)
‖h(t) − ĥ‖2 +

G2

2

T∑
t=1

γt

≤ 1

2

(D2

γT
+G2

T∑
t=1

γt

)
≤ 1

2

(D2

c
+ 2cG2

)√
T ,

where we have exploited Asm. 2, more precisely ‖h(t) − ĥ‖ ≤ D, the fact that
∑T
t=1

(
1
γt
− 1

γt−1

)
= 1

γT
and the

inequality
∑T
t=1

1√
t
≤ 2
√
T − 1 ≤ 2

√
T . Dividing by T and optimizing with respect to c, the result follows.

We now specialize the regret bound obtained for the generic Alg. 2 to our Alg. 1 described in the paper for the square
loss.

Lemma 4 (Regret Bound for Alg. 1). Let X ⊆ B1, Y ⊆ [0, 1] and ` be the square loss. Then the regret of Alg. 1 with
step-sizes γt = (λ

√
2t)−1 is such that

RT ≤
4
√

2

λ
√
T
.

Proof. The thesis follows from applying Thm. 14 to the context of Alg. 1 with the square loss. In this case the iteration
h(t) coincide with D(t), the cost functions are identified with ft = LZt , hence they are 2-Lipschitz thanks to Prop. 1-
(3) and, consequently, we can take G = 2 in Thm. 14. Moreover, the diameter D of the set over which we project Dλ

(in the previous notation H) is 2/λ. Indeed, for any D ∈ Dλ we have that ‖D‖2 ≤ ‖D‖1 = tr(D) ≤ 1/λ, hence
D = supD,D′∈Dλ

‖D −D′‖2 ≤ 2/λ.

D.2 ONLINE-TO-BATCH CONVERSION

Consider a collection of data points {Zt}t belonging to some space and let η be a probability distribution over it. In the
sequel of the discussion we will ignore all measurability issues. Let H be a set as above and for every h ∈ H define
F (h) = EZ∼η

[
LZ(h)

]
, where, for any Z, LZ is a convex function. In the following we will consider the optimization

problem
min
h∈H

F (h) (23)

and we will assume the existence of a minimizer h∗ ∈ arg minh∈H F (h). In order to solve the stochastic problem in
Eq. (23), we will analyze the general incremental procedure described in Alg. 3, where the next point is updated by
some rule depending on the past history of the process, for instance, if we choose the update h(t+1) = projH(h(t) −
γtut), for some γt > 0 and ut ∈ ∂ft(h

(t)), then Alg. 3 coincides with POSA (Alg. 2) applied to the functions
ft = LZt .

In the online setting no further assumptions about the data are made, however, in the statistical setting we typically
assume that the data are i.i.d. from the distribution η; since this last setting is more restrictive, one would expect that
if Alg. 3 solves the problem in the online framework, i.e. if its regret RT is such that RT → 0 as T → ∞, then it
will also solve the corresponding problem (23) in the statistical setting. This statement is formally confirmed by the
following theorem (Hazan, 2016, Thm. 9.3), which relies on results taken from (Cesa-Bianchi et al., 2004).

Theorem 15 (Online-to-batch). Let ft = LZt be convex functions with values in [0, 1] for any Zt, t ∈ {1, . . . , T} and
let the points {Zt}Tt=1 processed by Alg. 3 be i.i.d. sampled from η. Then, denoting by RT the regret bound of Alg. 3,
for any δ ∈ (0, 1]

F (h̄T)− F (h∗) ≤ RT +

√
8log(2/δ)

T

Algorithm 3 Generic Incremental Procedure in the Online and Statistical Settings

ONLINE SETTING

Input: T ∈ N number of iterations, {γt}t step sizes
Initialization: h(1) ∈ H
For t = 1 to T :

Receive Zt −→ no further assumptions
Define ft = LZt , pay ft(h(t))
Update h(t+1)

Return h(T)

STATISTICAL SETTING

Input: T ∈ N number of iterations, {γt}t step sizes
Initialization: h(1) ∈ H
For t = 1 to T :

Receive Zt −→ sampled i.i.d. from η
Define ft = LZt , pay ft(h(t))
Update h(t+1)

Return h̄T = 1
T

∑T
t=1 h

(t)

with probability at least 1− δ with respect to the independent sampling of the data Zt for any t ∈ {1, . . . , T}.

The previous theorem relies on the theory of Martingales (Grimmett & Stirzaker, 2001) and the analysis of the first
term 1

T

∑T
t=1 ft(h

(t)) of the regret, see e.g. (Cesa-Bianchi et al., 2004), in fact this term is a data-dependent statistics
evaluating the average cumulative error of the prediction h(t) of the algorithm on the next point Zt, therefore it is
reasonable to expect that it contains information about the generalization ability of the algorithm.

Adapting the previous discussion to the setting of Alg. 1 for the square loss, we obtain the following rate for the excess
empirical future risk of online estimator returned by the algorithm.
Proposition 5 (Excess Future Empirical Risk Bound for Alg. 1). Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square loss.
Let µ1, . . . , µT be independently sampled from ρ and Zt sampled from µnt for t ∈ {1, . . . , T}. Let D̄T be the output
of Alg. 1 with step sizes γt = (λ

√
2t)−1. Then, for any δ ∈ (0, 1]

Ê(D̄T)− Ê(D̂∗) ≤
4
√

2

λ
√
T

+

√
8 log(2/δ)

T

with probability at least 1 − δ with respect to the independent sampling of the tasks µt ∼ ρ and training sets Zt ∼
µnt for any t ∈ {1, . . . , T}.

Proof. The statement directly follows by combining Thm. 15 with the regret bound in Lemma 4 to the context of
Alg. 1 for the square loss: we identify the set H with the set Dλ, the output h̄T with the online estimator D̄T , the
expectation Eη with Eµ∼ρEZ∼µn and the function F with the future empirical risk Ê , the remaining identifications
are obvious. We remark that, thanks to Prop. 1-(5), the boundedness condition on the functions LZt needed in order
to apply Thm. 15, is satisfied in our setting.

E PROJECTION ON THE SET Dλ

In the following lemma we describe how to perform the projection over the set Dλ in a finite number of steps. Without
loss of generality we consider the case that λ = 1; the case regarding a general value of λ immediately follows by a
rescaling argument.
Lemma 16. Let Q be a d × d symmetric matrix and let U∆U> be the eigen-decomposition of Q, where ∆ =
Diag(δ1, . . . , δd), and δd ≥ δd−1 ≥ · · · ≥ δ1. Then the solution of the problem

D̂ = projDλ
(Q) = argmin

{
‖D −Q‖2 : D � 0, tr(D) ≤ 1

}
is given by D̂ = Q if Q satisfies the constraints and D̂ = UΘU> otherwise, where Θ = Diag(θ̂1, . . . , θ̂d), with, for
every i = 1, . . . , d,

θ̂i =


0 if δi ≤ 0

δi if δi > 0 and
∑
j:δj>0 δj ≤ 1

max(0, δi − a) if δi > 0 and
∑
j:δj>0 δj > 1

(24)

and a is the non-negative solution of the equation
∑
j:δj>0 max{0, δj − a} = 1.

Remark 2. We observe that, the function in the equation
∑
j:δj>0 max{0, δj−a} = 1 is piece-wise linear in a and its

critical points (i.e. the points at which the slope of the function changes) are the points {aj = δj}j:δj>0. Consequently,
in order to compute the non-negative solution of this equation, we adopt the procedure described in (McDonald et al.,
2016, Thms. 11 and 13). This approach provides us the solution in at most O(d log(d)) time, hence, the computational
cost of the projection is dominated by the computational cost O(d3) of performing the eigen-decomposition of Q.

The proof of Lemma 16 follows a standard path of reducing the matrix problem to a vector problem, after which an
argument based on the Karush–Kuhn–Tucker (KKT) conditions is employed.

Proof. We analyze the case in which the matrix Q does not satisfy the constraints. Thanks to (Bauschke et al.,
Cor. 24.65), considering the eigen-decomposition of the matrix to be projected Q = U∆U>, where ∆ = Diag(δ)
with δ = (δ1, . . . , δd) ∈ Rd and δd ≥ δd−1 ≥ · · · ≥ δ1, we have that

projDλ
(Q) = UDiag

(
projCλ(δ)

)
U>,

where, using the notation Rd+ =
{
θ ∈ Rd : θi ≥ 0, i = 1, . . . , d

}
, we have introduced the vector-set Cλ =

{
θ ∈

Rd+ :
∑d
i=1 θi ≤ 1

}
. Consequently, it is sufficient to compute θ̂ = projCλ(δ), i.e. we have to solve the constrained

vector-problem:

θ̂ = arg min
{
||θ − δ||2 : θ ∈ Cλ

}
= arg min

{
||θ − δ||2 : θ ∈ Rd+,

d∑
i=1

θi ≤ 1
}
. (25)

Now, since the problem in Eq. (25) is convex, the KKT conditions are not only necessary, but also sufficient. More
precisely, we know that there exist a ∈ R and b = (b1, . . . , bd) ∈ Rd such that

θ̂ ≥ 0∑d
i=1 θ̂i ≤ 1

a ≥ 0

b ≥ 0

a
(∑d

i=1 θ̂i − 1
)

= 0 (∗)
b� θ̂ = 0

θ̂ = δ − a+ b

where the symbol � denotes the Hadamard product between two vectors in Rd, i.e. the component-wise product.
Splitting the two possible cases in (∗), we can rewrite KKT conditions as the union of the following two systems:

A :



θ̂ ≥ 0∑d
i=1 θ̂i ≤ 1

b ≥ 0

a = 0

b� θ̂ = 0

θ̂ = δ − a+ b

or B :



θ̂ ≥ 0

a ≥ 0

b ≥ 0∑d
i=1 θ̂i = 1

b� θ̂ = 0

θ̂ = δ − a+ b.

Combining all the constraints, one finds that the system A admits solutions iff
∑
j:δj>0 δj ≤ 1 and in a such case the

solutions of the system are given by: 
a = 0

bj = max{0,−δj} j = 1, . . . , d

θ̂j = max{0, δj} j = 1, . . . , d.

In a similar way, one finds that the system B admits solutions iff
∑
j:δj>0 δj > 1 and in a such case the solutions of

the system are given by: 
a ≥ 0 :

∑
j:δj>0 max{0, δj − a} = 1

bj = max{0, δj − a}−
(
δj − a

)
j = 1, . . . , d

θ̂j = max{0, δj − a} j = 1, . . . , d.

Finally, combining the two previous cases, we have that

{
a = 0 if

∑
j:δj>0 δj ≤ 1

a ≥ 0 :
∑
j:δj>0 max{0, δj − a} = 1 if

∑
j:δj>0 δj > 1

bj = max{0, δj − a}−
(
δj − a

)
j = 1, . . . , d

θ̂j = max{0, δj − a} j = 1, . . . , d.

The expression in Eq. (24) derives by combining all the cases.

	INTRODUCTION
	PROBLEM FORMULATION
	LINEAR FEATURE LEARNING
	LEARNING TO LEARN D
	CONNECTION WITH MULTI-TASK LEARNING

	ONLINE LEARNING-TO-LEARN
	MINIMIZING THE EMPIRICAL TRANSFER RISK
	LTL WITH RIDGE REGRESSION

	THEORETICAL ANALYSIS
	ERROR DECOMPOSITION
	BOUNDING THE UNIFORM GENERALIZATION ERROR
	BOUNDING THE EXCESS FUTURE EMPIRICAL RISK

	ONLINE LTL VERSUS BATCH LTL
	STATISTICAL COMPARISON
	STATISTICAL CONSIDERATIONS
	COMPUTATIONAL CONSIDERATIONS

	EXPERIMENTS
	CONCLUSION AND FUTURE WORK
	PROOF OF Prop. 1
	UNIFORM BOUNDS FOR LINEAR FEATURE LEARNING
	PRELIMINARIES
	UNIFORM BOUNDS FOR A MORE GENERAL FAMILY OF ALGORITHMS
	APPLICATION TO THE FAMILY OF LINEAR FEATURE LEARNING ALGORITHM

	PROOF OF Thm. 6
	NON-ASYMPTOTIC RATES FOR PROJECTED STOCHASTIC SUBGRADIENT ALGORITHM
	PROJECTED ONLINE SUBGRADIENT ALGORITHM, POSA
	ONLINE-TO-BATCH CONVERSION

	PROJECTION ON THE SET Dl

